CN104201085A - 垃圾填埋排放恶臭有机物的直接质谱分析方法 - Google Patents

垃圾填埋排放恶臭有机物的直接质谱分析方法 Download PDF

Info

Publication number
CN104201085A
CN104201085A CN201410421829.9A CN201410421829A CN104201085A CN 104201085 A CN104201085 A CN 104201085A CN 201410421829 A CN201410421829 A CN 201410421829A CN 104201085 A CN104201085 A CN 104201085A
Authority
CN
China
Prior art keywords
concentration
sample
analysis
pure nitrogen
high pure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410421829.9A
Other languages
English (en)
Other versions
CN104201085B (zh
Inventor
古颖纲
王伯光
李雪
周振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN201410421829.9A priority Critical patent/CN104201085B/zh
Publication of CN104201085A publication Critical patent/CN104201085A/zh
Application granted granted Critical
Publication of CN104201085B publication Critical patent/CN104201085B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开一种垃圾填埋排放恶臭有机物的直接质谱分析方法,属于城市空气人为源VOCs的分析检测领域。该方法的操作步骤是:(1)配制挥发性恶臭物质浓度梯度标样;(2)膜进样单光子飞行时间质谱分析样品;(3)数据定量分析。本发明提供一种以直接分析质谱技术为分析手段的高通量在线分析方法,避免现有分析技术无法表征挥发性恶臭有机物在相对较高时间分辨率下(如数小时、数分钟)随时间变化情况的不足。该方法具有无需样品前处理、直接快速测样、高通量样品分析、获取高时间分辨率恶臭成分浓度的特点,适于挥发性恶臭有机物高时间分辨率检测,对城市生活垃圾填埋好氧降解过程中挥发性恶臭有机物产生机理以及相关控制技术研究意义重大。

Description

垃圾填埋排放恶臭有机物的直接质谱分析方法
技术领域
本发明属于城市空气人为源VOCs的分析检测领域,特别涉及一种垃圾填埋排放挥发性恶臭有机物的直接质谱分析方法。
背景技术
垃圾填埋是城市生活垃圾的主要处理方式,而好氧降解是垃圾填埋的必经阶段。垃圾填埋场生活垃圾好氧降解可产生挥发性恶臭有机物,造成城市空气污染,影响居民健康和日常生活,破坏城市形象,对其产生机理和相关控制技术的研发,意义重大。
挥发性恶臭有机物主要包括含硫类、苯系物类、含氧类(醛、酮、脂肪酸、酉旨)化合物,其分析方法可分为需要前处理的离线方法和无需前处理、直接进样的在线方法两种。前者主要包括气相色谱火焰光度检测器(GC-FPD)(戴秋萍,周志洪,吴清柱.用空气罐采样GC/FPD及GC/MS分析空气中恶臭污染物.广州化工.2007,35(2):39-41,Kim K.H.Consideration on the broad quantificationrange of gaseous reduced sulfur compounds with the combined application of gaschromatography and thermal desorber.Atmospheric Environment.2011,45:3366-3370.)和气相色谱质谱(GC-MS)(唐小东,王伯光,赵德骏,等.城市污水处理厂的挥发性恶臭有机物组成及来源.中国环境科学.2011,31(4):576-583.);在线方法主要为电子鼻(E-nose)(A.C.Romain,J.Delva,J.Nicolas.Complementary approaches to measure environmental odours emitted bylandfill areas.Sensors and Actuators.2008,131:18-23.)。离线方法可以得到挥发性恶臭有机物的物质成分,但方法前处理过程繁琐耗时,分析单个样品约需1小时,不仅不利于检测易发生化学反应的挥发性恶臭有机物,如含硫VOCs(VOSCs)和部分含氧VOCs(OVOCs),也很难得到挥发性恶臭有机物在较高时间分辨率下(如数小时甚至数分钟)的时间变化情况。在线E-nose方法无需样品前处理,分析速度快(2min/样品),但无法得知具体物质而仅能得知物质种类。
受上述在线和离线方法的所限,现有挥发性恶臭有机物研究很难获取挥发性恶臭有机物组成和浓度在相对较高时间分辨率下随时间的排放情况,限制了对其产生机理以及相关控制技术的研究。
发明内容
为了克服现有技术的缺点与不足,本发明的目的在于提供一种垃圾填埋排放恶臭有机物的直接质谱分析方法。该方法避免现有分析技术无法表征挥发性恶臭有机物在相对较高时间分辨率下(如数小时、数分钟)随时间变化情况的不足,以直接分析质谱技术为分析手段的高通量在线分析手段的高通量在线分析方法。本发明的方法可检出挥发性恶臭有机物的组成和浓度,同时能够在无需样品前处理条件下直接快速测样,实现高通量样品分析,进而表征垃圾填埋好氧降解过程中挥发性恶臭有机物组成和浓度在较高时间分辨率下随时间排放情况,对城市生活垃圾填埋好氧降解过程中挥发性恶臭有机物产生机理以及相关控制技术研究意义重大。
本发明的目的通过下述技术方案实现:一种垃圾填埋排放恶臭有机物的直接质谱分析方法,是指采用膜进样单光子飞行时间质谱(Membrane injection singlephoton ionization time of flight mass spectrometry,MI-SPI-ToFMS)在无需样品前处理条件下,进行挥发性恶臭有机物的高通量在线分析,然后表征垃圾填埋好氧降解过程中挥发性恶臭有机物组成和浓度在较高时间分辨率下随时间排放情况。
所述的较高时间分辨率,是指相对于其它研究中多以天为时间分辨率的情况,本发明的方法可以达到小时分辨率的水平。
所述的垃圾填埋排放恶臭有机物的直接质谱分析方法,包括如下步骤:
(1)配制挥发性恶臭有机物浓度梯度标样:
(a)配制VOCs气体混标的浓度梯度标样:将含有丙烯、丙酮、异丙醇、乙酸乙酯、正庚烷浓度各为1ppmv的一级混标充入采气装置中;然后抽取一级混标,加入充有高纯氮气的采气装置中,得到浓度为1~100ppbv的浓度梯度混标;
(b)配制甲硫醚(液态)的浓度梯度混标:取甲硫醚的标液,注入已充有高纯氮气的采气装置中,得到浓度为200ppmv的一级标样;然后抽取一级标样,加入充有高纯氮气的采气装置中,得到浓度为1ppmv的二级标样;再分别抽取二级标样,加入充有高纯氮气的采气装置中,得到浓度分别为1~100ppbv的浓度梯度混标;
(c)配制苯(液态)的浓度梯度混标:取苯的标液,注入已充有高纯氮气的采气装置中,得到浓度为80ppmv的一级标样;然后抽取一级标样,加入充有高纯氮气的采气装置中,得到浓度为0.8ppmv的二级标样;再分别抽取二级标样,加入充有高纯氮气的采气装置中,得到浓度分别为0.8~80ppbv的浓度梯度混标;
气体标样空白为高纯氮气(99.999%);
(2)样品检测:采用特氟龙管连接采气装置的出气口与MI-SPI-ToFMS的进样口,抽气采样;
(3)数据分析:
(a)标准样品定量分析:将采样60s得到的60张质谱图(单张谱图/s)叠加;SPI电离源能够将目标物分子电离生成分子离子[M]+,因此根据标样分子量找到谱图中[M]+的信号峰;以信号峰的峰高为纵坐标,以各标准物质的浓度梯度为横坐标,绘制浓度-响应曲线,通过线性回归得到标准物质的定量曲线;检出限以3倍信噪比计算得到;
(b)未知样品定性定量分析:将采样得到的60张质谱图叠加,根据各信号峰的m/z,得到分子量,确定检测到的物质;根据检出物质的类别,对照其所属类别的标样的定量标准曲线,进行定量分析。
步骤(1)中所述的高纯氮气的纯度为99.999%;
所述的采气装置优选为Tedlar气袋;使用前用高纯氮气反复清洗5~10次;
步骤(2)中所述的特氟龙管的长度优选为20~30cm,外径优选为3mm,内径优选为2mm;
步骤(2)中所述的抽气的流速优选为0.7~1.5L/min,采样的时间优选为1~2min;
步骤(2)中所述的MI-SPI-ToFMS的条件优选为进样膜温度是室温,单光子电离源是单光子能量为10.6eV的真空紫外灯(低压氪灯),质量数扫描范围m/z 40~300,数据采集卡采样频率为1000Hz(1s/单张质谱);
在进样浓度为10ppbv的条件下,各物质检出限如下:丙烯为0.7ppbv,丙酮为1.7ppbv,异丙醇为0.6ppbv,甲硫醚为2.4ppbv,苯为0.89ppbv,乙酸乙酯为0.4ppbv,正庚烷为1.8ppbv;
本发明的机理是:MI-SPI-ToFMS电离源是单光子能量为10.6eV的真空紫外灯,能够将目标物质电离为带一个正电荷的分子离子[M]+,避免碎片离子产生而直观获取物质分子量;恶臭气体样品经由MI-SPI-ToFMS直接检测获取单位时间(最快可为1s)的物质分子质量数以及相应信号峰,信号峰的峰高响应值通过响应值-浓度标准曲线换算为物质浓度,实现恶臭有机物的组成和浓度快速测定。
本发明相对于现有技术,具有如下的优点及效果:
(1)实现了挥发性恶臭有机物的高通量分析,单个样品分析时间约2min,常规离线方法GC-MS或GC-FPD需要约1h,离线电子鼻方法无法得到具体物质仅能检出物质种类(如可检出醇类物质,但是无法得知具体是哪一个醇类化合物);
(2)可以获取小时甚至分钟级时间分辨率下恶臭挥发性有机物组成和浓度变化情况,常规方法多得到以天为时间分辨率的排放情况,如果想要得到数小时分辨率下的数据,会极大地提高方法成本且耗时耗力;
(3)本方法无需样品前处理,减少了易发生还原反应的含硫类物质在前处理所致损失;
(4)可以直接检测醛酮类、脂肪酸类等含氧类恶臭物质(表1),常规离线GC-MS、GC-FPD在分析含氧类恶臭物质时,需要衍生化,增加了分析步骤、提高了分析的成本。
附图说明
图1是本发明MI-SPI-ToFMS在线检测气体样品得到的总离子流色谱图。
图2是实施例1中的丙烯、丙酮、异丙醇、乙酸乙酯和正庚烷混标,苯单标和甲硫醚单标的SPI-MS谱图;其中,图2(a)是丙烯、丙酮、异丙醇、乙酸乙酯和正庚烷混标的SPI-MS谱图,图2(b)是苯单标和甲硫醚单的SPI-MS谱图,图2(c)是甲硫醚单标的SPI-MS谱图;谱图中的[M]+为各标样化合物的分子离子峰,分子离子峰处的荷质比值与该物质分子量相同。
图3是实施例2中MI-SPI-ToFMS实时在线分析模拟垃圾填埋为期26天好氧降解过程气体样品得到的含氧类挥发性恶臭有机物的排放情况的结果图(时间分辨率8小时);其中,图3(a)为乙醛,图3(b)为乙酸乙酯,图3(c)为戊酸。
图4是实施例2中MI-SPI-ToFMS实时在线分析模拟垃圾填埋为期26天好氧降解过程气体样品得到的苯系物类挥发性恶臭有机物的排放情况的结果图(时间分辨率8小时);其中,图4(a)为甲苯,图4(b)为苯乙烯。
图5是实施例2中MI-SPI-ToFMS实时在线分析模拟垃圾填埋为期26天好氧降解过程气体样品得到的含硫类物类挥发性恶臭有机物的排放情况的结果图(时间分辨率8小时);其中,图5(a)为甲硫醚,图5(b)为乙硫醚。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
(1)配制挥发性恶臭有机物浓度梯度标样:
(a)配制VOCs气体混标的浓度梯度标样:将3L含有丙烯、丙酮、异丙醇、乙酸乙酯、正庚烷浓度各为1ppmv的一级混标充入Tedlar气袋中;然后用10、50、100mL的玻璃注射器抽取3、15、30、150、300mL一级混标,加入充有3L高纯氮气(99.999%)的Tedlar气袋中,得到5个浓度为1、5、10、50、100ppbv的浓度梯度混标。
(b)配制甲硫醚(液态)的浓度梯度混标。使用10L的微量进样针取2L甲硫醚的标液,注入已充有3L高纯氮气的Tedlar气袋中,得到浓度为200ppmv的一级标样;然后用10、50、100mL的玻璃注射器抽取15mL一级标样,加入充有3L高纯氮气的Tedlar气袋中,得到浓度为1ppmv的二级标样;再分别抽取3、30、90、150、210和300mL的二级标样,加入充有3L高纯氮气的Tedlar气袋中,得到浓度分别为1、10、30、50、70、100ppbv的浓度梯度混标。
(c)配制苯(液态)的浓度梯度混标。使用5L的微量进样针取1L苯的标液,注入已充有3L高纯氮气的Tedlar气袋中,得到浓度为80ppmv的一级标样;然后用10、50、100mL的玻璃注射器抽取30mL一级标样,加入充有3L高纯氮气的Tedlar气袋中,得到浓度为0.8ppmv的二级标样;再分别抽取3、15、30、60、120和300mL的二级标样,加入充有3L高纯氮气的Tedlar气袋中,得到浓度分别为0.8、4、8、16、32、80ppbv的浓度梯度混标。
步骤(1)中(a)(b)和(c)中的气袋,使用高纯氮气反复清洗5~10次;玻璃注射器使用重蒸水超声20~30min,重复5次;微量注射器正己烷清洗5~10次,标样润洗5~10次。气体标样空白取自高纯氮气(99.999%)。
(2)样品检测:采用20~30cm特氟龙管(外径3mm,内径2mm)连接Tedlar气袋出气口与MI-SPI-ToFMS进样口,真空泵抽气采样,抽气流速0.7~1.5L/min,每次样品采集时间2min。进样膜温度为室温,单光子电离源为单光子能量为10.6eV的真空紫外灯(低压氪灯),质量数扫描范围m/z 40~300,数据采集卡采样频率为1000Hz(1s/单张质谱)。
(3)数据分析:
标准样品定量分析:将采样60s得到的60张质谱图(单张谱图/s)叠加(图1和图2)。SPI电离源能够将目标物分子电离生成分子离子[M]+,因此可以根据标样分子量找到谱图中[M]+的信号峰,如甲硫醚电离得到的分子离子的m/z为62,其分子量也是62。以信号峰的峰高为纵坐标,以各标准物质的浓度梯度为横坐标,绘制浓度-响应曲线,通过线性回归得到标准物质的定量曲线;检出限以3倍信噪比计算得到(表1)。
表1七类恶臭物质标样的分子结构信息以及叠加时间为60s时MI-SPI-ToFMS在线分析标样得到的检测限(LOD)、线性方程、决定系数(R2)和线性范围
a X为标样浓度(ppbv),Y为MI-SPI-ToFMS检测得到的分子离子峰的峰高。
LOD(ppbv)是在进样浓度为10ppbv时,各物质的检出限。
实施例2
(1)样品检测:在新鲜香蕉果皮垃圾为期26天好氧降解过程中在线采集并直接分析气体样品,采样时间分辨率为8小时(即每天采样时间为8:00,16:00和24:00)。采用20~30cm特氟龙管(外径3mm,内径2mm)连接垃圾填埋好氧降解模拟装置(X.M.Wang,T.Wu.Release of isoprene and monoterpenesduring the aerobic decomposition of orange wastes from Laboratory IncubationExperiments.Environmental Science&Technology.2008,42:3265-3270)出气口与MI-SPI-ToFMS(广州禾信分析仪器有限公司,SPIMS-1000)进样口,真空泵抽气采样,抽气流速0.7~1.5L/min,每次样品采集时间2min。进样膜温度为室温,单光子电离源为单光子能量为10.6eV的真空紫外灯(低压氪灯),质量数扫描范围m/z 40~300,数据采集卡采样频率为1000Hz(1s/单张质谱)。装置空白使用干燥空气(21%O2,79%N2)。
(2)数据分析:
样品定性定量分析:将采样60s得到的60张质谱图叠加,根据谱图中信号峰的m/z 44,62,88,90,92,102和104,确定气体中检测出的恶臭物质分别为乙醛(分子量44),甲硫醚(分子量62),乙酸乙酯(分子量88),乙硫醚(分子量90),甲苯(分子量92),戊酸(分子量102),苯乙烯(分子量104)。根据检出物质的类别,对照其所属类别的标样的定量标准曲线(见表1),进行定量分析,得到上述恶臭物质在8小时时间分辨率下的排放特征(分别见图3、4和5)。这一结果能够为恶臭物质排放机理和控制技术研究提供必要的依据与参考。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种垃圾填埋排放恶臭有机物的直接质谱分析方法,其特征在于:采用MI-SPI-ToFMS在无需样品前处理条件下,进行挥发性恶臭有机物的高通量在线分析,然后表征垃圾填埋好氧降解过程中挥发性恶臭有机物组成和浓度在较高时间分辨率下随时间排放情况。
2.根据权利要求1所述的方法,其特征在于包括如下步骤:
(1)配制挥发性恶臭有机物浓度梯度标样:
(a)配制VOCs气体混标的浓度梯度标样:将含有丙烯、丙酮、异丙醇、乙酸乙酯、正庚烷浓度各为1ppmv的一级混标充入采气装置中;然后抽取一级混标,加入充有高纯氮气的采气装置中,得到浓度为1~100ppbv的浓度梯度混标;
(b)配制液态甲硫醚的浓度梯度混标:取甲硫醚的标液,注入已充有高纯氮气的采气装置中,得到浓度为200ppmv的一级标样;然后抽取一级标样,加入充有高纯氮气的采气装置中,得到浓度为1ppmv的二级标样;再分别抽取二级标样,加入充有高纯氮气的采气装置中,得到浓度分别为1~100ppbv的浓度梯度混标;
(c)配制液态苯的浓度梯度混标:取苯的标液,注入已充有高纯氮气的采气装置中,得到浓度为80ppmv的一级标样;然后抽取一级标样,加入充有高纯氮气的采气装置中,得到浓度为0.8ppmv的二级标样;再分别抽取二级标样,加入充有高纯氮气的采气装置中,得到浓度分别为0.8~80ppbv的浓度梯度混标;
并设气体标样空白;
(2)样品检测:采用特氟龙管连接采气装置的出气口与MI-SPI-ToFMS的进样口,抽气采样;
(3)数据分析:
(a)标准样品定量分析:将采样60s得到的60张质谱图叠加;SPI电离源能够将目标物分子电离生成分子离子[M]+,因此根据标样分子量找到谱图中[M]+的信号峰;以信号峰的峰高为纵坐标,以各标准物质的浓度梯度为横坐标,绘制浓度-响应曲线,通过线性回归得到标准物质的定量曲线;检出限以3倍信噪比计算得到;
(b)未知样品定性定量分析:将采样得到的60张质谱图叠加,根据各信号峰的m/z,得到分子量,确定检测到的物质;根据检出物质的类别,对照其所属类别的标样的定量标准曲线,进行定量分析。
3.根据权利要求2所述的方法,其特征在于:所述的气体标样空白为高纯氮气。
4.根据权利要求2或3所述的方法,其特征在于:所述的高纯氮气的纯度为99.999%。
5.根据权利要求2所述的方法,其特征在于:所述的采气装置为Tedlar气袋,使用前用高纯氮气反复清洗5~10次。
6.根据权利要求2所述的方法,其特征在于:步骤(2)中所述的特氟龙管的长度为20~30cm,外径为3mm,内径为2mm。
7.根据权利要求2所述的方法,其特征在于:步骤(2)中所述的抽气的流速为0.7~1.5L/min,采样的时间为1~2min。
8.根据权利要求2所述的方法,其特征在于:步骤(2)中所述的MI-SPI-ToFMS的条件为进样膜温度是室温,单光子电离源是单光子能量为10.6eV的真空紫外灯,质量数扫描范围m/z 40~300,数据采集卡采样频率为1000Hz。
9.根据权利要求2所述的方法,其特征在于:当进样浓度为10ppbv时,各物质检出限如下:丙烯为0.7ppbv,丙酮为1.7ppbv,异丙醇为0.6ppbv,甲硫醚为2.4ppbv,苯为0.89ppbv,乙酸乙酯为0.4ppbv,正庚烷为1.8ppbv。
CN201410421829.9A 2014-08-25 2014-08-25 垃圾填埋排放恶臭有机物的直接质谱分析方法 Active CN104201085B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410421829.9A CN104201085B (zh) 2014-08-25 2014-08-25 垃圾填埋排放恶臭有机物的直接质谱分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410421829.9A CN104201085B (zh) 2014-08-25 2014-08-25 垃圾填埋排放恶臭有机物的直接质谱分析方法

Publications (2)

Publication Number Publication Date
CN104201085A true CN104201085A (zh) 2014-12-10
CN104201085B CN104201085B (zh) 2017-02-22

Family

ID=52086358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410421829.9A Active CN104201085B (zh) 2014-08-25 2014-08-25 垃圾填埋排放恶臭有机物的直接质谱分析方法

Country Status (1)

Country Link
CN (1) CN104201085B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833719A (zh) * 2015-04-28 2015-08-12 国家烟草质量监督检验中心 单光子飞行时间质谱在线逐口分析细支烟主流烟气中7种挥发性有机化合物
CN108709945A (zh) * 2018-05-25 2018-10-26 浙江省环境监测中心 一种VOCs固定源在线监测监控方法
CN111999375A (zh) * 2020-09-30 2020-11-27 暨南大学 一种基于实时在线质谱的呼气挥发性有机化合物定量方法
CN113092613A (zh) * 2021-03-31 2021-07-09 中国科学院生态环境研究中心 双路无盲区大气中醛酮化合物在线分析的方法
CN114778717A (zh) * 2022-03-28 2022-07-22 暨南大学 一种生物源挥发性有机物的在线测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103124A (zh) * 2009-12-18 2011-06-22 中国科学院大连化学物理研究所 一种微型质谱在线快速分析液体中有机污染物的方法
CN102478558A (zh) * 2010-11-25 2012-05-30 中国检验检疫科学研究院 涂料中5种挥发性有机物的测定方法
CN103196830A (zh) * 2013-03-26 2013-07-10 北京拓扑智鑫科技有限公司 环境恶臭污染定量监测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103124A (zh) * 2009-12-18 2011-06-22 中国科学院大连化学物理研究所 一种微型质谱在线快速分析液体中有机污染物的方法
CN102478558A (zh) * 2010-11-25 2012-05-30 中国检验检疫科学研究院 涂料中5种挥发性有机物的测定方法
CN103196830A (zh) * 2013-03-26 2013-07-10 北京拓扑智鑫科技有限公司 环境恶臭污染定量监测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WEI GAO: ""Development of portable single photon ionization time-of-flight mass spectrometer combined with membrane inlet"", 《INTERNATIONAL JOURNAL OF MASS SPECTROMETRY》 *
崔华鹏等: ""连续测量水中挥发性有机物的膜进样-单光子电离-质谱仪的研制及其应用"", 《分析化学》 *
谭国斌等: ""真空紫外灯单光子电离源飞行时间质谱仪的研制"", 《分析化学》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833719A (zh) * 2015-04-28 2015-08-12 国家烟草质量监督检验中心 单光子飞行时间质谱在线逐口分析细支烟主流烟气中7种挥发性有机化合物
CN104833719B (zh) * 2015-04-28 2018-07-20 国家烟草质量监督检验中心 单光子飞行时间质谱在线逐口分析细支烟主流烟气中7种挥发性有机化合物
CN108709945A (zh) * 2018-05-25 2018-10-26 浙江省环境监测中心 一种VOCs固定源在线监测监控方法
CN108709945B (zh) * 2018-05-25 2021-04-13 浙江省环境监测中心 一种VOCs固定源在线监测监控方法
CN111999375A (zh) * 2020-09-30 2020-11-27 暨南大学 一种基于实时在线质谱的呼气挥发性有机化合物定量方法
CN113092613A (zh) * 2021-03-31 2021-07-09 中国科学院生态环境研究中心 双路无盲区大气中醛酮化合物在线分析的方法
CN113092613B (zh) * 2021-03-31 2022-07-12 中国科学院生态环境研究中心 双路无盲区大气中醛酮化合物在线分析的方法
CN114778717A (zh) * 2022-03-28 2022-07-22 暨南大学 一种生物源挥发性有机物的在线测量方法

Also Published As

Publication number Publication date
CN104201085B (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
Warneke et al. Validation of atmospheric VOC measurements by proton-transfer-reaction mass spectrometry using a gas-chromatographic preseparation method
CN104201085B (zh) 垃圾填埋排放恶臭有机物的直接质谱分析方法
Pieber et al. Inorganic salt interference on CO2+ in aerodyne AMS and ACSM organic aerosol composition studies
Pierucci et al. Volatile organic compounds produced during the aerobic biological processing of municipal solid waste in a pilot plant
Staudt et al. Aromatic organosulfates in atmospheric aerosols: Synthesis, characterization, and abundance
Dunne et al. Comparison of VOC measurements made by PTR-MS, adsorbent tubes–GC-FID-MS and DNPH derivatization–HPLC during the Sydney Particle Study, 2012: a contribution to the assessment of uncertainty in routine atmospheric VOC measurements
CN102297878B (zh) 一种快速检测挥发性氯代烃污染的电子鼻系统
Papurello Direct injection mass spectrometry technique for the odorant losses at ppb (v) level from nalophan™ sampling bags
CN102103124A (zh) 一种微型质谱在线快速分析液体中有机污染物的方法
CN110161165B (zh) 一种同时检测头发中多环芳烃及其羟基代谢物水平的分析方法
CN102393401A (zh) 一种空气污染颗粒物中重金属元素含量的检测方法
CN111983053B (zh) 一种在线测定尿液中羟基多环芳烃的固相萃取-液相色谱三重四级杆质谱同位素稀释法
Gkatzelis et al. Comparison of three aerosol chemical characterization techniques utilizing PTR-ToF-MS: a study on freshly formed and aged biogenic SOA
CN106373855A (zh) 一种快速分析气体或液体中有机污染物的质谱装置
CN108593756B (zh) 一种水体中痕量类固醇的快速检测装置
CN110824049A (zh) 航天器真空热试验污染监测系统及方法
Hellén et al. Using proton transfer reaction mass spectrometry for online analysis of secondary organic aerosols
CN102478541A (zh) 一种在线监测二噁英及其浓度的方法
Kudryavtsev et al. The method for on-site determination of trace concentrations of methyl mercaptan and dimethyl sulfide in air using a mobile mass spectrometer with atmospheric pressure chemical ionization, combined with a fast enrichment/separation system
CN106596703A (zh) 内部萃取电喷雾电离质谱快速检测大米中脂肪酸的方法
Peng et al. Realtime measurement of phase partitioning of organic compounds using a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer coupled to a CHARON inlet
CN112098501B (zh) 一种面向高毒性VOCs混合物现场检测的nafion-FAIMS检测装置及方法
CN111983115B (zh) 一种空气中VOCs检测方法
CN103901140A (zh) 一种用于生物染毒后粪便中四溴双酚a分析的前处理方法
Wojnarowska et al. The assessment of the Voice 200Ultra apparatus applicability to field investigations of air quality and odours

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant