CN104203411B - 生物传感器装置和系统 - Google Patents

生物传感器装置和系统 Download PDF

Info

Publication number
CN104203411B
CN104203411B CN201380017921.2A CN201380017921A CN104203411B CN 104203411 B CN104203411 B CN 104203411B CN 201380017921 A CN201380017921 A CN 201380017921A CN 104203411 B CN104203411 B CN 104203411B
Authority
CN
China
Prior art keywords
fluid
sample
swab
sensor
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380017921.2A
Other languages
English (en)
Other versions
CN104203411A (zh
Inventor
潘泰莱蒙·阿萨纳修
阿尔佩什·帕特尔
大卫·惠特克
白桦
约翰·帕尔默-费尔加特
丹尼尔·孔伯-奥尔福德
萨姆·里德
杰西卡·费希尔
查德·施奈德
亚历克斯·弗拉姆
本·莱恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DNAE Group Holdings Ltd
Original Assignee
DNAE Group Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB1205497.9A external-priority patent/GB2500658A/en
Application filed by DNAE Group Holdings Ltd filed Critical DNAE Group Holdings Ltd
Priority to CN201610862408.9A priority Critical patent/CN106501327B/zh
Publication of CN104203411A publication Critical patent/CN104203411A/zh
Application granted granted Critical
Publication of CN104203411B publication Critical patent/CN104203411B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供一种用于容纳、制备和鉴定生物样品的系统、装置和方法。一部分可由用户手持并操作。所述样品可利用一系列传感器检测。所述系统可包括被设置为彼此连接的可重复使用和废弃的组件。所述生物样品可包含待检测的核酸、蛋白质或其他分子。

Description

生物传感器装置和系统
技术领域
本发明涉及用于处理用生物传感器检测的流体样品的方法、装置和系统。本发明特别涉及用于核酸检测和诊断的动物体液和植物样品。
背景技术
检测生物样品通常是由技术人员在实验室进行的多步骤的过程。以下工作流程涉及人类患者的DNA测试。生物样品必须是使用拭子或收集瓶直接取自供体的。用于擦拭口腔组织的拭子为开孔泡沫,其在泡沫孔中收集供体细胞。然后将所述泡沫浸入流体中并搅动以释放所述生物学细胞。加入一系列试剂*以(a)使细胞破碎并释放DNA;(b)纯化释放的DNA,以及(c)将DNA与用于扩增的试剂(pH、缓冲剂、稳定剂、聚合酶、引物、探针、珠子、核苷酸等)混合。这些试剂是通过手动移液方式或以用于批量测试的自动化处理方式加入的。在某些情况下,希望分离出不期望的颗粒(食物、细胞碎片等)。这可以通过机械过滤或离心来进行。然后可使用已知技术检测DNA,如桑格(Sanger)测序法、合成测序法或实时PCR。
整个过程非常复杂并且需要技术人员使用昂贵的设备以提供结果,这通常需要几小时至几天的时间才能回到请求测试的人员手中。
本发明的发明人意识到人们希望用简单、廉价而不需要专业技术人员操作或说明的装置来替代上述检测系统。因此,他们设计了可由普通用户手动操作的如下所述装置。
发明内容
根据本发明的第一方面,本发明提供了一种生物样品制备装置,其包括:壳体;多个流体分配器,其位于所述壳体内;用户操作部件,其与所述壳体连接并且相对于所述壳体是可移动的;以及机械构造,其能够将所述部件的运动转化为所述流体分配器的顺次运动和同时运动的预定组合,从而混合所述样品和试剂。
所述机械构造可设置有与所述部件连接的一个或多个凸轮以及多个从动件,其中一个从动件与各流体分配器连接,其被设置为所述部件相对于壳体的运动导致所述一个或多个凸轮作用于从动件,从而从所述流体分配器中分配流体。
所述部件可以被设置为相对于壳体旋转。
各个流体分配器可包括活塞和缸体,该缸体的一端适合容纳所述活塞,而另一端通过端口分配流体。
一个或多个凸轮中一者可以作用于各个活塞的端部。
所述部件可包括被设置成用于增强抓握性能的表面构造。
所述部件可包括多个同心凸轮轨道,优选地所述凸轮轨道为各个分配器提供休止部(dwell portion)、位移部和锁定部。
所述装置在壳体和所述部件之间可包括棘齿。
根据本发明的第二个方面,本发明提供了一种生物样品制备装置,其包括:至少两个流体分配器,其中至少一个流体分配器容纳密封在该分配器中的试剂;微流体通道62,其将各个流体分配器连接至接收室,其中所述流体分配器被设置为分配流体使得流体基本上同时流经所述流体通道至所述接收室。
所述接收室可具有排出孔,该排出孔被设置为用于排出空气和排出超出预定体积的过量流体。
所述流体通道可包括迂回轨迹和/或表面构造以促进在通道中流动的流体之间的混合。
所述通道可以为在固体基体上形成的具有开口侧的通道,所述通道的开口被包覆基体的层覆盖,优选被箔或粘合膜覆盖。
所述分配器均可包括作用于所述流体的活塞,优选其中两个或更多个活塞可彼此连接,优选地形成一体组件。
根据各个流体分配器分配的流体的体积确定混合比。
至少一个分配器可包括含有试剂的密封缸体。
所述装置可以手持以及手动操作。
选择所述流体分配器的尺寸以分配预定量(优选小于500μl)的流体。
根据本发明的第三个方面,本发明提供了一种流体混合装置,所述装置包括:基体,其限定a)具有开口侧的通道和b)流体端口,其中所述端口通过阻挡件与所述通道分隔;以及膜,其附连在所述基体上并覆盖所述通道的开口侧和所述端口。
所述膜的一部分被设置为在作用于所述端口的液压下离开所述基体,从而允许流体从所述端口流过所述阻挡件,并进入所述通道中。所述阻挡件围绕所述端口,并且空隙围绕所述阻挡件。
所述装置可包括位于所述端口和所述通道之间并与它们流体连通的储存室。所述储存室和所述储存室到所述通道的出口被构造为使得流体在排出之前填满所述储存室而不在所述储存室中产生气泡。
根据本发明的第四个方面,本发明提供了一种用于提取生物流体样品的装置,其包括:第一组件,其具有手柄以及位于所述手柄的一端的拭子,该拭子用于在未压缩状态下吸收或吸附流体;以及第二组件,其具有用于容纳所述拭子的开口,以及被设置为抵触所述拭子以将所述拭子压缩为压缩状态的腔。
所述装置可包括从所述手柄上突起的盖子,以在所述拭子处于压缩状态时基本上覆盖所述第二组件的开口。
进入所述腔的端口大于未压缩状态的拭子,并且所述腔变窄以容纳拭子并使其压缩成为压缩状态。
所述装置可在所述腔包括端口以允许流体样品排出所述腔。
所述装置可包括通过第一组件和第二组件的配合部分形成的锁定结构,以将所述拭子锁定在压缩状态,优选其中所述锁定结构为止动部件。
根据本发明的第五个方面,本发明提供了一种用于提取生物流体样品的装置,其包括:手柄;拭子,其位于所述手柄的一端用于吸收或吸附流体;以及套管,其被设置为沿着所述手柄滑动以压缩所述拭子。
所述套管可具有与所述手柄相间隔的凹部,从而将所述拭子容纳成压缩状态。
所述拭子可从所述手柄上拆卸。
所述套管可在拭子未被压缩的初始位置与套管抵触拭子以从中排出流体的压缩位置之间滑动。
所述套管可通过止动部件与外部组件配合以将套管锁定在压缩位置。
所述拭子包括闭孔泡沫。
根据本发明的第六个方面,本发明提供了一种感测样品的生物学性质的方法,包括以下步骤:向微流体容器提供含有所述样品的流体,每个容器具有传感器和被实体包覆或固定在实体中的试剂;熔化所述实体以使所述试剂受控地释放,从而与所述样品反应;将各容器中的试剂与所述传感器的输出信号关联,从而确定所述样品的性质。
所述试剂可以为分析物特异性试剂,优选为等位基因特异引物或抗原特异性抗体,如果在样品中存在靶标,那么试剂与靶标化学结合。
所述传感器可被构造为检测试剂与样品之间反应的一个或多个副产物。
所述方法可包括覆盖多个容器以使所述容器彼此分离的步骤,以及/或者包括打开加热器的步骤。
根据本发明的第七个方面,本发明提供了一种用于感测样品的生物学特性的盒,其包括:壳体;半导体芯片,其上集成有一系列传感器;一系列微流体孔,其用于接收所述样品;试剂,其由位于各孔中的实体包覆或固定在该实体中;加热器,其被构造为对所述实体提供热量。
所述实体的熔点可高于环境温度并低于芯片的操作温度,优选地所述实体为蜡,更优选为石蜡。
所述盒可包括表面,其可移动以将所述孔彼此隔离。
所述盒可包括温度传感器。
所述盒可包括与加热器和温度传感器连接的控制器。
根据本发明的第八个方面,本发明提供了一种用于感测生物样品的盒,其包括:壳体;半导体芯片,其上集成有一系列传感器;密封块,其与所述芯片间隔开从而在它们之间形成空隙;一系列孔,其在一侧开口以接收所述样品,其中所述密封块和芯片被设置为在非密封位置和密封位置之间彼此相对移动以封闭所述空隙,从而使所述孔彼此隔离。
所述盒可包括驱动器,其被设置为当所述盒与外部装置分离时推动所述密封块到达密封位置。
所述盒可包括可暴露于所述孔的多个电极。
所述盒可包括用于在非密封位置上使密封块与半导体芯片间隔开的偏置工具。
所述盒可包括与半导体芯片连接的散热器。
所述盒的壳体可包括用于接收流体样品的端口。
所述盒的壳体可包括用于接收气流并将气流导向半导体芯片和/或散热器的端口。
所述盒可包括用于将盒连接至外部装置的机械连接器。
所述盒可包括用于将半导体芯片连接至外部电路的电连接器(83)。
可将所述空隙设置为提供毛细管力,从而将流体保持在传感器上方。
所述盒可包括柔性边缘(flexible skirt),其围绕所述半导体芯片的至少一部分以容纳过量流体。
所述微流体孔阵列可由平面基体中的开口提供,优选其中所述基体包括印刷电路板(PCB),更优选地包括柔性PCB。
所述盒可包括润湿剂,其包覆所述孔的表面。
各孔的体积优选大于20nl,更优选大于50nl,优选小于200nl,更优选小于100nl。
根据本发明的第九个方面,本发明提供了一种用于生物学反应的微流体装置,所述装置具有层叠结构(116)并且包括:平面基体;导电轨道,其位于所述平面基体的主表面上;绝缘层,其覆盖所述导电轨道和平面基体;以及一个或多个开口,其穿过所述层叠结构以提供一个或多个微流体容器,其中所述轨道仅在边缘暴露于各个微流体容器以提供电极。
所述微流体装置可包括电连接器,以便将导电轨道与提供电极参照电压的外部电路连接。
所述微流体装置可包括向参照电极提供电极参照电压的电路。
所述导电轨道可包括多个彼此电绝缘的轨道通道。
相邻微流体容器可暴露于不同的轨道通道。
根据本发明的第十个方面,本发明提供了一种制造微流体装置的方法,其包括以下步骤:提供平面基体;在所述基体上沉积第一组导电轨道;用共形绝缘层包覆所述轨道和基体;切割由步骤(i)至(iii)提供的层,从而形成仅暴露于所述导电轨道边缘的开口。
所述层叠结构可通过对所述层冲切而形成。
所述开口形成微流体容器的用于容纳流体的部分。
所述方法可将具有一个或多个传感器半导体基体与具有共形绝缘层的多个层连接。
所述平面基体可为PCB。
第一组导电轨道可包括贵金属,优选为银/氯化银。
所述方法可包括在基体上沉积并蚀刻第二组导电轨道,第二组导电轨道与第一组导电轨道电绝缘。
所述第二组导电轨道可通过丝网印刷沉积。
所述方法可包括在导电轨道上沉积接合焊盘。
根据本发明的第十一个方面,本发明提供了一种确定生物学性质的装置,其包括:壳体;位于所述壳体上的端口,所述壳体具有用于将所述装置连接至外部传感器盒的机械和电连接工具;以及位于所述壳体内的电路板,其具有控制器和信号处理电路,从而通过电连接控制传感器盒的温度并处理来自传感器盒的传感器信号。
所述装置可包括将所述装置与外部计算机连接的工具。
所述装置可包括风扇,其被设置为将气流通过所述端口引导至外部传感器盒。
根据本发明的第十二个方面,本发明提供了一种检测生物样品的系统,其包括:用于容纳样品的样品制备装置,其具有试剂和用于将所述试剂与样品混合的混合器;传感器盒,其具有一个或多个传感器,所述盒能够与样品制备装置连接以接收样品与试剂的混合物。
所述系统可包括以下部件中的一者或多者:拭子,其用于从供体提取样品;分析器,其能够与盒连接以接收并处理所述一个或多个传感器的输出信号;以及容纳所述试剂的流体分配器。
附图说明
参考附图,仅以举例方式对本发明的具体实施方案进行说明,其中:
图1为一个优选系统的部件的分解图;
图2为(a)具有滑动套管并且(b)容纳在漏斗形部件中的拭子的截面图;
图3为处于压缩位置的拭子的截面图;
图4为处于初始位置的流体分配器的截面图;
图5为多个活塞和缸体的视图;
图6为活塞和凸轮的视图;
图7为一组凸轮轨道的视图;
图8为腔内活塞和活塞头的截面图;
图9为具有流体通道的基体的截面图;
图10为具有流体通道的另一种可选基体的视图;
图11为暴露于电极的微流体腔的视图;
图12为包含在传感器芯片中的层叠结构的视图;
图13为与盒接合的样品制备装置的截面图;
图14为部分地与盒接合的样品制备装置的视图;
图15为盒的视图;
图16为操作前的盒的截面图;
图17为操作期间的盒的截面图;
图18为操作完成后的盒的截面图;
图19为从组织或细胞提取和分析核酸的步骤的流程;
图20为涉及蛋白质的化学反应的视图;
图21为接合在分析仪上的盒的视图;以及
图22为盒和分析仪的截面图。
发明详述
所述系统包括拭子、样品制备装置、传感器盒和分析仪。
系统概述
在图1中示出一种用于采集生物样品的系统。该示例性系统包括:拭子1,其用于从动物(例如人和其他哺乳动物,包括含病原体的样品)采集样品;样品制备装置70,其用于提供可用形式的样品;传感器盒80,其用于检测所述样品的性质;以及分析仪110,其用于处理来自传感器的信号从而向用户或其他连接装置提供输出信号。
所述系统可灵活地操作各种样品类型、试剂、传感器装置和分析仪,从而可由各种生物源获得各种检测和诊断。例如,样品可以为多种含有细胞的体液、或从器官或感染部位刮下的细胞中的一者,其中当样品与合适的试剂混合时,其提供待被一个或多个传感器(优选为一系列传感器)检测的在可用条件(浓度、pH、缓冲液等)下的在流体中的DNA或RNA,所述传感器对一个或多个性质敏感。某些试剂可为通过暴露于传感器的微流体孔而彼此分离的分析物特异性试剂,从而确定DNA或RNA的多个核碱基的同一性。其他特异性试剂也可用于鉴定除核酸之外的其他样品,如蛋白质。
诸如DNA或RNA等核酸可从动物组织或细胞、植物组织或细胞、细菌细胞、病毒颗粒或病毒感染的细胞中分离。样品可以从各种来源,例如血液、唾液、粪便、叶片或土壤获得。可以根据样品的来源以及是否需要预处理步骤(例如机械剪切、超声或过滤不溶实体)来采用从未经处理的样品中提取核酸的方法。提取的核酸可用于诸如核酸扩增、DNA测序或核酸定量等各种下游应用。
在图19中示出了从组织或细胞提取和分析核酸的步骤。在某些应用中,这些步骤中的一些可以合并。第一步需要利用化学或酶的方式裂解组织或细胞(1)。将一定量的样品与裂解缓冲液以最适比率混合从而实现最佳裂解。然后,可向混合物中加入稳定剂以抑制核酸的降解并保护所述核酸的总体完整性(2)。可选地,如果相容的话,稳定剂可加入裂解缓冲液中。根据下游的应用,可能需要除去非目的核酸来提高核酸混合物的纯度,从而为下游应用提供最佳检验条件(3)。可通过酶解、螯合和/或过滤不期望的/干扰的实体来提高核酸混合物的纯度。所得核酸混合物可进一步浓缩或稀释(4),然后与合适的反应试剂混合(5)以用于下游的应用(6)和检测(7)。
在一个实施方案中,可通过类似于上述用于核酸分析的步骤来分离和分析诸如蛋白质等其它生物分子。
方法以及裂解缓冲液、稳定剂、纯化技术和反应试剂的成分将根据样品源、待分析的生物分子(DNA、RNA或蛋白质)以及下游应用而改变。本领域技术人员能够根据本公开进行修改和替换,这些修改该和替换在本发明的范围内。图19示出了从组织或细胞提取和分析核酸的步骤。前四个步骤优选地在样品制备装置中进行,后两个步骤在传感器盒中进行。
以下示出了从人唾液中提取DNA以用于基因诊断检验的方法的一个例子。
将一定量的唾液与碱性裂解缓冲液以预定比例混合,从而实现在期望pH值下的最佳裂解。所述碱性裂解缓冲液包含:碱;金属螯合剂,如EDTA;并且所述碱性裂解缓冲液可包含一种或多种非离子洗涤剂,例如Triton-X100。所述碱性裂解缓冲液中的碱用于破坏细胞膜,使蛋白质变性,以及调节提取的唾液流体以获得用于核酸扩增和检测的最适pH。碱性裂解缓冲液的优选pH范围是pH10-14。
对于核酸扩增,例如PCR或等温扩增(如TMA、SDA、HDA、RPA、NASBA或LAMP),将唾液/裂解缓冲液混合物的特定部分与扩增试剂溶液混合以促进核酸扩增。所述扩增试剂溶液包含有效DNA扩增所必需的组分,如dNTP、聚合酶、MgSO4和NH4Cl;但是不含序列特异性引物或探针,这些是储存在传感器盒中的。
为了启动核酸扩增反应,将唾液-裂解缓冲液混合物与扩增试剂合并,所述扩增试剂在扩增前将最终pH调节至适合特定生化反应和检测的最佳范围。通常,最适的最终pH在6.0-9.5的范围内,并且其依赖于聚合酶的物理/化学性质、扩增效率以及检测。
在下述讨论中,结合优选的实施方案描述简单的手持式手动操作装置。从供体收集样品,并且由用户操作所述装置。某些情况下供体也可为用户。
生物流体提取
样品(包括唾液、血液和尿)可直接加入装置中以用于制备和检验。可选地,可使用拭子捕获细胞。拭子可为口腔拭子、鼻咽拭子、喉拭子、耳拭子、生殖器拭子、伤口拭子、污染表面的拭子或其它拭子,这些拭子可以未加工或最低限度的加工而使用。拭子的材料可为开孔泡沫、闭孔泡沫、针织聚酯或植绒纤维。在宿主动物的核酸检测的应用的一个优选的实施方案中,样品为利用拭子采集的唾液,所述拭子具有由闭孔泡沫制成的材料,其附连到作为手柄的棒的末端。有益的是,闭孔泡沫拭子材料不会捕获生物细胞,因此该系统不需要机械或手动搅拌以释放细胞。
可选地,可使用非泡沫材料,从而样品仅携带在拭子表面上。在任何情况下,所述材料是适应性的以使得有效表面积可以在开始时较大以吸收或吸附样品,然后被压缩以减少有效表面积和/或体积从而移除样品。有效面积是样品能够被吸附的表面的量。当材料形状改变,体积被压缩或表面自身折叠时有效面积减少。
优选地,拭子表面或形状被设置为使样品的容量最大化。这可以通过增加凹槽、波纹、肋、翼、洞(闭孔或通孔)等来实现。所述材料应当为非浸出的稳定的生物相容性材料,如医药级PP、HDPE或LDPE。
图2a示出了样品提取装置1的一个实施方案,其具有用于收集流体的拭子5、手柄2和套管3。用户将拭子5提供到组织以收集流体样品,并且可用该拭子擦拭组织以除去松散的细胞。有益的是,该拭子的表面可以是磨蚀的以从组织中松散细胞。这些细胞通过流体的表面张力附着在表面上,并且也松散地包含在闭孔泡沫的褶皱中。
如图3所示,拭子插入样品制备装置70的漏斗形部件12中。然后套管3相对于手柄滑动,通过沟槽(gullet)6与拭子5抵触。将端口斜切以引导拭子进入变窄的沟道中。由此拭子的材料在期望位置被压缩以释放样品。可选地,所述套管可沿轴向方向(相对于手柄而言)将拭子压在样品制备装置的基体上从而释放样品。图4示出了处于挤压位置的套管。
作为图2a实施方案的可选方案,图2b示出了套管3固定在手柄2上以作为盖子。拭子被插入样品制备装置并与腔(如漏斗形部件12)抵触,从而挤压拭子,该漏斗形部件的出口提供样品的入口。所述腔可为横截面从大于拭子的端口处到使对拭子的挤压最大化的横截面尺寸(例如,基本上等于压缩时拭子的横截面,或在压缩和处理时基本上相当于拭子横截面)变窄的漏斗形部件。所述腔的横截面在未挤压时基本上类似于拭子,并且具有基体以在插入提取装置时作用于拭子以沿轴向挤压拭子。当拭子完全插入时,盖子3防止污染物的进入或流体流出装置70。
在任一个实施方案中,通过包括突起部8和空隙11的止动部件(detent)将提取装置1和样品制备装置70锁定在该压缩位置(提取装置(套管或手柄)或样品制备装置中的任一者可以具有突起部或空隙)。从而一旦接合,用户就不能接触倒流体,因此不使用额外的力就不能释放流体。这对于从用户环境分离样品的诊断检测来说是有益的。将拭子插入样品制备装置的动作同时完成了压缩拭子并闭锁在该位置。
拭子的体积和压缩比决定从材料转移到样品制备装置的流体的量。优选地,拭子释放的样品体积大于50μl、大于100μl、大于200μl、或大于400μl。优选地,拭子收集的样品体积小于2000μl、小于1500μl、或小于1000μl.
挤压拭子以填充样品制备装置的开口缸体,使过量流体流过该开口缸体的顶端。如图4所示,流体从拭子5沿着具有斜面的通道22流动以填充缸体25。该斜面的角度相对于水平方向应当从横向大于25°,优选地大于45°,从而促进流动并且避免装置略偏离垂直方向而带来任何影响。
供体制备
从供体收集的唾液流体可包含任何可能干扰后续的基因和/或蛋白质诊断检验(例如核酸扩增反应、DNA测序)的实体。例如,在核酸扩增反应中,干扰物可能抑制核酸扩增、降低扩增效率以及/或是提高非特异性扩增。作为使唾液流体中的不期望实体最小化或是在某些情况下除去该实体的额外方式,可以在收集唾液之前进行漱口水洗漱程序。可在刷牙、吃、喝等之后立即进行该漱口水洗漱程序,而不需要收集唾液样品之前的额外等待时间。在漱口水洗漱程序中,个人在从嘴中吐出漱口水之前用漱口水进行一定时间量的洗漱,优选在10秒至2分钟之间,更优选地在20秒至50秒之间。在收集唾液流体之前,然后再用水漱洗至少两次,优选至少5次,以除去或减少唾液中的残余漱口水。所述唾液流体可由拭子收集。
漱口水洗漱方案的一个例子如下:
1)用10-30ml的Listerine ZeroTM(例如半瓶盖到整瓶盖的Listerine)漱口20秒至30秒;
2)从嘴中吐出漱口水;
3)用10-30ml的水漱口;
4)步骤3重复5次;
5)收集唾液前等待1至2分钟;
6)将唾液吐在收集瓶中收集唾液。
漱口水通常是具有消毒或抗菌性能的溶液。所述漱口水可为自制的、或者来自有机或市售源的。然而,仅由盐和水构成的溶液是不期望的。
漱口水可包含酒精。优选地,在使用含酒精的漱口水情况下,用水进行额外的洗漱步骤,从而在唾液收集前除去或最大程度减少唾液中的残余酒精量。这是由于唾液样品中的残余酒精可能干扰后续的诊断检验。优选地,所述漱口水不含酒精。
市售的漱口水可为:Colgate PlaxTM(含酒精或不含酒精)、ListerineTM(含酒精或不含酒精)、CorsodylTM、Dentyl pHTM、Oral-BTM、ScopeTM、Astring-O-SolTM、CepacolTM、SarkanTM、Tantum verdeTM和Organic pharmacyTM
在一个实施方案中,所述系统(优选为所述样品制备装置)包括漱口水容器。
样品制备装置
样品制备装置70包括壳体,在壳体内的是若干流体分配器和用于容纳和/或混合流体的容器。所述分配器和/或容器可设置有缸体25、50、46、52、26和活塞29、33、30、35、36。图4示出了位于初始位置的分配器。活塞向下移动以到达最终分配位置。与塞子23连接的活塞29在缸体25中往复运动,以通过端口27分配流体。与塞子24连接的活塞30在缸体26中往复运动,以通过端口28分配流体。
若干组活塞被设置为同时移动,从而分别将流体分配至容器中以混合这些流体。之后,另一组活塞同时移动以将混合流体和另一流体分配至另一个容器中以混合这些流体。可以重复顺次分配与同时分配的这种组合,从而允许在样品制备过程中进行额外的混合步骤。两个或多个分配器和容器之间由微流体通道62连通,所述通道优选地提供曲折路径加强混合。所述通道可遵循迂回轨迹、存在通道限制以及/或具有粗糙表面,从而在流体中产生湍流并且相比于端口之间的距离增加了有效长度。所述通道的横截面可相对较小以增加流体速度和边界效应,从而加强混合。横截面优选小于1mm2,小于500μm2,或小于200μm2
图9和10为示出了其上形成通道62的基体21的底面的可选实施方案。箭头示出了流体流动的方向。所述通道使得流体流出端口51和27,在进入端口55之前流动并混合。类似地,从端口55和53流入端口28。
该装置允许多个初始分离的流体混合并沿着通道62一起流动。各个活塞的冲程和缸体的横截面精确确定分配流体的体积。缸体可具有允许气体或流体经此排出的排出口,排出口优选地位于缸体的端部,在该情况下体积取决于排出口位置之后的活塞的冲程。
可以各种方式进行活塞操作。可采用使用液压、轭、开关、螺线管和/或电动机的自动方式来操作分配器,从而将舒适的用户活动转化为受控且有效的动作。
然而,为了降低成本并避免需要电动仪器,所述装置优选由用户使用简单机械工具(如凸轮-从动件)来操作。
凸轮是具有一定形状或外形的机械装置,其形状或外形与从动件配合以在从动件上提供预定的输出运动。因此,凸轮的恒定运动能够在从动件上产生不同的、几乎随意的、所需的运动。在图7所示的凸轮的一个实施方案中,半圆轨道41(均位于距离旋转中心固定半径的位置)提供凸轮表面,凸轮表面距离表面9的距离限定从动件的位移。如图6所示,从动件45抵靠在凸轮轨道41的表面,并且被限制为沿着垂直于表面9的平面的方向移动。
在一个优选的实施方案中,用户旋转与表面9连接的可旋转的盖10,从而使一组活塞沿着同心圆凸轮轨道41移动。凸轮轨道将盖10的旋转运动转化为活塞的顺次运动和同时运动。与诸如推或拉等线性手动运动相比,手动旋转操作和凸轮提供的传动装置有利地提供了平稳连续的运动速率。
如图7所示,倾斜部分42将旋转运动转化为竖直运动。平坦部分43、44提供休止时间,在休止时间内所述盖的旋转不转化为竖直运动。活塞的运动被设计为不可逆的或是单向的,这意味着用户的反转动作不会导致分配流体回流。凸轮不与从动件实际接合,使得凸轮只能推动而不能拉动从动件。单条凸轮轨道可具有三个连续的部分:(i)活塞移动前的第一休止部43,(ii)活塞移动期间的倾斜部42,以及(iii)活塞锁定在缸体中时的第二休止部44。倾斜部在第一休止部和第二休止部之间过渡。因此,一旦操作,活塞就会保持在分配位置,防止流体由于后续的活塞动作而回流。此外,这防止了装置的重复使用,从健康和检疫角度是非常重要的。
为了防止盖10的反转并向用户提供声音反馈,可在盖10和壳体之间采用棘齿。棘齿可在整个旋转中持续作用,或是在所述过程中的关键步骤提供。可在盖和壳体中的一者的空隙处提供棘齿,与盖和壳体中另一者的突起部配合。所述空隙和突起部表面的几何结构被设置为沿着一个方向可彼此滑过而沿着另一个方向锁定。
如图8所示的第一类分配器可包括第一类缸体50、塞子49、横穿缸体的可穿透密封件以及具有切割器48的活塞33。所述具有密封件的缸体提供了用于流体储存的密封容器。活塞作用于塞子以使流体排出。图8示出了分配器的初始位置,其中塞子位于缸体中,通过密封件与活塞分隔。
为了在运输或储存时保存所含的流体,并且为了防止在操作之前的传送或蒸发损失进而保证合适的混合比,可穿透密封件提供了屏障。
第一类缸体预填充有流体(如裂解缓冲液、用于核酸反应的试剂)。气缸体两端被密封以防止污染、降解和流体泄露。缸体的第一端用膜(如箔)密封,该膜可用位于活塞的与该缸体的第一端配合的端部的切割器48穿透。缸体的第二端连接到具有流体出口的基体21上。该出口最初用覆盖基体底部的膜密封。该膜优选地通过粘合剂附着在基体上。所述膜可以为热封箔,或者可以为衬垫或压敏粘合剂。
在使用时,活塞向缸体的第一端移动,穿透该膜,并排出一定量的流体。流体的压力破坏位于缸体的第二末端的密封件,从而使流体自由移动通过通道。
塞子和活塞起到活塞或柱塞的作用,但是它们的独立分别制造能够提供以下端部:该端部足够软以密封缸体壁,同时又足够硬以被推动并穿透所述膜。所述塞子可具有变形接触缸体壁的密封边47。可通过两步注射工艺形成具有一体塞子的活塞,其中分开地加入两种材料以提供强度和密封两种功能。
在一个实施方案中,样品制备装置的基体21用于限定一组微流体通道、微流体端口和微流体腔。所述通道和腔在注塑过程中限定或在基体中加工从而使通道和腔的一侧敞开。在基体上固定柔性膜以覆盖所述腔和通道的敞开侧,并覆盖端口以将分配器中的试剂与环境隔离。
壁(66、61)作为分配器端口和通道之间的阻挡件作用,并且防止分配器中的试剂(如裂解液或酶)暴露于环境中。在端口处的液压的作用下,所述膜在壁与膜接触的表面上的某一点挠曲,从而允许流体流出端口。
如图9所示,在一个实施方案中,体积/空隙66基本上包围壁67,壁67包围端口53,这样流体将流向通道而不是泄露穿过基体表面来污染其他区域,而与端口附近的挠曲点无关。所述空隙可为通道的一部分。优选地,所述壁和空隙为环形的。一组或多组壁和空隙可以以同心圆的方式包围端口,而至少一个壁接触所述膜。所述壁和空隙被设置为使流体优选地基本上充满一个空隙,然后再流过壁至下一个空隙。优选地,所述壁一体化地形成在基体21内。可供选择的是,所述壁可以是挠性的,在流体的压力下弯曲或破碎分裂。例如,可围绕端口沉积硅壁。
如图10所示,在另一个实施方案中,所述端口仅通过可以位于通道62内的一点处的阻挡件61而与通道62分离。柔性膜在阻挡件上方挠曲,从而允许流体流过所述阻挡件,并沿着通道继续流动。
用户挤压流体的行为可能导致对流体计时的极大的不确定性。例如,凸轮从动件部分、用户的力和膜对基体的粘附力的不同都意味着挠曲点可以不同,反过来改变流体输送位置的点或者与分配的第二流体混合的点。所述膜在低流速下较早移动或是在高流速下较晚移动。此外,高速更容易在流体中携带气泡。
因此,除了壁67和空隙66之外,端口53可通过连接通道63、储液槽64和排出槽65而与通道62分隔。这些微流体组件的作用是消除流体离开端口53的时间和速度的变化,从而使平滑的、精确定时的流体进入通道62。如图9所示,储液槽可为足够大的空隙66或是单独的腔64。选择微流体组件(如储液槽、空隙和通道)的体积,从而对流体的流出定时以在通道62中与另一流体混合。
通过允许迸发流体流入储液槽64(可以较早较慢或者较晚较快地充满),任何完全充满储液槽的方式均保证从储液槽的流出发生在比初始迸发本身更可预测的时间。流体的流动由表面张力确定,而非由重力或位置确定。储液槽和储液槽出口被设置为保证流体完全充满储液槽,并且在流体流出之前空气排出储液槽。出口的尺寸小于储液槽的尺寸。从而流体在流出之前润湿整个储液槽。优选地,所述出口的面积小于储液槽表面积的20%,更优选地小于10%。优选地,所述出口的横截面宽度或直径小于储液槽周长的20%,更优选地小于10%。本领域技术人员将会知道如何基于流体性质来设计相对尺寸。
第二类分配器最初是空的。如图4所示(右侧),该分配器可包括第二类缸体26,第二类缸体的第一端与塞子30接合,而第二端附连至具有流体端口28的基体。在与流体端口连接的第一通道中混合的两种或更多种流体进入第二类缸体并填充该缸体的一部分。过多的流体和空气可通过位于缸体侧壁的排出口32排出。当活塞在缸体中往复运动时,其首先通过排出口排出残留的空气,然后通过位于缸体的第二端的流体端口置换回流体。可选地,所述活塞可在到达缸体的端部之前停下,使得缸体内所含的空气不会被推送至通道。流体沿着不同于将流体带入缸体中的第一通道的微流体通道移动。所述流体不能沿着第一通道回流,这是由于(不可压缩的)流体被前一缸体中的活塞阻碍在端部,而前一缸体本身被凸轮轨道的平坦端口44锁定在适当位置。
在第二通道内的混合流体可进入另一个容器以与其他流体混合或者流至传感器以被检测。
提供第三类分配器以接收来自上述拭子或来自注射器的生物样品,或是使用样品制备装置内置的成形收集瓶接收生物样品。如图4所示,所述分配器可包括第三类缸体25,第三类缸体的第一端具有用于容纳活塞的开口,而固定在基体21上的第二端具有出口27。样品通过重力沿着倾斜通道22流入,经由第一开口或经由在缸体25的壁的端口进入缸体25。第一用户操作将活塞29接合到缸体25中。在预定的起始位置之前,第一缸体的壁的排出孔或缺失部允许流体排放。此外,活塞从起始位置到终止位置的冲程限定了排出缸体的已知体积。
活塞29起初是与缸体25分开的,在操作之后移动并与缸体25接合。缸体25的顶端可以逐渐变窄,使得所述活塞在与缸体接合并相对于缸体的侧面密封之前具有一定的侧向容差。
在一个优选的实施方案中,来自第三类分配器的流体与来自第一类分配器的流体混合并进入第二类分配器。
如图5和图9所示,在一个优选的实施方案中,设置有5个缸体/活塞:第一缸体/活塞用于接收所述样品流体;第二缸体/活塞含有裂解缓冲液;第三缸体/活塞用于接收和混合所述裂解缓冲液和样品;第四缸体/活塞包含用于核酸反应的试剂;以及第五缸体/活塞用于接收和混合裂解缓冲液/样品混合物以及用于核酸反应的试剂。所示的第二和第三缸体是第一类缸体的例子。所示的第三和第五缸体的是第二类缸体的例子。图9示出了对盖10的旋拧作用,其旋转凸轮轨道并使活塞移动。优选地,所述盖具有表面构造特征40(如滚花表面或凹痕)以增强抓握。
在一个实施方案中,成对的活塞被设置为一起移动,以使流体能够同时从缸体中排出因而允许在流动过程中混合。
优选地,所述成对的活塞一起形成,更优选为形成一体注塑模制部件。
传感器盒
一旦流体样品已经制备,将其输送到传感器盒80,所述传感器盒具有位于壳体内的传感器芯片100。最终的混合流体沿着通道流动,并经由管口59进入传感器盒壳体(参见图9)。
盒可以是一次性的,在这种情况下:仅需要一次反应够用的试剂;用户不需要接触或使用内部;并且系统不需要外围设备来清洁或翻新盒。在优选的实施方案中,传感器盒壳体最初至少部分地位于样品制备装置内或邻接样品制备装置。在图13中示出了与传感器盒接合的样品制备装置。在图13中示出了部分移出的传感器盒。
在截面图15中示出了传感器盒,其具有位于壳体内的样品流体端口84、空气端口85、电连接器83、密封块87、微流体容器101、散热器105和密封楔子86。端口84由通过一层或多层的孔限定,这些层提供吸附或密封功能。优选地,为了防止传输过程中的流体泄漏,一层为设置成密封管口59周围的衬垫,而另一层为吸附性材料。
一旦在传感器盒内部,流体流过传感器芯片。提供多个微流体容器101以接收所述流体,微流体容器均暴露于一个或多个传感器。容器的顶部最初是打开的以使流体流入,在通过传感器检测之前变成密封。为了确保流体的均匀和充分分配,在传感器表面上方存在表面以产生使流体流动的空隙。该空隙的高度被设计为沿芯片表面提供毛细作用。该空隙应设计成使得流体毛细作用力大于重力。该空隙可以是基本上恒定的或朝着远离端口的一端减小,从而随着流体进入孔而提供连续的毛细作用。最佳高度取决于多种因素,如所用材料、流体粘度和流体体积。在优选的实施方案中,空隙高度大于100μm、大于300μm、或大于700μm,并且小于3mm、小于2mm、或小于1mm。在优选的实施方案中,表面活性剂(如Triton、硅氧烷、BSA、CHAPS等)涂布所述孔和/或芯片表面,以便改善流动性。
微流体空间或微流体容器是指设计用于接收和保持流体的微米尺寸的结构。例如,微流体体积可以是通道、腔或孔。
在图16-18所示的优选实施方案中,所示的密封块87处于从非密封到密封的各种状态。通过使密封楔子86作用于该密封块以使之接合到微流体空间101的顶部,从而将微流体空间密封以避免流体横向流动和流体泄漏到外部。这种隔离可以防止相邻腔之间腔特定试剂与反应副产物的污染,同时确保腔之间的电绝缘。在封闭时,一些流体会扩散到未填充的腔内,而一些流体会流过芯片进入溢流腔。可选地,可以没有溢出腔,而是过量流体可收集在壳体内。在一些实施方案中,在传感器芯片周围设置边缘以保持流体。边缘可以连接至所述密封块87以及PCB83,从而在非密封位置时使空隙偏置,然后当所述密封块在密封位置时收缩。
密封块87和传感器芯片100的组合提供了用于保持流体的结构、用于移动所述块和传感器芯片以密封和隔离腔室的装置、提供参照电极的电极、可暴露于各腔的试剂、多个传感器以及连接到分析仪的连接器。
在一个实施方案中,使用多个类型的传感器来确定流体的多种性质。例如,可以使用温度、化学发光、荧光、pH值、[Na+]、[K+]以及其它离子浓度传感器。在第二个实施方案中,具有相同传感器类型的一系列传感器通过使样品与各腔中不同试剂或试剂混合物反应来检测流体。因此,尽管流入到各腔中的流体基本上是相同的,可以通过加入多种分析物特异性试剂(ASR)来确定多种性质,从而确定各分析物是否存在。ASR可以是序列特异性或等位基因特异性引物、抗原特异性抗体或选定的与样品中靶标发生化学反应的其它试剂。
通过样品的可能成分的知识,例如核酸碱基、蛋白质类型、或分子以及这些成分与指定试剂的副产物(包括空白副产物的情况),本领域技术人员能够识别其组成。识别的精确度依赖于试剂的特异性和可能组分的范围。例如,多克隆抗体仅表明该样品是否含有蛋白家族中的一员,而单克隆抗体能够识别特定的蛋白质。在前者的情况下,如果样品可能仅包含该蛋白家族中的一员,特定的蛋白质将是已知的。类似地,序列特异性引物将表明样品核酸是否含有与引物互补的序列。目的序列可以为单核苷酸多态性(SNP),在这种情况下,引物可以是等位基因特异的引物,从而识别生物样品核酸的单个碱基。监测检测副产物的传感器的输出可以用于确定两个腔之间的信号变化的差别。信号变化可计算为信号从反应开始到反应结束时的变化、或随着反应进程实时变化。该反应可以是单个反应(核苷酸掺入核酸模板)、持续反应(DNA的等温扩增)、或周期性反应(DNA的聚合酶链反应扩增)。更多细节可参见专利US7686929和US7888015,这里通过引用的方式将其并入本文中。
蛋白激酶反应也可以按照如下方式进行和监测。激酶为磷酸转移酶,其催化ATP的γ磷酸转移到指定氨基酸131的游离羟基基团,所述氨基酸例如为丝氨酸、苏氨酸和酪氨酸;这些氨基酸称为磷酸受体。磷酸转移反应期间ATP的水解导致游离氢离子的释放。
蛋白激酶的底物可以是蛋白质,以及长度为18-20个氨基酸的肽。典型地,肽由蛋白激酶活性位点的能力识别,以容纳同源底物。根据蛋白激酶的家族,一部分特异性可以通过磷酸受体氨基酸周围的氨基酸序列来得到。因此,特定的肽序列可用于监测体外的激酶活性。
肽是小片段的蛋白质,其长度通常含有18-20个氨基酸。肽往往缺乏二级和三级结构(所述二级和三级结构共同构成了相应的蛋白质的理化性质),从而使它们更容易处理。
例如,肽可在各个微流体腔中固定化。每个单独的腔中含有序列特异性的肽,其可以通过特定激酶或激酶家族识别。激酶可被引入到腔中作为:细胞裂解物;可溶性纯化的天然或重组蛋白质;通过结合在微珠上的抗体或亲和标签固定到微珠上。可以通过酶切或其他替代方式释放固定化的蛋白激酶。
为了开始反应,释放所述肽。如果磷酸受体氨基酸周围的序列与相应的激酶序列互补,可以发生磷酸化反应,其中,来自ATP的水解的磷酸根通过激酶转移到肽上。所述生化反应产生氢离子副产物,然后氢离子副产物可以被传感器检测到。该反应在图20中示出(参见参考文献Berg JM,Tymoczko JL,Stryer L,Biochemistry,第5版,2002)。
在加入待检流体之前或之后,可向各腔中加入ASR和其它试剂。例如,芯片表面、腔壁或密封块可沾有微升含量的试剂,然后在使用传感器盒检测前,使所述试剂干燥以便短期或长期储存。该试剂可使用市售的沉积设备来沾染,包括喷墨打印机(压电或热启动)、丝网印刷和微分配移液管。在流体密封在腔中并且所述试剂溶解在流体中之后,如果目标分析物存在,则发生反应,其中目标分析物的副产物由传感器检测。副产物可以是化学、离子、或物理性质(如热)。
在干燥后,试剂可以被实体(例如蜡)覆盖或固定在实体(例如蜡)中,在实体熔化后试剂释放在待检测流体中。因此,可以确保在流体分离进入腔之前或者在所述传感器连接到检测线路之前不会发生反应。在图1示出的优选实施方案中,传感器盒80连接至样品制备装置70以接收流体,然后移除传感器盒80以连接到分析仪110。在用户操作的应用中,用户何时移动盒是不确定的,因此控制反应的时机是非常重要的。
该试剂可先沉积在腔内,然后用所述实体包覆。
可选地,所述试剂可混合到蜡中,并将混合物沉积在腔中。
该实体的熔点优选地低于芯片运行温度且高于环境温度。所述实体优选地相对于腔内反应具有惰性且不溶于样品流体。
蜡是通常不溶于水、在接近室温下可塑并且在相对较低的温度(例如40℃以上)下熔化的化合物。在优选的实施方案中,蜡在初始条件下基本上不溶于提供的一定体积的流体。实际上,这可能意味着在体积被密封且加热器打开之前,小于5%的试剂在流体中溶解。所述蜡可以是石蜡。
优选地,在壳体内具有与控制器连接的加热器和温度传感器。当流体被输送到密封并相互隔离的微流体体积时,控制器可开启加热器以控制蜡中的试剂与流体之间的反应时机。加热器和温度传感器可集成在半导体芯片112、电路板116或密封块87上。
微流体
微流体腔101可通过在半导体芯片的传感器上方的部分被移除的薄膜提供。该膜提供了廉价层,形成穿过该层的孔以提供腔的侧面。腔底部由传感器表面提供。所述膜具有符合传感器表面的表面以便密封。这些孔可以通过激光切割、水射流、打线(routing)、钻孔或者模具切割来产生。存在切割膜的商业方法,以提供微升量级的容积。在一个优选的实施方案中,该容积小于10μL、小于5μl、小于1μl、或小于0.2μl。该膜可以是压敏粘合剂、柔性PCB、刚性PCB、具有粘合剂的密封垫、底部填充的环氧树脂、或BondPly片(一层丙烯酸层,受热时其提供粘合剂层)。该膜可包括PCB,以提供图12所示的层叠结构116。
如图12的优选实施方案所示,传感器芯片100包括半导体芯片112,该半导体芯片集成了一系列传感器、加热器、温度传感器、控制电路和含有微流体腔101的层叠结构116(其覆盖传感器)。在一个优选实施方案中,传感器是离子敏感场效应晶体管(ISFET),其检测水解反应时释放或吸收的质子。优选地以标准CMOS工艺制备半导体芯片,从而降低制造成本并提高可靠性。该层叠结构可包括印刷电路板(PCB),其提供了半导体芯片和分析仪110之间的电连接83。PCB边缘或PCB的连接器插入分析仪110,同时提供机械和电连接。图12显示了产生双面电路板116的层叠结构,其具有:
·芯材料125,其可为由聚亚酰胺制成的柔性结构(100-150μm厚);
·覆层121、123、127,其在相邻层之间提供绝缘(20-50μm厚);
·导电电镀层124、126,其被蚀刻以提供电路轨道(20-50μm厚),半导体芯片112通过对准芯片和电镀层126的焊盘129而与PCB电连接;
·银/氯化银墨水122,其被印刷以提供电极(1-10μm厚);以及
·压敏粘合剂128,其在腔之间提供与半导体芯片的密封机械连接(30-80μm厚)。
·这些层中的部分可选择性地除去,以提供所需的电通路或允许接触前一层。
作为上述膜的第一替代方式,可利用MEMS技术在半导体芯片上直接提供微流体结构。也可以使用Post-CMOS处理步骤,如可使用光刻技术建立聚酰亚胺层、SU-8、和/或SiO2,所述层限定出微流体孔。本领域技术人员已知这样的技术,并且根据应用选择结构、工艺和材料。
作为第二替代方式,微流体结构可以形成为密封块的一部分。可以在块的注塑成型时形成这些孔,或者可以通过热压印或适合于大批量制造的其他技术来形成这些孔。
在任何情况下,微流体结构是由感测表面、块表面和限定各体积的壁的结构的组合来提供的。所述组合被设置为使得流体可以流过表面之间的空隙进入开口孔,所述组合可移动以封闭空隙并隔离单个反应腔。
电极
所述传感器芯片包括暴露于各个腔的电极。在使用时,电极向流体提供参照电压,以使该检测系统能够设定晶体管的阈值电压。电极92、93、122可以例如是银/氯化银、金或铂。
电极122可以是丝网印刷到传感器芯片表面上或与传感器芯片耦合的PCB表面上。该电极可以是购自DuPont公司的银/氯化银组合物5874。可选地,电极由PCB上的电路轨道提供。图11示出了暴露于微流体腔101的边缘的两个电极路径92、93。电极路径接触交替的腔,使得相邻的腔暴露于不同的电极路径。这样,在通过对各个电极路径使用不同的参照电压V1、V2并且使用各腔中的传感器在检验之前检测到泄露,从而确定在特定腔中是否存在相邻腔的电压。例如,一个电极通路电压可设定为0V,而另一个为3V。只有暴露于具有3V电压的电极的传感器能够表明检测;该相邻腔/传感器电压的检测可以指示腔之间的流体泄漏。该错误可以报告给用户、分析仪110或外部计算机。
本文所用的“外部”是指与所讨论或所要求保护的装置或方法相关但非必要的部分的特征。
如图12所示,该电极可以是层叠结构116的一部分。为了保护PCB免受环境的危害,PCB(包括电极)覆盖有覆盖层121。由于某些化学反应(例如PCR)对金属的存在敏感,因而这具有使电极暴露于流体的面积最小的额外优点。切割层叠结构116,以仅暴露电极的横截面,从而以最小表面积提供参照信号。优选地,如上所述,在产生上述微流体体积的过程中暴露所述电极。
从样品制备设备中拔出盒的同时与楔子接合,从而将覆层向下推到芯片上来隔离各个腔。图16至图18示出与具有倾斜面89的楔子86连接的卡扣81,其与块87的倾斜面接触,使得卡扣81的水平运动导致块87的竖直位移,从而使所述流体从一端流过芯片并密封所述腔。
图18示出了接合在样品制备装置中的盒。在样品制备装置上的悬臂71具有灵活接触且拉紧盒的卡扣81的钩子,使得盒的取出会拖动卡扣81和楔子86从而操作块87。随着运动结束,钩子71滑到突起部82上以便释放卡扣从而松开盒。
为了完成测试系统,传感器芯片与运行该电路的电源、监测所述传感器信号并确定所述样品属性的信号处理装置、用于存储处理前和处理后的值的存储器以及使设备与外部处理器(如计算机或仪器)接口连接的输入/输出(I/O)电路连接。
在一个实施方案中,传感器芯片本身还包括信号处理电路、存储器和I/O电路。
在图21所示的另一个实施方案中,盒80插入到分析仪110中,该分析仪包括壳体以及信号处理电路、存储器、传感器接口和I/O电路。
在另一个实施方案中,盒包含自身供电的电池,并且半导体芯片包含信号处理器和控制器。
根据作为来自电路的废物和作为化学环境的一部分(例如,对于PCR而言,在95℃-60℃之间的热循环)产生的热量,该装置的温度可能会过高而不利于操作。如图22中所示,可在分析仪壳体中集成风扇111以冷却该装置和耦合在传感器芯片上的散热器105,从而增强散热。环境空气可被引入分析仪壳体,然后引导通过连接分析仪和盒的端口。
作为一个替代方案,Peltier元件可以集成到传感器芯片上,由分析仪供电以加速热交换。
与以毫升量级操纵和检测流体的现有系统相反,本发明的实施方式可使用更小的体积,从而使所述装置能够更小并且使用更少的试剂体积。然而,由于组分、死体积和组件弯曲的变化意味着混合的变化将超出适合反应的范围,所以已知方法的简单小型化在简化、自动化、大量制造产品方面困难重重。本文所述的设计易于制造,如活塞和缸体可由宏观尺寸制造,从而在精确分配微升流体的同时保证强度和质量。此外,由于仅需要单一动作来使所述装置完成正确比例的混合,因此用户不需要精确操作。类似地,通过提供暴露于各个传感器的微流体孔而有力地处理分配的最终混合流体的体积,从而允许溢流进入盒壳体并且以指定体积密封所述孔。
尽管如上所述已经按照优选的实施方式描述了本发明,但是应当理解的是,这些实施方式仅是示意性的,权利要求并不限于这些实施方式。本领域技术人员能够根据公开内容做出修改和变型,这些修改和变型应考虑为落入随附的权利要求的范围。不论是以单独的形式还是以与本文中公开或示出的任何其他特征的任何适当组合的形式,可以将本说明书中公开或示出的每个特征并入本发明。

Claims (2)

1.一种生物样品制备装置,其包括:
壳体;
多个流体分配器(25,50,46,52,26,29,33,30,35,36),其位于所述壳体内;
用户操作部件(10),其与所述壳体连接并且相对于所述壳体是可移动的;以及
机械构造(41,45),其能够将所述用户操作部件的运动转化为所述流体分配器的顺次运动和同时运动的预定组合,从而混合所述生物样品和试剂。
2.根据权利要求1所述的生物样品制备装置,还包括:
微流体通道(62),其将所述流体分配器连接至接收室,其中,所述流体分配器被设置为分配流体使得流体同时流经所述微流体通道至所述接收室。
CN201380017921.2A 2012-03-28 2013-03-28 生物传感器装置和系统 Active CN104203411B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610862408.9A CN106501327B (zh) 2012-03-28 2013-03-28 生物传感器装置和系统

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1205497.9 2012-03-28
GB1205497.9A GB2500658A (en) 2012-03-28 2012-03-28 Biosensor device and system
PCT/GB2013/050832 WO2013144643A2 (en) 2012-03-28 2013-03-28 Biosensor device and system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201610862408.9A Division CN106501327B (zh) 2012-03-28 2013-03-28 生物传感器装置和系统

Publications (2)

Publication Number Publication Date
CN104203411A CN104203411A (zh) 2014-12-10
CN104203411B true CN104203411B (zh) 2016-11-30

Family

ID=

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5839467A (en) * 1993-10-04 1998-11-24 Research International, Inc. Micromachined fluid handling devices
CN1653338A (zh) * 2002-05-17 2005-08-10 贝克顿·迪金森公司 用于分离、放大和检测目标核酸序列的自动化系统
CN1675468A (zh) * 2002-08-22 2005-09-28 德商弗朗霍夫应用研究促进学会 蠕动微型泵

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5839467A (en) * 1993-10-04 1998-11-24 Research International, Inc. Micromachined fluid handling devices
CN1653338A (zh) * 2002-05-17 2005-08-10 贝克顿·迪金森公司 用于分离、放大和检测目标核酸序列的自动化系统
CN1675468A (zh) * 2002-08-22 2005-09-28 德商弗朗霍夫应用研究促进学会 蠕动微型泵

Similar Documents

Publication Publication Date Title
CN106501327B (zh) 生物传感器装置和系统
US20220379306A1 (en) Automated Point-of-Care Devices for Complex Sample Processing and Methods of Use Thereof
CN105658333B (zh) 用于核酸扩增和检测的射流卡盘
CN110142066B (zh) 微流控芯片及分析系统
CN101500694B (zh) 液滴操纵系统
Khan et al. CMOS enabled microfluidic systems for healthcare based applications
CN104048919B (zh) 用于生物实体的光学检测
CN101039751B (zh) 用于在一次性卡盒中进行集成式自动dna或蛋白质分析的布置、所述卡盒的制备方法和使用所述卡盒进行dna或蛋白质分析的操作方法
EP3144067B1 (en) System and method for processing fluid in a fluidic cartridge
CN101176001A (zh) 用于分析被检体中目标物质的检查芯片和微型综合分析系统
CN101184983A (zh) 用于传输、封闭和分析流体样品的方法和装置
CN107430138A (zh) 用于对流体盒执行诊断测试的仪器
JP6871905B2 (ja) アッセイを実行するための流体システム
CN107209197A (zh) 诊断芯片
CN104203411B (zh) 生物传感器装置和系统
CN107001026A (zh) 微流体感测系统
US11241687B2 (en) Compact glass-based fluid analysis device and method to fabricate
US20230108296A1 (en) Point-of-care microfluidic in vitro diagnostic system

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: London, England

Patentee after: DNAe Group Holdings Limited

Address before: London, England

Patentee before: DNA Electronics L.