CN104025022B - 用于具有推测支持的向量化的装置和方法 - Google Patents

用于具有推测支持的向量化的装置和方法 Download PDF

Info

Publication number
CN104025022B
CN104025022B CN201180075857.4A CN201180075857A CN104025022B CN 104025022 B CN104025022 B CN 104025022B CN 201180075857 A CN201180075857 A CN 201180075857A CN 104025022 B CN104025022 B CN 104025022B
Authority
CN
China
Prior art keywords
effective element
register
instruction
vector register
processor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180075857.4A
Other languages
English (en)
Other versions
CN104025022A (zh
Inventor
J·巴拉德瓦杰
V·W·李
D·金
N·万苏德范
T-F·奈
A·哈特诺
S·S·巴格索克希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN104025022A publication Critical patent/CN104025022A/zh
Application granted granted Critical
Publication of CN104025022B publication Critical patent/CN104025022B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0751Error or fault detection not based on redundancy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/30018Bit or string instructions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/30036Instructions to perform operations on packed data, e.g. vector, tile or matrix operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/3004Arrangements for executing specific machine instructions to perform operations on memory
    • G06F9/30043LOAD or STORE instructions; Clear instruction

Abstract

描述了用于检测处理器中的错误状况并对其作出响应的装置和方法。例如,方法的一个实施例包括:从第一向量寄存器连续读取每个有效元素,每个有效元素指定聚集或加载操作的地址;检测与一个或多个有效元素相关联的一个或多个错误状况;在检测到的除了第一有效元素之外的元素上的错误状况之前,对于连续读取的每个有效元素,将从与该有效元素相关联的地址加载的数据存储在第一输出向量寄存器中;并且对于与检测到的错误状况相关联的以及在检测到的错误状况之后的每个有效元素,设置输出掩码寄存器中的位以指示检测到的错误状况。

Description

用于具有推测支持的向量化的装置和方法
发明领域
本发明的实施例一般涉及计算机系统的领域。更具体地,本发明的实施例涉及用于推测支持以实现向量化的装置和方法。
背景技术
背景技术
指令集,或指令集架构(ISA)是涉及编程的计算机架构的一部分,并可以包括原生数据类型、指令、寄存器架构、寻址模式、存储器架构、中断和异常处理以及外部输入和输出(I/O)。在本文中术语指令一般指宏指令——即被提供给处理器(或指令转换器,该指令转换器(例如使用静态二进制翻译、包括动态编译的动态二进制翻译)翻译、变形、仿真、或以其他方式将指令转换成要由处理器处理的一个或多个指令))以用于执行的指令,而不是微指令或微操作(micro-op)——它们是处理器的解码器解码宏指令的结果。
ISA与微架构不同,微架构是实现指令集的处理器的内部设计。带有不同的微架构的处理器可以共享共同的指令集。例如,奔腾四(Pentium4)处理器、酷睿(CoreTM)处理器、以及来自加利福尼亚州桑尼威尔(Sunnyvale)的超微半导体有限公司(Advanced Micro Devices,Inc.)的诸多处理器实现几乎相同版本的x86指令集(在较新的版本中加入了一些扩展),但具有不同的内部设计。例如,ISA的相同寄存器架构在不同的微架构中使用已知的技术以不同方法来实现,包括专用物理寄存器、使用寄存器重命名机制(例如,使用寄存器别名表(RAT)、重排序缓冲器(ROB)、以及引退寄存器组;使用多个寄存器映射和寄存器池)的一个或多个动态分配物理寄存器,等等。除非另行指出,短语寄存器架构、寄存器组和寄存器在本文中用于指代对软件/编程者可见的寄存器以及指令指定寄存器的方式。在需要特殊性的情况下,形容词逻辑、架构、或软件可见的将用于表示寄存器架构中的寄存器/寄存器组,而不同的形容词将用于指定给定微架构中的寄存器(例如,物理寄存器、重新排序缓冲器、引退寄存器、寄存器池)。
指令集包括一个或多个指令格式。给定指令格式定义各种字段(位的数量、位的位置)以指定要执行的操作(操作码)以及对其要执行该操作的操作数等。通过指令模板(或子格式)的定义来进一步分解一些指令格式。例如,给定指令格式的指令模板可被定义为具有指令格式的字段(所包括的字段通常按照相同的顺序,但是至少一些字段具有不同的位位置,因为包括更少的字段)的不同子集,和/或被定义为具有不同解释的给定字段。由此,ISA的每一指令使用给定指令格式(并且如果定义,则在该指令格式的指令模板的给定一个中)来表达,并且包括用于指定操作和操作数的字段。例如,示例性ADD指令具有专用操作码以及包括用于指定该操作码的操作码字段和用于选择操作数的操作数字段(源1/目的地以及源2)的指令格式,并且该ADD指令在指令流中的出现将具有选择专用操作数的操作数字段中的专用内容。
科学、金融、自动向量化的通用、RMS(识别、挖掘以及合成)以及可视和多媒体应用程序(例如,2D/3D图形、图像处理、视频压缩/解压缩、语音识别算法和音频操纵)常常需要对大量的数据项执行相同操作(被称为“数据并行性”)。单指令多数据(SIMD)是指使处理器对多个数据项执行操作的指令类型。SIMD技术特别适于能够在逻辑上将寄存器中的位分割为多个固定尺寸的数据元素的处理器,每一个数据元素都表示单独的值。例如,256位寄存器中的位可以被指定为要在四个单独的64位打包数据元素(四字(Q)尺寸的数据元素)、八个单独的32位打包数据元素(双字(D)尺寸的数据元素)、十六单独的16位打包数据元素(字(W)尺寸的数据元素)、或三十二个单独的8位数据元素(字节(B)尺寸的数据元素)上操作的源操作数。这种类型的数据被称为打包数据类型或向量数据类型,这种数据类型的操作数被称为打包数据操作数或向量操作数。换句话说,打包数据项或向量指的是打包数据元素的序列,并且打包数据操作数或矢量操作数是SIMD指令(也称为打包数据指令或向量指令)的源操作数或目的地操作数。
作为示例,一种类型的SIMD指令指定要以纵向方式对两个源矢量操作数执行的单个向量运算,以利用相同数量的数据元素、并以相同数据元素顺序生成相同尺寸的目的地向量操作数(也称为结果向量操作数)。源向量操作数中的数据元素被称为源数据元素,而目的地向量操作数中的数据元素被称为目的地或结果数据元素。这些源向量操作数是相同尺寸的,并包含相同宽度的数据元素,如此,它们包含相同数量的数据元素。两个源向量操作数中的相同位位置中的源数据元素形成数据元素对(也称为相对应的数据元素;即,每个源操作数的数据元素位置0中的数据元素相对应,每个源操作数的数据元素位置1中的数据元素相对应,以此类推)。由该SIMD指令所指定的操作分别地对这些源数据元素对中的每一对执行,以生成匹配的数量的结果数据元素,如此,每一对源数据元素都具有对应的结果数据元素。由于操作是纵向的,并且由于结果向量操作数尺寸相同、具有相同数量的数据元素、且结果数据元素与源向量操作数以相同数据元素顺序被存储,因此,结果数据元素处于结果向量操作数中与它们的对应的源数据元素对在源向量操作数中相同的位位置。除此示例性类型的SIMD指令之外,还有各种其他类型的SIMD指令(例如,只有一个或具有超过两个的源向量操作数的、以水平方式操作的、生成不同尺寸的结果向量操作数的、具有不同尺寸的数据元素的、和/或具有不同的数据元素顺序的指令)。应该理解,术语目的地向量操作数(或目的地操作数)被定义为执行由指令所指定的操作的直接结果,包括将该目的地操作数存储在某一位置(寄存器或在由该指令所指定的存储器地址),以便它可以作为源操作数由另一指令访问(由另一指令指定该同一个位置)。
诸如由具有包括x86、MMXTM、流式SIMD扩展(SSE)、SSE2、SSE3、SSE4.1以及SSE4.2指令的指令集的 CoreTM处理器使用的技术之类的SIMD技术已在应用性能方面实现了显著的改善。已经发布和/或公布了被称为高级向量扩展(AVX)(AVX1和AVX2)且使用向量扩展(VEX)编码方案的附加SIMD扩展集(例如,参见2011年10月的64和IA-32架构软件开发手册,并且参见2011年6月的高级向量扩展编程参考)。
与本发明的实施例有关的背景
由于从循环的条件退出和/或由于条件数据依赖关系的存在,某些循环不能被向量化。如果不是频繁地进行条件退出或数据依赖关系不是频繁地实现,则推测地将循环向量化、检测何时进行退出或依赖关系何时实现、并通过使用预测或被掩码的SIMD/向量操作来实现它们是有益的。存储器加载通常在依赖关系链中较早出现,且在不支持推测的情况下,无法检测到动态依赖关系,从而无法将循环向量化。
附图说明
以下描述和附图用于示出本发明的实施例。在附图中:
图1A是示出根据本发明的实施例的示例性有序流水线以及示例性寄存器重命名的无序发布/执行流水线两者的框图;
图1B是示出根据本发明的各实施例的要包括在处理器中的有序架构核的示例性实施例和示例性的寄存器重命名的无序发布/执行架构核的框图;
图2是根据本发明的实施例的具有集成存储器控制器和图形器件的单核处理器和多核处理器的框图;
图3是根据本发明的一个实施例的系统的框图;
图4是根据本发明的实施例的第二系统的框图;
图5是根据本发明的实施例的第三系统的框图;
图6是根据本发明的实施例的芯片上系统(SoC)的框图;
图7示出根据本发明的各实施例的对照使用软件指令转换器将源指令集中的二进制指令转换成目标指令集中的二进制指令的框图;
图8示出本发明的一个实施例的操作的特定实例;
图9示出具有推测支持的向量化的本发明的一个实施例;
图10示出本发明的一个实施例中采用的聚集有限状态机(FSM);
图11A和11B是示出根据本发明的实施例的通用向量友好指令格式及其指令模板的框图;
图12是示出根据本发明的实施例的示例性专用向量友好指令格式的框图;
图13是根据本发明的一个实施例的寄存器架构的框图;
图14A是根据本发明的各实施例的单个处理器核以及它与管芯上互连网络的连接及其二级(L2)高速缓存的本地子集的框图;以及
图14B是根据本发明的各实施例的图14A中的处理器核的部分的展开图。
详细描述
示例性处理器架构和数据类型
图1A是示出根据本发明的各实施例的示例性有序流水线和示例性的寄存器重命名的无序发布/执行流水线的框图。图1B是示出根据本发明的各实施例的要包括在处理器中的有序架构核的示例性实施例和示例性的寄存器重命名的无序发布/执行架构核的框图。图1A-B中的实线框示出了有序流水线和有序核,而可选增加的虚线框示出了寄存器重命名的、无序发布/执行流水线和核。给定有序方面是无序方面的子集的情况下,将描述无序方面。
在图1A中,处理器流水线100包括取出级102、长度解码级104、解码级106、分配级108、重命名级110、调度(也称为分派或发布)级112、寄存器读取/存储器读取级114、执行级116、写回/存储器写入级118、异常处理级122和提交级124。
图1B示出了包括耦合到执行引擎单元150的前端单元130的处理器核190,且执行引擎单元和前端单元两者都耦合到存储器单元170。核190可以是精简指令集计算(RISC)核、复杂指令集计算(CISC)核、超长指令字(VLIW)核或混合或替代核类型。作为又一选项,核190可以是专用核,诸如例如网络或通信核、压缩引擎、协处理器核、通用计算图形处理器单元(GPGPU)核、或图形核等等。
前端单元130包括耦合到指令高速缓存单元134的分支预测单元132,该指令高速缓存单元134被耦合到指令转换后备缓冲器(TLB)136,该指令转换后备缓冲器136被耦合到指令取出单元138,指令取出单元138被耦合到解码单元140。解码单元140(或解码器)可解码指令,并生成从原始指令解码出的、或以其他方式反映原始指令的、或从原始指令导出的一个或多个微操作、微代码进入点、微指令、其他指令、或其他控制信号作为输出。解码单元140可使用各种不同的机制来实现。合适的机制的示例包括但不限于查找表、硬件实现、可编程逻辑阵列(PLA)、微代码只读存储器(ROM)等。在一个实施例中,核190包括(例如,在解码单元140中或否则在前端单元130内的)用于存储某些宏指令的微代码的微代码ROM或其他介质。解码单元140被耦合到执行引擎单元150中的重命名/分配单元152。
执行引擎单元150包括重命名/分配器单元152,该重命名/分配器单元152耦合至引退单元154和一个或多个调度器单元156的集合。调度器单元156表示任何数目的不同调度器,包括预留站、中央指令窗等。调度器单元156被耦合到物理寄存器组单元158。每个物理寄存器组单元158表示一个或多个物理寄存器组,其中不同的物理寄存器组存储一种或多种不同的数据类型,诸如标量整数、标量浮点、打包整数、打包浮点、向量整数、向量浮点、状态(例如,作为要执行的下一指令的地址的指令指针)等。在一个实施例中,物理寄存器组单元158包括向量寄存器单元、写掩码寄存器单元和标量寄存器单元。这些寄存器单元可以提供架构向量寄存器、向量掩码寄存器、和通用寄存器。物理寄存器组单元158与引退单元154重叠以示出可以用来实现寄存器重命名和无序执行的各种方式(例如,使用重新排序缓冲器和引退寄存器组;使用将来的文件、历史缓冲器和引退寄存器组;使用寄存器映射和寄存器池等等)。引退单元154和物理寄存器组单元158被耦合到执行群集160。执行群集160包括一个或多个执行单元162的集合和一个或多个存储器访问单元164的集合。执行单元162可以对各种类型的数据(例如,标量浮点、打包整数、打包浮点、向量整型、向量浮点)执行各种操作(例如,移位、加法、减法、乘法)。尽管某些实施例可以包括专用于特定功能或功能集合的多个执行单元,但其他实施例可包括全部执行所有功能的仅一个执行单元或多个执行单元。调度器单元156、物理寄存器组单元158和执行群集160被示为可能有多个,因为某些实施例为某些类型的数据/操作创建分开的流水线(例如,标量整型流水线、标量浮点/打包整型/打包浮点/向量整型/向量浮点流水线,和/或各自具有其自己的调度器单元、物理寄存器组单元和/或执行群集的存储器访问流水线——以及在分开的存储器访问流水线的情况下,实现其中仅该流水线的执行群集具有存储器访问单元164的某些实施例)。还应当理解,在使用分开的流水线的情况下,这些流水线中的一个或多个可以为无序发布/执行,并且其余流水线可以为有序发布/执行。
存储器访问单元164的集合被耦合到存储器单元170,该存储器单元170包括耦合到数据高速缓存单元174的数据TLB单元172,其中数据高速缓存单元174耦合到二级(L2)高速缓存单元176。在一个示例性实施例中,存储器访问单元164可以包括加载单元、存储地址单元和存储数据单元,这些单元中的每一个单元被耦合到存储器单元170中的数据TLB单元172。指令高速缓存单元134还被耦合到存储器单元170中的二级(L2)高速缓存单元176。L2高速缓存单元176被耦合到一个或多个其他级的高速缓存,并最终耦合到主存储器。
作为示例,示例性寄存器重命名的、无序发布/执行核架构可以如下实现流水线100:1)指令取出138执行取出和长度解码级102和104;2)解码单元140执行解码级106;3)重命名/分配器单元152执行分配级108和重命名级110;4)调度器单元156执行调度级112;5)物理寄存器组单元158和存储器单元170执行寄存器读取/存储器读取级114;执行群集160执行执行级116;6)存储器单元170和物理寄存器组单元158执行写回/存储器写入级118;7)各单元可牵涉到异常处理级122;以及8)引退单元154和物理寄存器组单元158执行提交级124。
核190可支持一个或多个指令集(例如,x86指令集(具有与较新版本一起添加的某些扩展);加利福尼亚州桑尼维尔市的MIPS技术公司的MIPS指令集;加利福尼州桑尼维尔市的ARM控股的ARM指令集(具有诸如NEON等可选附加扩展)),其中包括本文中描述的各指令。在一个实施例中,核190包括用于支持打包数据指令集扩展(例如,AVX1、AVX2和/或下文描述的一些形式的一般向量友好指令格式(U=0和/或U=1))的逻辑,从而允许很多多媒体应用使用的操作能够使用打包数据来执行。
应当理解,核可支持多线程化(执行两个或更多个并行的操作或线程的集合),并且可以按各种方式来完成该多线程化,此各种方式包括时分多线程化、同步多线程化(其中单个物理核为物理核正在同步多线程化的各线程中的每一个线程提供逻辑核)、或其组合(例如,时分取出和解码以及此后诸如用超线程化技术来同步多线程化)。
尽管在无序执行的上下文中描述了寄存器重命名,但应当理解,可以在有序架构中使用寄存器重命名。尽管所示出的处理器的实施例还包括分开的指令和数据高速缓存单元134/174以及共享L2高速缓存单元176,但替代实施例可以具有用于指令和数据两者的单个内部高速缓存,诸如例如一级(L1)内部高速缓存或多个级别的内部高速缓存。在某些实施例中,该系统可包括内部高速缓存和在核和/或处理器外部的外部高速缓存的组合。或者,所有高速缓存都可以在核和/或处理器的外部。
图2是根据本发明的各实施例可能具有一个以上核、可能具有集成存储器控制器、以及可能具有集成图形器件的处理器200的框图。图2中的实线框示出具有单个核202A、系统代理210、一个或多个总线控制器单元216的集合的处理器200,而虚线框的可选附加示出具有多个核202A-N、系统代理单元210中的一个或多个集成存储器控制器单元214的集合以及专用逻辑208的替代处理器200。
因此,处理器200的不同实现可包括:1)CPU,其中专用逻辑208是集成图形和/或科学(吞吐量)逻辑(其可包括一个或多个核),并且核202A-N是一个或多个通用核(例如,通用的有序核、通用的无序核、这两者的组合);2)协处理器,其中核202A-N是旨在主要用于图形和/或科学(吞吐量)的多个专用核;以及3)协处理器,其中核202A-N是多个通用有序核。因此,处理器200可以是通用处理器、协处理器或专用处理器,诸如例如网络或通信处理器、压缩引擎、图形处理器、GPGPU(通用图形处理单元)、高吞吐量的集成众核(MIC)协处理器(包括30个或更多核)、或嵌入式处理器等。该处理器可以被实现在一个或多个芯片上。处理器200可以是一个或多个衬底的一部分,和/或可以使用诸如例如BiCMOS、CMOS或NMOS等的多个加工技术中的任何一个技术将处理器200实现在一个或多个衬底上。
存储器层次结构包括在各核内的一个或多个级别的高速缓存、一个或多个共享高速缓存单元206的集合、以及耦合至集成存储器控制器单元214的集合的外部存储器(未示出)。该共享高速缓存单元206的集合可以包括一个或多个中间级高速缓存,诸如二级(L2)、三级(L3)、四级(L4)或其他级别的高速缓存、末级高速缓存(LLC)、和/或其组合。尽管在一个实施例中,基于环的互连单元212将集成图形逻辑208、共享高速缓存单元206的集合以及系统代理单元210/集成存储器控制器单元214互连,但替代实施例可使用任何数量的公知技术来将这些单元互连。在一个实施例中,可以维护一个或多个高速缓存单元206和核202A-N之间的一致性(coherency)。
在一些实施例中,核202A-N中的一个或多个核能够多线程化。系统代理210包括协调和操作核202A-N的那些组件。系统代理单元210可包括例如功率控制单元(PCU)和显示单元。PCU可以是或包括用于调整核202A-N和集成图形逻辑208的功率状态所需的逻辑和组件。显示单元用于驱动一个或多个外部连接的显示器。
核202A-N在架构指令集方面可以是同构的或异构的;即,这些核202A-N中的两个或更多个核可能能够执行相同的指令集,而其他核可能能够执行该指令集的仅仅子集或不同的指令集。
图3-6是示例性计算机架构的框图。本领域已知的对膝上型设备、台式机、手持PC、个人数字助理、工程工作站、服务器、网络设备、网络集线器、交换机、嵌入式处理器、数字信号处理器(DSP)、图形设备、视频游戏设备、机顶盒、微控制器、蜂窝电话、便携式媒体播放器、手持设备以及各种其他电子设备的其他系统设计和配置也是合适的。一般地,能够包含本文中所公开的处理器和/或其它执行逻辑的多个系统和电子设备一般都是合适的。
现在参见图3,所示为根据本发明的一个实施例的系统300的框图。系统300可以包括一个或多个处理器310、315,这些处理器耦合到控制器中枢320。在一个实施例中,控制器中枢320包括图形存储器控制器中枢(GMCH)390和输入/输出中枢(IOH)350(其可以在分开的芯片上);GMCH390包括存储器和图形控制器,存储器340和协处理器345耦合到该存储器和图形控制器;IOH350将输入/输出(I/O)设备360耦合到GMCH390。或者,存储器和图形控制器中的一个或两者可以被集成在处理器内(如本文中所描述的),存储器340和协处理器345直接耦合到处理器310以及控制器中枢320,控制器中枢320与IOH350处于单个芯片中。
附加处理器315的任选性质用虚线表示在图3中。每一处理器310、315可包括本文中描述的处理核中的一个或多个,并且可以是处理器200的某一版本。
存储器340可以是例如动态随机存取存储器(DRAM)、相变存储器(PCM)或这两者的组合。对于至少一个实施例,控制器中枢320经由诸如前端总线(FSB)之类的多分支总线、诸如快速通道互连(QPI)之类的点对点接口、或者类似的连接395与处理器310、315进行通信。
在一个实施例中,协处理器345是专用处理器,诸如例如高吞吐量MIC处理器、网络或通信处理器、压缩引擎、图形处理器、GPGPU、或嵌入式处理器等等。在一个实施例中,控制器中枢320可以包括集成图形加速器。
在物理资源310、315之间可以存在包括架构、微架构、热、和功耗特征等的一系列品质度量方面的各种差异。
在一个实施例中,处理器310执行控制一般类型的数据处理操作的指令。协处理器指令可嵌入在这些指令中。处理器310将这些协处理器指令识别为应当由附连的协处理器345执行的类型。因此,处理器310在协处理器总线或者其他互连上将这些协处理器指令(或者表示协处理器指令的控制信号)发布到协处理器345。协处理器345接受并执行所接收的协处理器指令。
现在参考图4,所示为根据本发明的实施例的更具体的第一示例性系统400的框图。如图4所示,多处理器系统400是点对点互连系统,并包括经由点对点互连450耦合的第一处理器470和第二处理器480。处理器470和480中的每一个都可以是处理器200的某一版本。在本发明的一个实施例中,处理器470和480分别是处理器310和315,而协处理器438是协处理器345。在另一实施例中,处理器470和480分别是处理器310和协处理器345。
处理器470和480被示为分别包括集成存储器控制器(IMC)单元472和482。处理器470还包括作为其总线控制器单元的一部分的点对点(P-P)接口476和478;类似地,第二处理器480包括点对点接口486和488。处理器470、480可以使用点对点(P-P)电路478、488经由P-P接口450来交换信息。如图4所示,IMC472和482将各处理器耦合至相应的存储器,即存储器432和存储器434,这些存储器可以是本地附连至相应的处理器的主存储器的部分。
处理器470、480可各自经由使用点对点接口电路476、494、486、498的各个P-P接口452、454与芯片组490交换信息。芯片组490可以可选地经由高性能接口439与协处理器438交换信息。在一个实施例中,协处理器438是专用处理器,诸如例如高吞吐量MIC处理器、网络或通信处理器、压缩引擎、图形处理器、GPGPU、或嵌入式处理器等等。
共享高速缓存(未示出)可以被包括在任一处理器之内,或被包括在两个处理器外部但仍经由P-P互连与这些处理器连接,从而如果将某处理器置于低功率模式时,可将任一处理器或两个处理器的本地高速缓存信息存储在该共享高速缓存中。
芯片组490可经由接口496耦合至第一总线416。在一个实施例中,第一总线416可以是外围组件互连(PCI)总线,或诸如PCI Express总线或其它第三代I/O互连总线之类的总线,但本发明的范围并不受此限制。
如图4所示,各种I/O设备414可以连同总线桥418耦合到第一总线416,总线桥418将第一总线416耦合至第二总线420。在一个实施例中,诸如协处理器、高吞吐量MIC处理器、GPGPU的处理器、加速器(诸如例如图形加速器或数字信号处理器(DSP)单元)、现场可编程门阵列或任何其他处理器的一个或多个附加处理器415耦合到第一总线416。在一个实施例中,第二总线420可以是低引脚计数(LPC)总线。各种设备可以被耦合至第二总线420,在一个实施例中这些设备包括例如键盘/鼠标422、通信设备427以及诸如可包括指令/代码和数据430的盘驱动器或其它大容量存储设备的存储单元428。此外,音频I/O424可以耦合至第二总线420。注意,其它架构是可能的。例如,代替图4的点对点架构,系统可以实现多分支总线或其它这类架构。
现在参考图5,所示为根据本发明的实施例的更具体的第二示例性系统500的框图。图4和图5中的相同部件用相同附图标记表示,并从图5中省去了图4中的某些方面,以避免使图5的其它方面变得模糊。
图5示出处理器470、480可分别包括集成存储器和I/O控制逻辑(“CL”)472和482。因此,CL472、482包括集成存储器控制器单元并包括I/O控制逻辑。图5不仅示出存储器432、434耦合至CL472、482,而且还示出I/O设备514也耦合至控制逻辑472、482。传统I/O设备515被耦合至芯片组490。
现在参考图6,所示为根据本发明的一实施例的SoC600的框图。在图2中,相似的部件具有同样的附图标记。另外,虚线框是更先进的SoC的可选特征。在图6中,互连单元602被耦合至:应用处理器610,该应用处理器包括一个或多个核202A-N的集合以及共享高速缓存单元206;系统代理单元210;总线控制器单元216;集成存储器控制器单元214;一组或一个或多个协处理器620,其可包括集成图形逻辑、图像处理器、音频处理器和视频处理器;静态随机存取存储器(SRAM)单元630;直接存储器存取(DMA)单元632;以及用于耦合至一个或多个外部显示器的显示单元640。在一个实施例中,协处理器620包括专用处理器,诸如例如网络或通信处理器、压缩引擎、GPGPU、高吞吐量MIC处理器、或嵌入式处理器等等。
本文公开的机制的各实施例可以被实现在硬件、软件、固件或这些实现方法的组合中。本发明的实施例可实现为在可编程系统上执行的计算机程序或程序代码,该可编程系统包括至少一个处理器、存储系统(包括易失性和非易失性存储器和/或存储元件)、至少一个输入设备以及至少一个输出设备。
可将程序代码(诸如图4中示出的代码430)应用于输入指令,以执行本文描述的各功能并生成输出信息。可以按已知方式将输出信息应用于一个或多个输出设备。为了本申请的目的,处理系统包括具有诸如例如数字信号处理器(DSP)、微控制器、专用集成电路(ASIC)或微处理器之类的处理器的任何系统。
程序代码可以用高级程序化语言或面向对象的编程语言来实现,以便与处理系统通信。在需要时,也可用汇编语言或机器语言来实现程序代码。事实上,本文中描述的机制不限于任何特定编程语言的范围。在任一情形下,该语言可以是编译语言或解释语言。
至少一个实施例的一个或多个方面可以由存储在机器可读介质上的表示性指令来实现,指令表示处理器中的各种逻辑,指令在被机器读取时使得该机器制作用于执行本文所述的技术的逻辑。被称为“IP核”的这些表示可以被存储在有形的机器可读介质上,并被提供给多个客户或生产设施以加载到实际制造该逻辑或处理器的制造机器中。
这样的机器可读存储介质可以包括但不限于通过机器或设备制造或形成的物品的非瞬态的有形安排,其包括存储介质,诸如:硬盘;任何其它类型的盘,包括软盘、光盘、紧致盘只读存储器(CD-ROM)、紧致盘可重写(CD-RW)以及磁光盘;半导体器件,诸如只读存储器(ROM)、诸如动态随机存取存储器(DRAM)和静态随机存取存储器(SRAM)之类的随机存取存储器(RAM)、可擦除可编程只读存储器(EPROM)、闪存、电可擦除可编程只读存储器(EEPROM);相变存储器(PCM);磁卡或光卡;或适于存储电子指令的任何其它类型的介质。
因此,本发明的各实施例还包括非瞬态的有形机器可读介质,该介质包含指令或包含设计数据,诸如硬件描述语言(HDL),它定义本文中描述的结构、电路、装置、处理器和/或系统特征。这些实施例也被称为程序产品。
在某些情况下,指令转换器可用来将指令从源指令集转换至目标指令集。例如,指令转换器可以变换(例如使用静态二进制变换、包括动态编译的动态二进制变换)、变形、仿真或以其它方式将指令转换成将由核来处理的一个或多个其它指令。指令转换器可以用软件、硬件、固件、或其组合实现。指令转换器可以在处理器上、在处理器外、或者部分在处理器上且部分在处理器外。
图7是根据本发明的各实施例的对照使用软件指令转换器将源指令集中的二进制指令转换成目标指令集中的二进制指令的框图。在所示的实施例中,指令转换器是软件指令转换器,但作为替代,该指令转换器可以用软件、固件、硬件或其各种组合来实现。图7示出可以使用x86编译器704来编译利用高级语言702的程序,以生成可以由具有至少一个x86指令集核的处理器716原生执行的x86二进制代码706。具有至少一个x86指令集核的处理器716表示任何处理器,这些处理器能通过兼容地执行或以其他方式处理以下内容来执行与具有至少一个x86指令集核的英特尔处理器基本相同的功能:1)英特尔x86指令集核的指令集的本质部分,或2)目标为在具有至少一个x86指令集核的英特尔处理器上运行的应用或其它程序的目标代码版本,以便取得与具有至少一个x86指令集核的英特尔处理器基本相同的结果。x86编译器704表示用于生成x86二进制代码706(例如,目标代码)的编译器,该二进制代码706可通过或不通过附加的链接处理在具有至少一个x86指令集核的处理器716上执行。类似地,图7示出可以使用替代的指令集编译器708来编译利用高级语言702的程序,以生成可以由不具有至少一个x86指令集核的处理器714(例如具有执行加利福尼亚州桑尼维尔市的MIPS技术公司的MIPS指令集、和/或执行加利福尼亚州桑尼维尔市的ARM控股公司的ARM指令集的核的处理器)原生执行的替代指令集二进制代码710。指令转换器712被用来将x86二进制代码706转换成可以由不具有x86指令集核的处理器714原生执行的代码。该转换后的代码不大可能与替换性指令集二进制代码710相同,因为能够这样做的指令转换器难以制造;然而,转换后的代码将完成一般操作并由来自替代指令集的指令构成。因此,指令转换器712通过仿真、模拟或任何其它过程来表示允许不具有x86指令集处理器或核的处理器或其它电子设备执行x86二进制代码706的软件、固件、硬件或其组合。
用于推测支持以实现向量化的本发明的实施例
以下描述的本发明的实施例采用支持掩码操作和推测的加载和聚集操作。这些实施例还通过更新掩码寄存器来报告曾被成功加载的向量元素。作为以下描述的本发明技术的结果,可将原本不会被向量化的循环向量化。作为示例:
通过在向量循环中插入数据依赖关系检查、并在相互迭代依赖关系出现时(即,条件A[i+j]<K成立时)中断向量执行,可将上述代码向量化。由于j的值是未知的,所以除了当前标量迭代之外,不知道是否可以安全访问A[i+j]。因此,为了执行向量比较(A[i+j]<K),需要对A[i+j]的向量加载,该向量加载将除了第一掩码允许的元素之外的所有元素的加载视为推测性的。此外,需要返回一掩码,该掩码指示哪些元素曾被成功加载,以允许对向量比较指令的掩码操作。在一个实施例中,可如下地将该循环向量化:
(1)将掩码向量k0设置为全为1。
(2)在k0的掩码下执行对A[i+j]的推测性向量加载,以加载到向量寄存器(v0),并将成功掩码写入k0。应当将第一掩码允许的元素非推测性地加载到v0中,同时可推测性地加载余下的掩码允许的元素。这样确保k0的至少一个位将在该指令执行之后被设置。
(3)执行v0与被k0设为零掩码的K的向量比较,如果k0中的相应位被设置并且满足相应的条件(v0<K),则设置k1中的每个位,否则清除k1中的位。
(4)基于掩码k1创建部分执行掩码k2。例如,该操作可利用_____提交的序号为___共同待审的名称为“Systems,Apparatuses,And Methods For Setting An Output MaskIN A Destination Writemask Register From A Source Write Mask Register UsingAn Input Writemask And Immediate(用于利用输入写掩码和立即数由源写掩码寄存器来设置目的地写掩码寄存器中的输出掩码的系统、装置和方法)”的申请中描述的技术来完成,该申请被转让给本申请的受让人并通过引用结合于此。
(5)利用将k2与(v0<K)进行“与”运算而产生的预测值来预测j=A[i]的执行。如果曾将A[i+j]的推测加载执行至完整宽度并且如果未曾满足条件A[i+j]<K,则将执行完全向量执行。在该情况下,部分执行掩码k2将全为1。
(6)在部分执行的情况下,设置k0以表示该向量中余下的未执行的元素,并通过跳至步骤2来重复执行。
(7)执行向量写B[i]=j。
以下描述的本发明的实施例对以上伪代码中的步骤#2提供解决方案。这些实施例包括特殊类别的推测性单指令多数据(“SIMD”)操作,这些推测性单指令多数据(“SIMD”)操作非推测性地在第一掩码允许的元素上操作,并推测性地在余下的掩码允许的元素上操作。这些操作还在未成功地操作推测性元素时清除掩码寄存器位。由于不可服务(例如,诸如加载的非法地址错误)或未服务(例如,诸如由于加载是推测性的而不需要服务的页面不存在错误)的错误,可能未成功地操作推测性元素。推测性元素上的可服务错误是否被服务是一种实现选择;尽管在许多情况下,不服务它们会对性能更好。
需要这样的推测支持的最重要操作是下文进一步描述的SIMD加载和聚集操作。在本发明的实施例的范围内构想的其它操作可包括任何出错操作,诸如整数除法/余数和浮点运算。
在一个实施例中,引入了以下两个指令——推测性聚集和推测性加载:
(1)vGatherFirstNS vI{kl},mV
(2)vLoadFirstNS vI{kl},m32/m64
以下详细描述推测性聚集。在一个实施例中,推测性向量加载是相似的,仅有的区别是它执行向量加载而不是聚集操作。如本领域普通技术人员所理解地,聚集和加载之间的差别仅仅是,加载从存储器的连续地址中读取,而聚集操作在非连续的地址中读取。在跨越高速缓存行边界的推测性向量加载的情况下,如果存储器中被寻址的向量跨过页面边界,则一种实现方式是加载第一页上的元素,并清除与处于第二页中的元素相对应的掩码位。
在一个实施例中,聚集指令是由本申请的受让人设计的高级向量扩展(AVX)-3VPGATHER[DD,DQ,QD,QQ]指令的变型。它们聚集写掩码k1允许的元素的数据,直到遇到第一错误为止。在一个实施例中,如果未遇到错误,或者如果仅在第一允许元素的地址上遇到错误,则该指令与VPGATHER对应指令相同地操作。在一个实施例中,如果在除了第一允许元素之外的允许元素地址上遇到错误,则不服务该错误,不修改目的地,并且清除用于该元素以及任何后续元素的写掩码位。因此,该指令更新目的地寄存器v1和写掩码k1二者。在该指令执行之后,写掩码用于指示哪些元素被成功聚集。
vGatherFirstNS指令的一个实施例的代码如下:
在一个实施例中,load_normal(datatype*D,ptr A)从存储器位置A加载尺寸为“datatype”的单个元素,并将该数据写入向量寄存器内的特定元素。该函数以正常方式引发和处理错误(诸如TLB、页面错误)。
在一个实施例中,load_speculative(datatype*D,ptr A)从存储器位置A加载尺寸为“datatype”的单个元素,并且如果该加载未导致任何错误(TLB或页面错误),则将该数据写入向量寄存器内的特定元素。如果该加载导致错误,则该函数不操作该向量元素。
在图8中示出了vGatherFirstNS指令的操作的特定示例。在该示例中,使向量元素从左向右排列,并且输入数据元素b、c、g和m经历了错误状况(如粗体和下划线所指示)。如所示,寄存器v1最初被值7填充。输入掩码k1中的0值表明,输出v1的值不应修改,并且输出掩码k1应当被置为零(即,这些元素不参与该向量操作)。因此,输入元素b上的错误状况被忽略。第一有效元素由输入掩码k1的第二位位置中的值1指示,并且与该位位置相关联的输入元素c存在错误。然而,由于它是输入掩码k1的第一有效元素,所以值c得以通过至输出v1,并且在输出掩码k1中更新值1。对于输入元素d、e和f,不存在错误状况。因此,在输出k1中设置值1(以指示无错误),并且值d、e和f通过至输出v1。响应于输入元素g的错误状况,针对该状况以及所有后续的位位置,将输出掩码k1的值设置为零,并且将v1的输出设置为v1的输入值(在本示例中为7)。
如图9所示,用于利用推测支持来提供向量化的装置的一个实施例包括输入索引寄存器901、掩码寄存器902、序列发生器903、基址寄存器904、与门905、锁存器906、加法器907、聚集有限状态机(FSM)908以及输出寄存器v1。序列发生器按顺序通过索引寄存器901和掩码寄存器902中的相应寄存器元素,索引寄存器901和掩码寄存器902的输出由与门905读取。锁存器906锁存掩码寄存器902中检测到的第一个1,并使得它对于掩码寄存器902的余下元素向与门905输出1(由此使得索引寄存器901的输出通过与门907)。存储在索引寄存器901中的地址被输出至加法器907,加法器907将来自寄存器904的基址与来自索引寄存器901的地址相加,以得出要聚集的每个元素的存储器地址。聚集FSM908使用这些地址以从存储器聚集这些元素,并将这些元素输出在输出寄存器v1中,直到对于有效输入检测到第二错误状况(如掩码寄存器902中的值1所表明)为止。
如图10所示,在一个实施例中,64位地址和4位序列发生器值以及掩码寄存器902的第一有效元素的指示、每个输入地址的错误状况的指示被输入至聚集FSM908。对于与掩码寄存器902中的有效位相关联的并且未检测到错误状况的所有初始输入地址,聚集FSM发送请求以加载该地址所标识的元素,并将该数据输出至输出寄存器v1。此外,对于与掩码寄存器902的有效元素相关联的第一错误状况,聚集FSM908发送请求以加载该地址所标识的元素,并将该数据输出至输出寄存器v1。将所有其它输出元素设置为v1中的先前值(在图8所示示例中为7)。对于已经从存储器成功聚集的所有数据元素(包括检测到错误状况的第一有效元素),用值1更新输出掩码k1,而对于所有其它数据元素(即,与错误状况相关联或在错误状况之后的元素、或输入掩码为0的元素),用值0更新输出掩码k1。在一个实施例中,由处理器核来执行对输出掩码k1的更新。
在一个实施例中,当序列发生器902输出值0时,聚集FSM908被设置为起始状态。随着输入地址到达,它将地址存储到队列(未示出)中,并对地址进行比较,以将它们分组到尽可能少的高速缓存行中。然后只要位置一可用,它就将这些地址发布到加载队列中。当引发第一信号时,聚集FSM的一个实施例对该地址输入设置标志,并且仅该输入可引发错误。所有其它输入将不会对核引发错误,并将向输出寄存器v1输出零。
与利用标量指令实现该循环的当前解决方案相比,本文中描述的本发明的实施例通过实现向量化,显著减少了指令计数并提高了目标循环的性能。与当前解决方案相比,本发明的实施例使实现推测操作所需的指令数量减半,并通过减少向量循环迭代等待时间提高了性能。与当前的向量聚集/加载指令相比,本发明的实施例支持部分错误状况(而这些先前的实现方式需要解决聚集/加载指令中的所有元素的错误)。在现有解决方案中,不存在通过掩码寄存器来返回向量错误状态的推测向量操作的能力。当前的宏向量实现方式需要两指令序列和错误状态寄存器,从而导致与本文中描述的解决方案相比更高的动态指令计数、更高的等待时间以及可能更高的实现成本/复杂度。因此,所描述的本发明的实施例实现了明显的益处。
示例性指令格式
本文中所描述的指令的实施例可以不同的格式体现。另外,在下文中详述示例性系统、架构、以及流水线。指令的实施例可在这些系统、架构、以及流水线上执行,但是不限于详述的系统、架构、以及流水线。
向量友好指令格式是适于向量指令(例如,存在专用于向量操作的特定字段)的指令格式。尽管描述了其中通过向量友好指令格式支持向量和标量运算两者的实施例,但是替换实施例仅使用通过向量友好指令格式的向量运算。
图11A-11B是示出根据本发明的实施例的通用向量友好指令格式及其指令模板的框图。图11A是示出根据本发明的实施例的通用向量友好指令格式及其A类指令模板的框图;而图11B是示出根据本发明的实施例的通用向量友好指令格式及其B类指令模板的框图。具体地,针对通用向量友好指令格式1100定义A类和B类指令模板,两者包括无存储器访问1105的指令模板和存储器访问1120的指令模板。在向量友好指令格式的上下文中的术语“通用”指不束缚于任何专用指令集的指令格式。
尽管将描述其中向量友好指令格式支持64字节向量操作数长度(或尺寸)与32位(4字节)或64位(8字节)数据元素宽度(或尺寸)(并且由此,64字节向量由16双字尺寸的元素或者替换地8四字尺寸的元素组成)、64字节向量操作数长度(或尺寸)与16位(2字节)或8位(1字节)数据元素宽度(或尺寸)、32字节向量操作数长度(或尺寸)与32位(4字节)、64位(8字节)、16位(2字节)、或8位(1字节)数据元素宽度(或尺寸)、以及16字节向量操作数长度(或尺寸)与32位(4字节)、64位(8字节)、16位(2字节)、或8位(1字节)数据元素宽度(或尺寸)的本发明的实施例,但是替代实施例可支持更大、更小、和/或不同的向量操作数尺寸(例如,256字节向量操作数)与更大、更小或不同的数据元素宽度(例如,128位(16字节)数据元素宽度)。
图11A中的A类指令模板包括:1)在无存储器访问1105的指令模板内,示出无存储器访问的完全舍入控制型操作1110的指令模板、以及无存储器访问的数据变换型操作1115的指令模板;以及2)在存储器访问1120的指令模板内,示出存储器访问的时效性1125的指令模板和存储器访问的非时效性1130的指令模板。图11B中的B类指令模板包括:1)在无存储器访问1105的指令模板内,示出无存储器访问的写掩码控制的部分舍入控制型操作1112的指令模板以及无存储器访问的写掩码控制的vsize型操作1117的指令模板;以及2)在存储器访问1120的指令模板内,示出存储器访问的写掩码控制1127的指令模板。
通用向量友好指令格式1100包括以下列出的按照在图11A-11B中示出的顺序的如下字段。
格式字段1140-该字段中的特定值(指令格式标识符值)唯一地标识向量友好指令格式,并且由此标识指令在指令流中以向量友好指令格式出现。由此,该字段对于仅具有通用向量友好指令格式的指令集是不需要的,在这个意义上该字段是任选的。
基础操作字段1142-其内容区分不同的基础操作。
寄存器索引字段1144-其内容直接或者通过地址生成来指定源或目的地操作数在寄存器中或者在存储器中的位置。这些字段包括足够数量的位以从PxQ(例如,32x512、16x128、32x1024、64x1024)个寄存器组选择N个寄存器。尽管在一个实施例中N可高达三个源和一个目的地寄存器,但是替代实施例可支持更多或更少的源和目的地寄存器(例如,可支持高达两个源,其中这些源中的一个源还用作目的地,可支持高达三个源,其中这些源中的一个源还用作目的地,可支持高达两个源和一个目的地)。
修饰符(modifier)字段1146-其内容将指定存储器访问的以通用向量指令格式出现的指令与不指定存储器访问的以通用向量指令格式出现的指令区分开;即在无存储器访问1105的指令模板与存储器访问1120的指令模板之间进行区分。存储器访问操作读取和/或写入到存储器层次(在一些情况下,使用寄存器中的值来指定源和/或目的地地址),而非存储器访问操作不这样(例如,源和/或目的地是寄存器)。尽管在一个实施例中,该字段还在三种不同的方式之间选择以执行存储器地址计算,但是替换实施例可支持更多、更少或不同的方式来执行存储器地址计算。
扩充操作字段1150-其内容区分除基础操作以外还要执行各种不同操作中的哪一个操作。该字段是针对上下文的。在本发明的一个实施例中,该字段被分成类字段1168、α字段1152、以及β字段1154。扩充操作字段1150允许在单一指令而非2、3或4个指令中执行多组共同的操作。
比例字段1160-其内容允许用于存储器地址生成(例如,用于使用2比例*索引+基址的地址生成)的索引字段的内容的按比例缩放。
位移字段1162A-其内容用作存储器地址生成的一部分(例如,用于使用2比例*索引+基址+位移的地址生成)。
位移因数字段1162B(注意,位移字段1162A直接在位移因数字段1162B上的并置指示使用一个或另一个)-其内容用作地址生成的一部分,它指定通过存储器访问的尺寸(N)按比例缩放的位移因数,其中N是存储器访问中的字节数量(例如,用于使用2比例*索引+基址+按比例缩放的位移的地址生成)。忽略冗余的低阶位,并且因此将位移因数字段的内容乘以存储器操作数总尺寸(N)以生成在计算有效地址中使用的最终位移。N的值由处理器硬件在运行时基于完整操作码字段1174(在本文中描述)和数据操纵字段1154C确定。位移字段1162A和位移因数字段1162B可以不用于无存储器访问1105的指令模板和/或不同的实施例可实现两者中的仅一个或不实现两者中的任一个,在这个意义上位移字段1162A和位移因数字段1162B是任选的。
数据元素宽度字段1164-其内容区分使用多个数据元素宽度中的哪一个(在一些实施例中用于所有指令,在其他实施例中只用于一些指令)。如果支持仅一个数据元素宽度和/或使用操作码的某一方面来支持数据元素宽度,则该字段是不需要的,在这个意义上该字段是任选的。
写掩码字段1170-其内容在每一数据元素位置的基础上控制目的地向量操作数中的数据元素位置是否反映基础操作和扩充操作的结果。A类指令模板支持合并-写掩码操作,而B类指令模板支持合并写掩码操作和归零写掩码操作两者。当合并时,向量掩码允许在执行任何操作期间保护目的地中的任何元素集免于更新(由基础操作和扩充操作指定);在另一实施例中,保持其中对应掩码位具有0的目的地的每一元素的旧值。相反,当归零时,向量掩码允许在执行任何操作期间使目的地中的任何元素集归零(由基础操作和扩充操作指定);在一个实施例中,目的地的元素在对应掩码位具有0值时被设为0。该功能的子集是控制执行的操作的向量长度的能力(即,从第一个到最后一个要修改的元素的跨度),然而,被修改的元素不一定要是连续的。由此,写掩码字段1170允许部分向量操作,这包括加载、存储、算术、逻辑等。尽管描述了其中写掩码字段1170的内容选择了多个写掩码寄存器中的包含要使用的写掩码的一个写掩码寄存器(并且由此写掩码字段1170的内容间接地标识了要执行的掩码操作)的本发明的实施例,但是替换实施例相反或另外允许掩码写字段1170的内容直接地指定要执行的掩码操作。
立即数字段1172-其内容允许对立即数的指定。该字段在实现不支持立即数的通用向量友好格式中不存在且在不使用立即数的指令中不存在,在这个意义上该字段是任选的。
类字段1168-其内容在不同类的指令之间进行区分。参考图11A-B,该字段的内容在A类和B类指令之间进行选择。在图11A-B中,圆角方形用于指示专用值存在于字段中(例如,在图11A-B中分别用于类字段1168的A类1168A和B类1168B)。
A类指令模板
在A类非存储器访问1105的指令模板的情况下,α字段1152被解释为其内容区分要执行不同扩充操作类型中的哪一种(例如,针对无存储器访问的舍入型操作1110和无存储器访问的数据变换型操作1115的指令模板分别指定舍入1152A.1和数据变换1152A.2)的RS字段1152A,而β字段1154区分要执行指定类型的操作中的哪一种。在无存储器访问1105指令模板中,比例字段1160、位移字段1162A以及位移比例字段1162B不存在。
无存储器访问的指令模板-完全舍入控制型操作
在无存储器访问的完全舍入控制型操作1110的指令模板中,β字段1154被解释为其内容提供静态舍入的舍入控制字段1154A。尽管在本发明的所述实施例中舍入控制字段1154A包括抑制所有浮点异常(SAE)字段1156和舍入操作控制字段1158,但是替代实施例可支持、可将这些概念两者都编码成相同的字段或者仅具有这些概念/字段中的一个或另一个(例如,可仅有舍入操作控制字段1158)。
SAE字段1156-其内容区分是否停用异常事件报告;当SAE字段1156的内容指示启用抑制时,给定指令不报告任何种类的浮点异常标志且不唤起任何浮点异常处理程序。
舍入操作控制字段1158-其内容区分执行一组舍入操作中的哪一个(例如,向上舍入、向下舍入、向零舍入、以及就近舍入)。由此,舍入操作控制字段1158允许在每一指令的基础上改变舍入模式。在其中处理器包括用于指定舍入模式的控制寄存器的本发明的一个实施例中,舍入操作控制字段1150的内容优先于该寄存器值。
无存储器访问的指令模板-数据变换型操作
在无存储器访问的数据变换型操作1115的指令模板中,β字段1154被解释为数据变换字段1154B,其内容区分要执行多个数据变换中的哪一个(例如,无数据变换、混合、广播)。
在A类存储器访问1120的指令模板的情况下,α字段1152被解释为驱逐提示字段1152B,其内容区分要使用驱逐提示中的哪一个(在图11A中,对于存储器访问时效性1125的指令模板和存储器访问非时效性1130的指令模板分别指定时效性的1152B.1和非时效性的1152B.2),而β字段1154被解释为数据操纵字段1154C,其内容区分要执行多个数据操纵操作(也称为基元(primitive))中的哪一个(例如,无操纵、广播、源的向上转换、以及目的地的向下转换)。存储器访问1120的指令模板包括比例字段1160、以及任选的位移字段1162A或位移比例字段1162B。
向量存储器指令使用转换支持来执行来自存储器的向量加载并将向量存储到存储器。如同寻常的向量指令,向量存储器指令以数据元素式的方式与存储器来回传输数据,其中实际传输的元素由选为写掩码的向量掩码的内容规定。
存储器访问的指令模板-时效性的
时效性的数据是可能足够快地重新使用以从高速缓存受益的数据。然而,这是提示,且不同的处理器可以不同的方式实现它,包括完全忽略该提示。
存储器访问的指令模板-非时效性的
非时效性的数据是不可能足够快地重新使用以从第一级高速缓存中的高速缓存受益且应当被给予驱逐优先级的数据。然而,这是提示,且不同的处理器可以不同的方式实现它,包括完全忽略该提示。
B类指令模板
在B类指令模板的情况下,α字段1152被解释为写掩码控制(Z)字段1152C,其内容区分由写掩码字段1170控制的写掩码操作应当是合并还是归零。
在B类非存储器访问1105的指令模板的情况下,β字段1154的一部分被解释为RL字段1157A,其内容区分要执行不同扩充操作类型中的哪一种(例如,针对无存储器访问的写掩码控制部分舍入控制类型操作1112的指令模板和无存储器访问的写掩码控制VSIZE型操作1117的指令模板分别指定舍入1157A.1和向量长度(VSIZE)1157A.2),而β字段1154的其余部分区分要执行指定类型的操作中的哪一种。在无存储器访问1105指令模板中,比例字段1160、位移字段1162A以及位移比例字段1162B不存在。
在无存储器访问的写掩码控制的部分舍入控制型操作1110的指令模板中,β字段1154的其余部分被解释为舍入操作字段1159A,并且停用异常事件报告(给定指令不报告任何种类的浮点异常标志且不唤起任何浮点异常处理程序)。
舍入操作控制字段1159A-只作为舍入操作控制字段1158,其内容区分执行一组舍入操作中的哪一个(例如,向上舍入、向下舍入、向零舍入、以及就近舍入)。由此,舍入操作控制字段1159A允许在每一指令的基础上改变舍入模式。在其中处理器包括用于指定舍入模式的控制寄存器的本发明的一个实施例中,舍入操作控制字段1150的内容优先于该寄存器值。
在无存储器访问的写掩码控制VSIZE型操作1117的指令模板中,β字段1154的其余部分被解释为向量长度字段1159B,其内容区分要执行多个数据向量长度中的哪一个(例如,128字节、256字节、或512字节)。
在B类存储器访问1120的指令模板的情况下,β字段1154的一部分被解释为广播字段1157B,其内容区分是否要执行广播型数据操纵操作,而β字段1154的其余部分被解释为向量长度字段1159B。存储器访问1120的指令模板包括比例字段1160、以及任选的位移字段1162A或位移比例字段1162B。
针对通用向量友好指令格式1100,示出完整操作码字段1174包括格式字段1140、基础操作字段1142以及数据元素宽度字段1164。尽管示出了其中完整操作码字段1174包括所有这些字段的一个实施例,但是在不支持所有这些字段的实施例中,完整操作码字段1174包括少于所有的这些字段。完整操作码字段1174提供操作码(opcode)。
扩充操作字段1150、数据元素宽度字段1164以及写掩码字段1170允许在每一指令的基础上以通用向量友好指令格式指定这些特征。
写掩码字段和数据元素宽度字段的组合创建各种类型的指令,因为这些指令允许基于不同的数据元素宽度应用该掩码。
在A类和B类内出现的各种指令模板在不同的情形下是有益的。在本发明的一些实施例中,不同处理器或者处理器内的不同核可支持仅A类、仅B类、或者可支持两类。举例而言,旨在用于通用计算的高性能通用无序核可仅支持B类,旨在主要用于图形和/或科学(吞吐量)计算的核可仅支持A类,并且旨在用于两者的核可支持两者(当然,具有来自两类的模板和指令的一些混合、但是并非来自两类的所有模板和指令的核在本发明的范围内)。同样,单一处理器可包括多个核,所有核支持相同的类或者其中不同的核支持不同的类。举例而言,在具有单独的图形和通用核的处理器中,图形核中的旨在主要用于图形和/或科学计算的一个核可仅支持A类,而通用核中的一个或多个可以是具有旨在用于通用计算的仅支持B类的无序执行和寄存器重命名的高性能通用核。不具有单独的图形核的另一处理器可包括既支持A类又支持B类的一个或多个通用有序或无序核。当然,在本发明的不同实施例中,来自一类的特征也可在其他类中实现。可使以高级语言撰写的程序成为(例如,及时编译或者统计编译)各种不同的可执行形式,包括:1)仅具有用于执行的目标处理器支持的类的指令的形式;或者2)具有使用所有类的指令的不同组合而编写的替代例程且具有选择这些例程以基于由当前正在执行代码的处理器支持的指令而执行的控制流代码的形式。
图12是示出根据本发明的实施例的示例性专用向量友好指令格式的框图。图12示出专用向量友好指令格式1200,其指定位置、尺寸、解释和字段的次序、以及那些字段中的一些字段的值,在这个意义上向量友好指令格式1200是专用的。专用向量友好指令格式1200可用于扩展x86指令集,并且由此一些字段类似于在现有x86指令集及其扩展(例如,AVX)中使用的那些字段或与之相同。该格式保持与具有扩展的现有x86指令集的前缀编码字段、实操作码字节字段、MOD R/M字段、SIB字段、位移字段、以及立即数字段一致。示出来自图11的字段,来自图12的字段映射到来自图11的字段。
应当理解,虽然出于说明的目的在通用向量友好指令格式1100的上下文中参考专用向量友好指令格式1200描述了本发明的实施例,但是本发明不限于专用向量友好指令格式1200,除非另有声明。例如,通用向量友好指令格式1100构想各种字段的各种可能的尺寸,而专用向量友好指令格式1200被示为具有特定尺寸的字段。作为具体示例,尽管在专用向量友好指令格式1200中数据元素宽度字段1164被示为一位字段,但是本发明不限于此(即,通用向量友好指令格式1100构想数据元素宽度字段1164的其他尺寸)。
通用向量友好指令格式1100包括以下列出的按照图12A中示出的顺序的如下字段。
EVEX前缀(字节0-3)1202-以四字节形式进行编码。
格式字段1140(EVEX字节0,位[7:0])-第一字节(EVEX字节0)是格式字段1140,并且它包含0x62(在本发明的一个实施例中用于区分向量友好指令格式的唯一值)。
第二-第四字节(EVEX字节1-3)包括提供专用能力的多个位字段。
REX字段1205(EVEX字节1,位[7-5])-由EVEX.R位字段(EVEX字节1,位[7]–R)、EVEX.X位字段(EVEX字节1,位[6]–X)以及(1157BEX字节1,位[5]–B)组成。EVEX.R、EVEX.X和EVEX.B位字段提供与对应VEX位字段相同的功能,并且使用1补码的形式进行编码,即ZMM0被编码为1111B,ZMM15被编码为0000B。这些指令的其他字段对如在本领域中已知的寄存器索引的较低三个位(rrr、xxx、以及bbb)进行编码,由此可通过增加EVEX.R、EVEX.X以及EVEX.B来形成Rrrr、Xxxx以及Bbbb。
REX’字段1110-这是REX’字段1110的第一部分,并且是用于对扩展的32个寄存器集合的较高16个或较低16个寄存器进行编码的EVEX.R’位字段(EVEX字节1,位[4]–R’)。在本发明的一个实施例中,该位与以下指示的其他位一起以位反转的格式存储以(在公知x86的32位模式下)与实操作码字节是62的BOUND指令进行区分,但是在MOD R/M字段(在下文中描述)中不接受MOD字段中的值11;本发明的替代实施例不以反转的格式存储该指示的位以及其他指示的位。值1用于对较低16个寄存器进行编码。换句话说,通过组合EVEX.R’、EVEX.R、以及来自其他字段的其他RRR来形成R’Rrrr。
操作码映射字段1215(EVEX字节1,位[3:0]–mmmm)–其内容对隐含的前导操作码字节(0F、0F38、或0F3)进行编码。
数据元素宽度字段1164(EVEX字节2,位[7]–W)-由记号EVEX.W表示。EVEX.W用于定义数据类型(32位数据元素或64位数据元素)的粒度(尺寸)。
EVEX.vvvv1220(EVEX字节2,位[6:3]-vvvv)-EVEX.vvvv的作用可包括如下:1)EVEX.vvvv编码第一源寄存器操作数且对具有两个或两个以上源操作数的指令有效,第一源寄存器操作数以反转(1补码)的形式被指定;2)EVEX.vvvv编码目的地寄存器操作数,目的地寄存器操作数针对特定向量位移以1补码的形式被指定;或者3)EVEX.vvvv不编码任何操作数,保留该字段,并且应当包含1111b。由此,EVEX.vvvv字段1220对以反转(1补码)的形式存储的第一源寄存器指定符的4个低阶位进行编码。取决于该指令,额外不同的EVEX位字段用于将指定符尺寸扩展到32个寄存器。
EVEX.U1168类字段(EVEX字节2,位[2]-U)-如果EVEX.U=0,则它指示A类或EVEX.U0;如果EVEX.U=1,则它指示B类或EVEX.U1。
前缀编码字段1225(EVEX字节2,位[1:0]-pp)-提供了用于基础操作字段的附加位。除了对以EVEX前缀格式的传统SSE指令提供支持以外,这也具有压缩SIMD前缀的益处(EVEX前缀只需要2位,而不是需要字节来表达SIMD前缀)。在一个实施例中,为了支持使用以传统格式和以EVEX前缀格式的SIMD前缀(66H、F2H、F3H)的传统SSE指令,将这些传统SIMD前缀编码成SIMD前缀编码字段;并且在运行时在提供给解码器的PLA之前被扩展成传统SIMD前缀(因此PLA可执行传统和EVEX格式的这些传统指令,而无需修改)。虽然较新的指令可将EVEX前缀编码字段的内容直接作为操作码扩展,但是为了一致性,特定实施例以类似的方式扩展,但允许由这些传统SIMD前缀指定不同的含义。替换实施例可重新设计PLA以支持2位SIMD前缀编码,并且由此不需要扩展。
α字段1152(EVEX字节3,位[7]–EH,也称为EVEX.EH、EVEX.rs、EVEX.RL、EVEX.写掩码控制、以及EVEX.N;也以α示出)-如先前所述,该字段是针对上下文的。
β字段1154(EVEX字节3,位[6:4]-SSS,也称为EVEX.s2-0、EVEX.r2-0、EVEX.rr1、EVEX.LL0、EVEX.LLB;也以βββ示出)-如先前所述,该字段是针对上下文的。
REX’字段1110-这是REX’字段的其余部分,并且是可用于对扩展的32个寄存器集合的较高16个或较低16个寄存器进行编码的EVEX.V’位字段(EVEX字节3,位[3]–V’)。该位以位反转的格式存储。值1用于对较低16个寄存器进行编码。换句话说,通过组合EVEX.V’、EVEX.vvvv来形成V’VVVV。
写掩码字段1170(EVEX字节3,位[2:0]-kkk)-其内容指定写掩码寄存器中的寄存器索引,如先前所述。在本发明的一个实施例中,特定值EVEX.kkk=000具有暗示没有写掩码用于特定指令的特殊行为(这可以各种方式实现,包括使用硬连线到所有的写掩码或者旁路掩码硬件的硬件来实现)。
实操作码字段1230(字节4)还被称为操作码字节。操作码的一部分在该字段中被指定。
MOD R/M字段1240(字节5)包括MOD字段1242、Reg字段1244、以及R/M字段1246。如先前所述的,MOD字段1242的内容将存储器访问和非存储器访问操作区分开。Reg字段1244的作用可被归结为两种情形:对目的地寄存器操作数或源寄存器操作数进行编码;或者被视为操作码扩展且不用于对任何指令操作数进行编码。R/M字段1246的作用可包括如下:对引用存储器地址的指令操作数进行编码;或者对目的地寄存器操作数或源寄存器操作数进行编码。
比例、索引、基址(SIB)字节(字节6)-如先前所述的,比例字段1150的内容用于存储器地址生成。SIB.xxx1254和SIB.bbb1256-先前已经针对寄存器索引Xxxx和Bbbb提及了这些字段的内容。
位移字段1162A(字节7-10)-当MOD字段1242包含10时,字节7-10是位移字段1162A,并且它与传统32位位移(disp32)一样地工作,并且以字节粒度工作。
位移因数字段1162B(字节7)-当MOD字段1242包含01时,字节7是位移因数字段1162B。该字段的位置与传统x86指令集8位位移(disp8)的位置相同,它以字节粒度工作。由于disp8是符号扩展的,因此它仅能在-128和127字节偏移量之间寻址;在64字节高速缓存行的方面,disp8使用可被设为仅四个真正有用的值-128、-64、0和64的8位;由于常常需要更大的范围,所以使用disp32;然而,disp32需要4个字节。与disp8和disp32对比,位移因数字段1162B是disp8的重新解释;当使用位移因数字段1162B时,通过将位移因数字段的内容乘以存储器操作数访问的尺寸(N)来确定实际位移。该类型的位移被称为disp8*N。这减小了平均指令长度(单个字节用于位移,但具有大得多的范围)。这种压缩位移基于有效位移是存储器访问的粒度的倍数的假设,并且由此地址偏移量的冗余低阶位不需要被编码。换句话说,位移因数字段1162B替代传统x86指令集8位位移。由此,位移因数字段1162B以与x86指令集8位位移相同的方式(因此在ModRM/SIB编码规则中没有变化)进行编码,唯一的不同在于,将disp8超载至disp8*N。换句话说,在编码规则或编码长度中没有变化,而仅在通过硬件对位移值的解释中有变化(这需要按存储器操作数的尺寸按比例缩放位移量以获得字节式地址偏移量)。
立即数字段1172如先前所述地操作。
完整操作码字段
图12B是示出根据本发明的实施例的构成完整操作码字段1174的具有专用向量友好指令格式1200的字段的框图。具体地,完整操作码字段1174包括格式字段1140、基础操作字段1142、以及数据元素宽度(W)字段1164。基础操作字段1142包括前缀编码字段1225、操作码映射字段1215以及实操作码字段1230。
寄存器索引字段
图12C是示出根据本发明的一个实施例的构成寄存器索引字段1144的具有专用向量友好指令格式1200的字段的框图。具体地,寄存器索引字段1144包括REX字段1205、REX’字段1210、MODR/M.reg字段1244、MODR/M.r/m字段1246、VVVV字段1220、xxx字段1254以及bbb字段1256。
扩充操作字段
图12D是示出根据本发明的一个实施例的构成扩充操作字段1150的具有专用向量友好指令格式1200的字段的框图。当类(U)字段1168包含0时,它表明EVEX.U0(A类1168A);当它包含1时,它表明EVEX.U1(B类1168B)。当U=0且MOD字段1242包含11(表明无存储器访问操作)时,α字段1152(EVEX字节3,位[7]–EH)被解释为rs字段1152A。当rs字段1152A包含1(舍入1152A.1)时,β字段1154(EVEX字节3,位[6:4]–SSS)被解释为舍入控制字段1154A。舍入控制字段1154A包括一位SAE字段1156和两位舍入操作字段1158。当rs字段1152A包含0(数据变换1152A.2)时,β字段1154(EVEX字节3,位[6:4]–SSS)被解释为三位数据变换字段1154B。当U=0且MOD字段1242包含00、01或10(表明存储器访问操作)时,α字段1152(EVEX字节3,位[7]–EH)被解释为驱逐提示(EH)字段1152B且β字段1154(EVEX字节3,位[6:4]–SSS)被解释为三位数据操纵字段1154C。
当U=1时,α字段1152(EVEX字节3,位[7]–EH)被解释为写掩码控制(Z)字段1152C。当U=1且MOD字段1242包含11(表明无存储器访问操作)时,β字段1154的一部分(EVEX字节3,位[4]–S0)被解释为RL字段1157A;当它包含1(舍入1,157A.1)时,β字段1154的其余部分(EVEX字节3,位[6-5]–S2-1)被解释为舍入操作字段1159A,而当RL字段1157A包含0(VSIZE1157.A2)时,β字段1154的其余部分(EVEX字节3,位[6-5]-S2-1)被解释为向量长度字段1159B(EVEX字节3,位[6-5]–L1-0)。当U=1且MOD字段1242包含00、01或10(表明存储器访问操作)时,β字段1154(EVEX字节3,位[6:4]–SSS)被解释为向量长度字段1159B(EVEX字节3,位[6-5]–L1-0)和广播字段1157B(EVEX字节3,位[4]–B)。
图13是根据本发明的一个实施例的寄存器架构1300的框图。在所示出的实施例中,有32个512位宽的向量寄存器1310;这些寄存器被引用为zmm0到zmm31。较低的16zmm寄存器的较低阶256个位覆盖在寄存器ymm0-16上。较低的16zmm寄存器的较低阶128个位(ymm寄存器的较低阶128个位)覆盖在寄存器xmm0-15上。专用向量友好指令格式1200对这些覆盖的寄存器组操作,如在以下表格中所示。
换句话说,向量长度字段1159B在最大长度与一个或多个其他较短长度之间进行选择,其中每一这种较短长度是前一长度的一半,并且不具有向量长度字段1159B的指令模板在最大向量长度上操作。此外,在一个实施例中,专用向量友好指令格式1200的B类指令模板对打包或标量单/双精度浮点数据以及打包或标量整数数据操作。标量操作是对zmm/ymm/xmm寄存器中的最低阶数据元素位置执行的操作;取决于本实施例,较高阶数据元素位置保持与在指令之前相同或者归零。
写掩码寄存器1315-在所示的实施例中,存在8个写掩码寄存器(k0至k7),每一写掩码寄存器的尺寸是64位。在替换实施例中,写掩码寄存器1315的尺寸是16位。如先前所述的,在本发明的一个实施例中,向量掩码寄存器k0无法用作写掩码;当正常指示k0的编码用作写掩码时,它选择硬连线的写掩码0xFFFF,从而有效地停用该指令的写掩码操作。
通用寄存器1325——在所示出的实施例中,有十六个64位通用寄存器,这些寄存器与现有的x86寻址模式一起使用来寻址存储器操作数。这些寄存器通过名称RAX、RBX、RCX、RDX、RBP、RSI、RDI、RSP以及R8到R15来引用。
标量浮点堆栈寄存器组(x87堆栈)1345,在其上面重叠了MMX打包整数平坦寄存器组1350——在所示出的实施例中,x87堆栈是用于使用x87指令集扩展来对32/64/80位浮点数据执行标量浮点运算的八元素堆栈;而使用MMX寄存器来对64位打包整数数据执行操作,以及为在MMX和XMM寄存器之间执行的某些操作保存操作数。
本发明的替换实施例可以使用较宽的或较窄的寄存器。另外,本发明的替换实施例可以使用更多、更少或不同的寄存器组和寄存器。
图14A-B示出了更具体的示例性有序核架构的框图,该核将是芯片中的若干逻辑块之一(包括相同类型和/或不同类型的其他核)。根据应用,这些逻辑块通过高带宽的互连网络(例如,环形网络)与某些固定的功能逻辑、存储器I/O接口和其它必要的I/O逻辑通信。
图14A是根据本发明的各实施例的单个处理器核以及它与管芯上互连网络1402的连接及其二级(L2)高速缓存1404的本地子集的框图。在一个实施例中,指令解码器1400支持具有打包数据指令集扩展的x86指令集。L1高速缓存1406允许对进入标量和向量单元中的高速缓存存储器的低等待时间访问。尽管在一个实施例中(为了简化设计),标量单元1408和向量单元1410使用分开的寄存器集合(分别为标量寄存器1412和向量寄存器1414),并且在这些寄存器之间转移的数据被写入到存储器并随后从一级(L1)高速缓存1406读回,但是本发明的替换实施例可以使用不同的方法(例如使用单个寄存器集合或包括允许数据在这两个寄存器组之间传输而无需被写入和读回的通信路径)。
L2高速缓存的本地子集1404是全局L2高速缓存的一部分,该全局L2高速缓存被划分成多个分开的本地子集,即每个处理器核一个本地子集。每个处理器核具有到其自己的L2高速缓存1404的本地子集的直接访问路径。被处理器核读出的数据被存储在其L2高速缓存子集1404中,并且可以与其他处理器核访问其自己的本地L2高速缓存子集并行地被快速访问。被处理器核写入的数据被存储在其自己的L2高速缓存子集1404中,并在必要的情况下从其它子集清除。环形网络确保共享数据的一致性。环形网络是双向的,以允许诸如处理器核、L2高速缓存和其它逻辑块之类的代理在芯片内彼此通信。每个环形数据路径为每个方向1012位宽。
图14B是根据本发明的各实施例的图14A中的处理器核的一部分的展开图。图14B包括L1高速缓存1404的L1数据高速缓存1406A部分,以及关于向量单元1410和向量寄存器1414的更多细节。具体地说,向量单元1410是16宽向量处理单元(VPU)(见16宽ALU1428),该单元执行整型、单精度浮点以及双精度浮点指令中的一个或多个。该VPU通过混合单元1420支持对寄存器输入的混合、通过数值转换单元1422A-B支持数值转换、并通过复制单元1424支持对存储器输入的复制。写掩码寄存器1426允许断言所得的向量写入。

Claims (22)

1.一种处理器,用于提供实现推测支持的向量化,所述处理器包括:
解码单元,用于解码指令;以及
执行单元,与所述解码单元耦合并用于响应于所述指令:
从输入向量寄存器连续读取每个有效元素,每个有效元素指定聚集或加载操作的地址;
检测与一个或多个有效元素相关联的一个或多个错误状况;
在检测到的除了第一有效元素之外的元素上的错误状况之前,对于连续读取的每个有效元素,将从与所述有效元素相关联的地址加载的数据存储在输出向量寄存器中;
对于与检测到的错误状况相关联的以及在所检测到的错误状况之后的每个有效元素:
设置输出掩码寄存器中的位以指示所检测到的错误状况,以及
如果有效元素不是所述第一有效元素,则将从所述有效元素加载的数据存储在所述输出向量寄存器中;以及
基于所述加载的数据对于有效元素执行所述聚集或加载操作。
2.如权利要求1所述的处理器,其特征在于,响应于所述指令,所述执行单元进一步用于:
在对任何检测到的错误状况进行服务之后,将从与第一有效元素相关联的地址加载的数据存储在所述输出向量寄存器中。
3.如权利要求1所述的处理器,其特征在于,响应于所述指令,所述执行单元进一步用于:
从输入掩码寄存器连续读取每个位,每个位具有用于指示从输入向量寄存器读取的每个有效元素的真值和用于指示从所述输入向量寄存器读取的每个无效元素的假值。
4.如权利要求3所述的处理器,其特征在于,所述输入掩码寄存器包括与所述输出掩码寄存器相同的物理寄存器。
5.如权利要求1所述的处理器,其特征在于,响应于所述指令,所述执行单元进一步用于:
将基址值与从输入向量寄存器读取的每个地址相加,以得出所述聚集或加载操作的存储器地址;以及
在所检测到的错误状况之前,对于每个有效元素,将从每个存储器地址加载的数据存储在输出向量寄存器中。
6.一种用于在处理器中提供实现推测支持的向量化的方法,包括:
从输入向量寄存器连续读取每个有效元素,每个有效元素指定聚集或加载操作的地址;
检测与一个或多个有效元素相关联的一个或多个错误状况;
在检测到的除了第一有效元素之外的元素上的错误状况之前,对于连续读取的每个有效元素,将从与所述有效元素相关联的地址加载的数据存储在输出向量寄存器中;
对于与检测到的错误状况相关联的以及在所检测到的错误状况之后的每个有效元素:
设置输出掩码寄存器中的位以指示所检测到的错误状况;以及
如果有效元素不是所述第一有效元素,则将从所述有效元素加载的数据存储在所述输出向量寄存器中;以及
通过所述处理器基于所述加载的数据对于有效元素执行所述聚集或加载操作。
7.如权利要求6所述的方法,其特征在于,进一步包括:
在对任何检测到的错误状况进行服务之后,将从与所述第一有效元素相关联的地址加载的数据存储在所述输出向量寄存器中。
8.如权利要求6所述的方法,其特征在于,还包括:
从输入掩码寄存器连续读取每个位,每个位具有用于指示从输入向量寄存器读取的每个有效元素的真值和用于指示从所述输入向量寄存器读取的每个无效元素的假值。
9.如权利要求8所述的方法,其特征在于,所述输入掩码寄存器包括与所述输出掩码寄存器相同的物理寄存器。
10.如权利要求6所述的方法,其特征在于,还包括:
将基址值与从输入向量寄存器读取的每个地址相加,以得出所述聚集或加载操作的存储器地址;以及
在所检测到的错误状况之前,对于每个有效元素,将从每个存储器地址加载的数据存储在输出向量寄存器中。
11.一种计算机系统,包括:
存储器,用于存储程序指令和数据;
处理器,与所述存储器耦合并包括:
解码单元,用于解码指令;以及
执行单元,与所述解码单元耦合并用于响应于所述指令:
从输入向量寄存器连续读取每个有效元素,每个有效元素指定聚集或加载操作的地址;
检测与一个或多个有效元素相关联的一个或多个错误状况;
在检测到的除了第一有效元素之外的元素上的错误状况之前,对于连续读取的每个有效元素,将从与所述有效元素相关联的地址存储在输出向量寄存器中;
对于与检测到的错误状况相关联的以及在所检测到的错误状况之后的每个有效元素:
设置输出掩码寄存器中的位以指示所检测到的错误状况,以及
如果有效元素不是所述第一有效元素,则将从所述有效元素加载的数据存储在所述输出向量寄存器中;以及
通过所述处理器基于所述加载的数据对于有效元素执行所述聚集或加载操作。
12.如权利要求11所述的计算机系统,其特征在于,响应于所述指令,所述执行单元进一步用于:
在对任何检测到的错误状况进行服务之后,将从与所述第一有效元素相关联的地址加载的数据存储在所述输出向量寄存器中。
13.如权利要求11所述的计算机系统,其特征在于,响应于所述指令,所述执行单元进一步用于:
从输入掩码寄存器连续读取每个位,每个位具有用于指示从输入向量寄存器读取的每个有效元素的真值和用于指示从所述输入向量寄存器读取的每个无效元素的假值。
14.如权利要求13所述的计算机系统,其特征在于,所述输入掩码寄存器包括与所述输出掩码寄存器相同的物理寄存器。
15.如权利要求11所述的计算机系统,其特征在于,响应于所述指令,所述执行单元进一步用于:
将基址值与从输入向量寄存器读取的每个地址相加,以得出所述聚集或加载操作的存储器地址;以及
在所检测到的错误状况之前,对于每个有效元素,将从每个存储器地址加载的数据存储在输出向量寄存器中。
16.如权利要求11所述的计算机系统,其特征在于,还包括:
显示适配器,用于响应于所述执行单元对程序代码的执行而呈现图形图像。
17.如权利要求15所述的计算机系统,其特征在于,还包括:
用户输入界面,用于从用户输入设备接收控制信号,所述执行单元响应于所述控制信号执行程序指令。
18.一种用于提供实现推测支持的向量化的设备,包括:
第一读取装置,用于从输入向量寄存器连续读取每个有效元素,每个有效元素指定聚集或加载操作的地址;
检测装置,用于检测与一个或多个有效元素相关联的一个或多个错误状况;
第一存储装置,用于,在检测到的除了第一有效元素之外的元素上的错误状况之前,对于连续读取的每个有效元素,将从与所述有效元素相关联的地址加载的数据存储在输出向量寄存器中;
用于,对于与检测到的错误状况相关联的以及在所检测到的错误状况之后的每个有效元素执行以下操作的装置:
设置输出掩码寄存器中的位以指示所检测到的错误状况;以及
如果有效元素不是所述第一有效元素,则将从所述有效元素加载的数据存储在所述输出向量寄存器中;以及
用于基于所述加载的数据对于有效元素执行所述聚集或加载操作的装置。
19.如权利要求18所述的设备,其特征在于,还包括:
第二存储装置,用于:在对任何检测到的错误状况进行服务之后,将从与所述有效元素相关联的地址加载的数据存储在所述输出向量寄存器中。
20.如权利要求18所述的设备,其特征在于,还包括:
第二读取装置,用于从输入掩码寄存器连续读取每个位,每个位具有用于指示从输入向量寄存器读取的每个有效元素的真值和用于指示从所述输入向量寄存器读取的每个无效元素的假值。
21.如权利要求20所述的设备,其特征在于,所述输入掩码寄存器包括与所述输出掩码寄存器相同的物理寄存器。
22.如权利要求18所述的设备,其特征在于,还包括:
相加装置,用于将基址值与从输入向量寄存器读取的每个地址相加,以得出所述聚集或加载操作的存储器地址;以及
第三存储装置,用于,在所检测到的错误状况之前,对于每个有效元素,将从每个存储器地址加载的数据存储在输出向量寄存器中。
CN201180075857.4A 2011-12-23 2011-12-23 用于具有推测支持的向量化的装置和方法 Active CN104025022B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2011/067085 WO2013095608A1 (en) 2011-12-23 2011-12-23 Apparatus and method for vectorization with speculation support

Publications (2)

Publication Number Publication Date
CN104025022A CN104025022A (zh) 2014-09-03
CN104025022B true CN104025022B (zh) 2017-09-19

Family

ID=48669249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180075857.4A Active CN104025022B (zh) 2011-12-23 2011-12-23 用于具有推测支持的向量化的装置和方法

Country Status (4)

Country Link
US (1) US9268626B2 (zh)
CN (1) CN104025022B (zh)
TW (1) TWI509406B (zh)
WO (1) WO2013095608A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9405539B2 (en) * 2013-07-31 2016-08-02 Intel Corporation Providing vector sub-byte decompression functionality
GB2519108A (en) * 2013-10-09 2015-04-15 Advanced Risc Mach Ltd A data processing apparatus and method for controlling performance of speculative vector operations
GB2519107B (en) 2013-10-09 2020-05-13 Advanced Risc Mach Ltd A data processing apparatus and method for performing speculative vector access operations
US9720667B2 (en) 2014-03-21 2017-08-01 Intel Corporation Automatic loop vectorization using hardware transactional memory
US9817762B2 (en) * 2014-05-20 2017-11-14 Oracle International Corporation Facilitating efficient prefetching for scatter/gather operations
US9851970B2 (en) * 2014-12-23 2017-12-26 Intel Corporation Method and apparatus for performing reduction operations on a set of vector elements
GB2543303B (en) * 2015-10-14 2017-12-27 Advanced Risc Mach Ltd Vector data transfer instruction
GB2543302B (en) * 2015-10-14 2018-03-21 Advanced Risc Mach Ltd Vector load instruction
GB2543554B (en) 2015-10-22 2019-01-23 Advanced Risc Mach Ltd Handling exceptional conditions for vector arithmetic instruction
GB2546510B (en) 2016-01-20 2018-09-26 Advanced Risc Mach Ltd Vector atomic memory update instruction
US11436010B2 (en) 2017-06-30 2022-09-06 Intel Corporation Method and apparatus for vectorizing indirect update loops
US11531547B2 (en) * 2021-05-21 2022-12-20 Arm Limited Data processing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101276637A (zh) * 2007-03-29 2008-10-01 澜起科技(上海)有限公司 寄存器读取机构
TW201017531A (en) * 2008-08-08 2010-05-01 Qualcomm Inc Apparatus and methods for speculative interrupt vector prefetching
CN101978350A (zh) * 2008-03-28 2011-02-16 英特尔公司 用于实现高效同步和并行归约操作的向量指令

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6701424B1 (en) * 2000-04-07 2004-03-02 Nintendo Co., Ltd. Method and apparatus for efficient loading and storing of vectors
US20030105945A1 (en) * 2001-11-01 2003-06-05 Bops, Inc. Methods and apparatus for a bit rake instruction
US7095808B1 (en) * 2000-08-16 2006-08-22 Broadcom Corporation Code puncturing method and apparatus
US8307194B1 (en) * 2003-08-18 2012-11-06 Cray Inc. Relaxed memory consistency model
US7366873B1 (en) * 2003-08-18 2008-04-29 Cray, Inc. Indirectly addressed vector load-operate-store method and apparatus
US7725250B2 (en) * 2006-07-18 2010-05-25 International Business Machines Corporation Proactive mechanism for supporting the global management of vehicle traffic flow
US8667250B2 (en) * 2007-12-26 2014-03-04 Intel Corporation Methods, apparatus, and instructions for converting vector data
US8447962B2 (en) * 2009-12-22 2013-05-21 Intel Corporation Gathering and scattering multiple data elements
US7984273B2 (en) * 2007-12-31 2011-07-19 Intel Corporation System and method for using a mask register to track progress of gathering elements from memory
US8271832B2 (en) * 2008-08-15 2012-09-18 Apple Inc. Non-faulting and first-faulting instructions for processing vectors
JP5573134B2 (ja) * 2009-12-04 2014-08-20 日本電気株式会社 ベクトル型計算機及びベクトル型計算機の命令制御方法
JP5240270B2 (ja) * 2010-10-12 2013-07-17 日本電気株式会社 プロセッサ及びベクトルロード命令の実行方法
US9552206B2 (en) * 2010-11-18 2017-01-24 Texas Instruments Incorporated Integrated circuit with control node circuitry and processing circuitry
US9785436B2 (en) * 2012-09-28 2017-10-10 Intel Corporation Apparatus and method for efficient gather and scatter operations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101276637A (zh) * 2007-03-29 2008-10-01 澜起科技(上海)有限公司 寄存器读取机构
CN101978350A (zh) * 2008-03-28 2011-02-16 英特尔公司 用于实现高效同步和并行归约操作的向量指令
TW201017531A (en) * 2008-08-08 2010-05-01 Qualcomm Inc Apparatus and methods for speculative interrupt vector prefetching

Also Published As

Publication number Publication date
CN104025022A (zh) 2014-09-03
TW201333687A (zh) 2013-08-16
TWI509406B (zh) 2015-11-21
US20140237303A1 (en) 2014-08-21
US9268626B2 (en) 2016-02-23
WO2013095608A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
CN104025022B (zh) 用于具有推测支持的向量化的装置和方法
CN104094218B (zh) 用于执行写掩码寄存器到向量寄存器中的一系列索引值的转换的系统、装置和方法
CN104011649B (zh) 用于在simd/向量执行中传播有条件估算值的装置和方法
CN104040482B (zh) 用于在打包数据元素上执行增量解码的系统、装置和方法
CN104025040B (zh) 用于混洗浮点或整数值的装置和方法
CN104509026B (zh) 用于处理sha-2安全散列算法的方法和设备
CN104137060B (zh) 高速缓存协处理单元
CN104011673B (zh) 向量频率压缩指令
CN104335166B (zh) 用于执行混洗和操作的装置和方法
CN104011647B (zh) 浮点舍入处理器、方法、系统和指令
CN104011652B (zh) 打包选择处理器、方法、系统和指令
CN104126172B (zh) 用于掩码寄存器扩充操作的装置和方法
CN104081336B (zh) 用于检测向量寄存器内的相同元素的装置和方法
CN104145245B (zh) 浮点舍入量确定处理器、方法、系统和指令
CN104126167B (zh) 用于从通用寄存器向向量寄存器进行广播的装置和方法
CN104011643B (zh) 打包数据重新安排控制索引产生处理器、方法、系统及指令
CN104081341B (zh) 用于多维数组中的元素偏移量计算的指令
CN104011650B (zh) 使用输入写掩码和立即数从源写掩码寄存器在目的地写掩码寄存器中设置输出掩码的系统、装置和方法
CN104011644B (zh) 用于产生按照数值顺序的相差恒定跨度的整数的序列的处理器、方法、系统和指令
CN104204989B (zh) 用于选择向量计算的元素的装置和方法
CN104011646B (zh) 用于产生按照数值顺序的连续整数的序列的处理器、方法、系统和指令
CN104169867B (zh) 用于执行掩码寄存器至向量寄存器的转换的系统、装置和方法
CN104081337B (zh) 用于响应于单个指令来执行横向部分求和的系统、装置和方法
CN104011671B (zh) 用于执行置换操作的设备和方法
CN104025019B (zh) 用于执行双块绝对差求和的系统、装置和方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant