CN104198586B - 轴应力下基于波速的岩石损伤变量的确定方法 - Google Patents

轴应力下基于波速的岩石损伤变量的确定方法 Download PDF

Info

Publication number
CN104198586B
CN104198586B CN201410388480.3A CN201410388480A CN104198586B CN 104198586 B CN104198586 B CN 104198586B CN 201410388480 A CN201410388480 A CN 201410388480A CN 104198586 B CN104198586 B CN 104198586B
Authority
CN
China
Prior art keywords
sample
damage
rock
incident bar
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410388480.3A
Other languages
English (en)
Other versions
CN104198586A (zh
Inventor
陈小平
刘涛
刘武团
张晨洁
雷明礼
焦满岱
何良军
孙嘉
孟慧媚
刘财林
王成财
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Research Institute of Mining and Metallurgy
Original Assignee
Northwest Research Institute of Mining and Metallurgy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Research Institute of Mining and Metallurgy filed Critical Northwest Research Institute of Mining and Metallurgy
Priority to CN201410388480.3A priority Critical patent/CN104198586B/zh
Publication of CN104198586A publication Critical patent/CN104198586A/zh
Application granted granted Critical
Publication of CN104198586B publication Critical patent/CN104198586B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明公开了一种轴应力下基于波速的岩石损伤变量的确定方法,将声发射检测仪的两个探头对称地粘接在岩石动静组合加载实验系统的入射杆和透射杆上,在加载条件下直接测量试样无损伤状态下的超声波波速和试样损伤状态下的超声波波速,再计算得到岩石损伤变量。本发明的测量更加符合实际的结果。

Description

轴应力下基于波速的岩石损伤变量的确定方法
技术领域
本发明涉及一种岩石损伤变量的确定方法,尤其涉及轴应力下基于波速的岩石损伤变量的确定方法。
背景技术
岩石在循环冲击作用下的损伤特性是岩石动力学和爆破工程中重要的研究课题,只有选取合理的损伤变量,才能得出合理的结论,而利用岩石超声波波速定义损伤变量是通用的方法。通过超声波波速定义的损伤变量的表达式为:
式中:D:损伤变量;:岩石损伤状态下的超声波波速;:岩石无损伤状态下的超声波波速。
目前,通常采用岩石动静组合加载实验系统对岩石试样实施冲击。事先用声波仪测定试样的超声波波速,即初始波速,用于代替岩石在无损伤状态下的超声波波速。每进行完一次冲击后,先卸除载荷,取出试样,然后用声波仪测定试样在损伤状态下的超声波波速,最后代入上述损伤变量的表达式,确定损伤变量。对试样的冲击是在存在轴应力的条件下实施的,因此用卸载后测出的试样损伤状态下的超声波波速去计算损伤变量是有偏差的,应该在加载条件下直接测量试样无损伤状态下的超声波波速和试样损伤状态下的超声波波速,才能获得更加符合实际的结果。
发明内容
针对背景技术中所述技术问题,本发明旨在设计一种保持轴应力的条件下直接测得试样无损伤状态下的超声波波速和试样损伤状态下的超声波波速,从而确定出更符合实际情况的基于波速的岩石损伤变量的方法。
本发明技术方案具体如下:轴应力下基于波速的岩石损伤变量的确定方法:将声发射监测仪的两个探头对称地粘接(可用胶带粘贴)在岩石动静组合加载实验系统的入射杆和透射杆上。试样长度为,左探头至入射杆右端面的距离和右探头至透射杆左端面的距离均为L,声波在入射杆和透射杆内部的传播速度均为V。当入射杆左端受到敲击后,产生的声波会依次被声发射监测仪的左探头和右探头接收,两次接收到声波信号的时间间隔就会在声发射监测仪上显示出来。
测定声波在单个接触面的传播时间:首先,启动轴压系统,按实验要求施加一定的轴向载荷,使入射杆的右端与透射杆的左端紧密贴合,然后,用小锤在入射杆左端轻轻敲击一次,记录声发射监测仪显示的时间间隔,根据公式计算声波在单个接触面的传播时间
测定试样在无损伤状态下的超声波波速:将试样装夹在入射杆和透射杆之间,施加上述轴向载荷,然后,用小锤在入射杆左端轻轻敲击一次,记录声发射监测仪显示的时间间隔,根据公式:即可计算出试样在无损伤状态下的超声波波速。
测定试样在损伤状态下的超声波波速:保持上述轴向载荷不变,启动汽炮,则纺锤形冲头对入射杆左端实施一次冲击,试样发生一次损伤,然后,用小锤在入射杆左端轻轻敲击一次,记录声发射监测仪显示的时间间隔,根据公式:即可计算出试样在损伤状态下的超声波波速
确定基于波速的岩石损伤变量D:将上述试样在无损伤状态下的超声波波速和试样在损伤状态下的超声波波速代入公式:,即可确定出损伤变量D。
本发明的有益效果:本发明在加载条件下直接测量试样无损伤状态下的超声波波速和试样损伤状态下的超声波波速,所获结果更加符合实际的;所需材料均容易获得,安装方便,易操作。
附图说明
图1为现有的岩石动静组合加载实验系统示意图;
图2为改进后的岩石动静组合加载实验系统示意图;
图3为测定声波在单个接触面的传播时间的原理图;
图4为测定试样在无损伤状态下的超声波波速的原理图;
图5为测定试样在损伤状态下的超声波波速的原理图;
图中:1.汽炮 2.纺锤形冲头 3.入射杆 4.试样 5.透射杆 6.轴压系统 7.声发射监测仪 8.左探头 9.右探头 10.小锤 11.声波仪。
具体实施方式
下面,结合附图对本发明作进一步说明:
如图1所示,现有的岩石动静组合加载实验系统主要包括汽炮1、纺锤形冲头2、轴压系统6、入射杆3和透射杆5。传统的基于波速的岩石损伤变量确定方法为:由于无法在施加轴压的情况下测得试样无损伤状态下的超声波波速,故用敲击的方法,借助声发射监测仪测定试样的初始超声波波速,并用该初始超声波波速代替试样无损伤状态下的超声波波速。然后将试样夹持在入射杆和透射杆之间,启动轴压系统6,按实验要求施加一定的轴向载荷,启动汽炮1,则纺锤形冲头2对岩石试样4实施一次冲击损伤。冲击损伤结束后,先卸载,然后取出试样,用敲击的方法,借助声波仪11测定试样在损伤状态下的超声波波速。将上述测得的试样无损伤状态下的超声波波速和试样损伤状态下的超声波波速带入公式,确定损伤变量D。
从上述传统的基于波速的岩石损伤变量确定方法看出,对试样的冲击是在存在轴应力的条件下实施的,因此用解除轴应力后测出的波速去计算损伤变量是有偏差的,应该在保持轴应力条件下直接测量试样无损伤状态下的超声波波速和试样损伤状态下的超声波波速,再带入上述公式计算损伤变量,才能获得更加符合实际的结果。
如图2所示,轴应力下基于波速的岩石损伤变量的确定方法:将声发射监测仪的两个探头对称地粘接在岩石动静组合加载实验系统的入射杆和透射杆上。试样长度为,左探头至试样左端面的距离和右探头至试样右端面的距离均为L,声波在入射杆和透射杆内部的传播速度均为V。当入射杆左端受到敲击后,产生的声波会依次被声发射监测仪的左探头和右探头接收,两次接收到声波信号的时间间隔就会在声发射监测仪上显示出来。
如图3所示,测定声波在单个接触面的传播时间:首先,启动轴压系统,按试验需求施加一定的轴向载荷,使入射杆的右端与透射杆的左端紧密贴合,左探头至入射杆右端面的距离和右探头至透射杆左端面的距离也均是L,然后,用小锤(或其它工具)在入射杆左端轻轻敲击一次(敲击力度在声发射监测仪检测范围内即可),记录声发射监测仪显示的时间间隔。根据公式计算声波在单个接触面的传播时间
如图4所示,测定试样在无损伤状态下的超声波波速:将试样装夹在入射杆和透射杆之间,施加上述轴向载荷,然后,用小锤在入射杆左端轻轻敲击一次,记录声发射监测仪显示的时间间隔。根据公式:即可计算出试样在无损伤状态下的超声波波速
如图5所示,测定试样在损伤状态下的超声波波速:保持上述轴向载荷不变,启动汽炮,则纺锤形冲头对入射杆左端实施一次冲击,试样发生一次损伤,然后,用小锤在入射杆左端轻轻敲击一次,记录声发射监测仪显示的时间间隔。根据公式:即可计算出试样在损伤状态下的超声波波速
确定基于波速的岩石损伤变量D:将上述试样在无损伤状态下的超声波波速和试样在损伤状态下的超声波波速代入公式:,即可确定出损伤变量D。
以下是本发明方法测量损伤变量的实验,岩石式样长度为均为L’,
表1 实验加载方案
表2 实验结果表
由上表得出:损伤变量与循环冲击次数是正相关的,循环冲击次数越多,损伤量越大,岩石由于产生了损伤,导致波速降低,本方法测得数据是符合岩石受敲击后损伤变量的变化规律。

Claims (1)

1.轴应力下基于波速的岩石损伤变量的确定方法,将声发射监测仪(7)的两个探头对称地粘接在岩石动静组合加载实验系统的入射杆 (3)和透射杆(5)上,试样(4)长度为L’,左探头至入射杆右端面的距离和右探头至透射杆左端面的距离均为L,声波在入射杆和透射杆内部的传播速度均为
测定声波在单个接触面的传播时间:首先,启动轴压系统(6),按实验要求施加一定的轴向载荷,使入射杆(3)的右端与透射杆(5)的左端紧密贴合,然后,在入射杆(3)左端敲击一次,记录声发射监测仪(7)显示的时间间隔,根据公式计算声波在单个接触面的传播时间
测定试样在无损伤状态下的超声波波速:将试样(4)装夹在入射杆(3)和透射杆(5)之间,施加与测定时等量的轴向载荷,然后,在入射杆(3)左端敲击一次,记录声发射监测仪(7)显示的时间间隔,根据公式:即可计算出试样在无损伤状态下的超声波波速
测定试样在损伤状态下的超声波波速:保持上述轴向载荷不变,启动汽炮(1),则纺锤形冲头(2)对入射杆(3)左端实施一次冲击,试样发生一次损伤,然后,在入射杆(3)左端敲击一次,记录声发射监测仪(7)显示的时间间隔,根据公式:即可计算出试样在损伤状态下的超声波波速
确定基于波速的岩石损伤变量:将上述试样在无损伤状态下的超声波波速和试样在损伤状态下的超声波波速代入公式:,即可确定出损伤变量
CN201410388480.3A 2014-08-08 2014-08-08 轴应力下基于波速的岩石损伤变量的确定方法 Active CN104198586B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410388480.3A CN104198586B (zh) 2014-08-08 2014-08-08 轴应力下基于波速的岩石损伤变量的确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410388480.3A CN104198586B (zh) 2014-08-08 2014-08-08 轴应力下基于波速的岩石损伤变量的确定方法

Publications (2)

Publication Number Publication Date
CN104198586A CN104198586A (zh) 2014-12-10
CN104198586B true CN104198586B (zh) 2016-08-24

Family

ID=52083910

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410388480.3A Active CN104198586B (zh) 2014-08-08 2014-08-08 轴应力下基于波速的岩石损伤变量的确定方法

Country Status (1)

Country Link
CN (1) CN104198586B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106323208B (zh) * 2016-08-05 2018-12-04 湖南科技大学 一种层状岩石冲击压杆试验中应变片粘贴位置确定的方法
CN106769561B (zh) * 2017-01-09 2019-05-03 温州大学 一种温度载荷作用下空心传动轴力学参数无损检测方法
CN107101887B (zh) * 2017-05-09 2019-06-07 东北大学 一种声发射与数值计算相结合的岩石破裂过程分析方法
CN109061099B (zh) * 2018-06-11 2021-01-05 西南石油大学 一种非均质致密岩石损伤程度的非破坏性实验评价方法
CN109238846A (zh) * 2018-08-30 2019-01-18 西北矿冶研究院 一种测定岩石岩爆弹性变形能指标的方法
CN110068610A (zh) * 2019-05-06 2019-07-30 中冶北方(大连)工程技术有限公司 一种基于超声波波速的充填体损伤检测方法
CN111562312B (zh) * 2020-05-18 2021-06-15 中国矿业大学 评价岩石及胶凝类材料损伤情况的检测系统和方法
CN112986020B (zh) * 2021-02-03 2023-09-22 长安大学 一种基于应力与声波变化联合表征岩石渐进破坏的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6510389B1 (en) * 2000-02-25 2003-01-21 Schlumberger Technology Corporation Acoustic detection of stress-induced mechanical damage in a borehole wall
CN2638064Y (zh) * 2003-07-09 2004-09-01 石油大学(华东) 岩屑声波波速测量装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6510389B1 (en) * 2000-02-25 2003-01-21 Schlumberger Technology Corporation Acoustic detection of stress-induced mechanical damage in a borehole wall
CN2638064Y (zh) * 2003-07-09 2004-09-01 石油大学(华东) 岩屑声波波速测量装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Innovative testing technique of rock subjected to coupled static and dynamic loads;Xibing Li et. al.;《Rock Material and Mining Sciences》;20081231;第45卷;739-748 *
Material behaviour characterisation using SHPB techniques, tests and simulations;Han Zhao;《Computers & Structures》;20031231;第81卷;1301-1310 *
Quantitative Assessment of Extrinsic Damage in Rock Materials;D.S.Kim;《Rock Mechanics and Rock Engineering》;19981231;第31卷;43-62 *
岩块波速–应力关系及其卸荷效应;陈祥;《岩土工程学报》;20100531;第32卷(第5期);757-761 *
岩石损伤特性与强度的超声波速研究;赵明阶;《岩石工程学报》;20001130;第22卷(第6期);720-722 *
岩石材料损伤与应力波参数关系研究;李祥龙;《爆破》;20090930;第26卷(第3期);6-9,13 *

Also Published As

Publication number Publication date
CN104198586A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
CN104198586B (zh) 轴应力下基于波速的岩石损伤变量的确定方法
CN108286952B (zh) 一种涂覆层厚度、密度与纵波声速同时超声反演方法
JP5024901B2 (ja) チューブ状システムの非破壊検査方法
CN106949861B (zh) 一种非线性超声在线监测金属材料应变变化的方法
CN104764803A (zh) 基于超声波波长变化的材料应力检测技术
EP1517138B1 (en) Method and apparatus for acoustic thermography inspection
CN110501225A (zh) 一种利用超声波反映不同含水率受载岩石损伤规律的方法
US10458958B1 (en) Ultrasonic through-thickness modulus evaluation of materials
CN106908177A (zh) 一种测量各向异性材料平面应力的装置
CN107490446A (zh) 高铁轮对踏面应力超声无损检测方法
Yuan et al. Quantitative assessment of corrosion-induced wall thinning in L-shaped bends using ultrasonic feature guided waves
KR101027069B1 (ko) 숏크리트 접착상태 평가 방법
WO2019015396A1 (zh) 介质粘弹性的测量方法和装置
CN103308602B (zh) 一种基于无损探伤探测机器零件或材料寿命的方法
US20180164255A1 (en) Adjustable wide bandwidth guidewave (gw) probe for tube and pipe inspection systems
Bhuiyan et al. Experimental and computational analysis of acoustic emission waveforms for SHM applications
Xu et al. Study on single mode Lamb wave interaction with defect of plate by finite element model
CN103529127B (zh) 锅炉水冷壁管氢损伤的评估方法
Eaton Acoustic emission (AE) monitoring of buckling and failure in carbon fibre composite structures
JP2023043422A (ja) 検査システム及び検査方法
Teles et al. Closed disbond detection in marine glass-epoxy/balsa composites
Malinowski et al. Laser vibrometry for guided wave propagation phenomena visualisation and damage detection
US20170010179A1 (en) Adjustable wide bandwidth guidedwave (gw) probe for tube and pipe inspection system
CN108318344A (zh) 声发射与水压试验相结合的复合材料气瓶检验装置及方法
Loveday et al. Measurement of ultrasonic guided waves in plates using low-cost equipment

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant