New! Search for patents from more than 100 countries including Australia, Brazil, Sweden and more

CN104178807A - Method for obtaining self-supporting gallium nitride substrates by using thermal decomposition characteristics - Google Patents

Method for obtaining self-supporting gallium nitride substrates by using thermal decomposition characteristics Download PDF

Info

Publication number
CN104178807A
CN104178807A CN 201410382392 CN201410382392A CN104178807A CN 104178807 A CN104178807 A CN 104178807A CN 201410382392 CN201410382392 CN 201410382392 CN 201410382392 A CN201410382392 A CN 201410382392A CN 104178807 A CN104178807 A CN 104178807A
Authority
CN
China
Prior art keywords
gallium nitride
buffer layer
substrate
thick film
thermal decomposition
Prior art date
Application number
CN 201410382392
Other languages
Chinese (zh)
Inventor
金施耐
许桢
金东植
Original Assignee
上海世山科技有限公司
上海正帆科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海世山科技有限公司, 上海正帆科技有限公司 filed Critical 上海世山科技有限公司
Priority to CN 201410382392 priority Critical patent/CN104178807A/en
Publication of CN104178807A publication Critical patent/CN104178807A/en

Links

Abstract

The invention discloses a method for obtaining self-supporting gallium nitride substrates by using thermal decomposition characteristics. The method comprises the following steps: sequentially growing a first buffer layer and a second buffer layer on a sapphire substrate; growing a gallium nitride thick film layer on the second buffer layer at high temperature; when the gallium nitride thick film layer grows, the first buffer layer is prepared into gallium and nitrogen by high-temperature thermal decomposition, so that a gap is produced between the gallium nitride thick film layer and the sapphire substrate; and after the buffer layers and the gallium nitride thick film layer completely grow, the gallium nitride thick film layer and the sapphire substrate are gradually separated in the process of cooling, so that a gallium nitride substrate is obtained. The method for obtaining self-supporting gallium nitride substrates provided by the invention is high in production efficiency, and can be used for producing gallium nitride substrates with a certain thickness, and cracks are not easily produced on the gallium nitride substrates, thereby improving the quality of production.

Description

一种利用热分解特性获得自支撑氮化镓基板的方法 A thermal decomposition characteristics using a method for obtaining a self-standing gallium nitride substrate

技术领域 FIELD

[0001] 本发明涉及一种在蓝宝石(Sapphire wafer)和其上面生长出来的氮化镓(GaN)之间插入一种选择性热分解特性很好的缓冲层,然后通过热分解将氮化镓从蓝宝石衬底分离出来以得到单晶氮化镓基板。 [0001] The present invention relates to a plug for selectively thermal decomposition characteristics of a good buffer layer between the sapphire (Sapphire wafer) and gallium nitride (GaN) grown out thereon, and then decomposition of gallium nitride by thermal separating the sapphire substrate from to obtain a single crystal gallium nitride substrate.

背景技术 Background technique

[0002] AlN.GaN.1nN等氮化物半导体材料是带隙(Band gap)为0.65eV~6.2eV的直接迁移型半导体材料,所以这三种材料可以发出红外线至紫外线的所有的可视光线,也因为这样,它们作为LED (Light Emitting D1de), LD (Laser D1de)的发光元件的材料而备受关注。 [0002] AlN.GaN.1nN other nitride semiconductor material bandgap (Band gap) is a direct transition type semiconductor material 0.65eV ~ 6.2eV, so these three materials may emit infrared light to all the visible light ultraviolet, because of this, they are as a LED (Light emitting D1de), material LD ​​(Laser D1de) of the light emitting element has attracted attention. 另外,因其材料具有物性坚硬、电子移动率(Electron mobility)高的优点,所以它在高温、放射能等恶劣的环境中也广泛用作高温/高功率/高速的电子元件。 Further, because a material having properties hard, electron mobility (Electron mobility) the advantages of high, so it is widely used as a high temperature / high power / high speed electronic components at a high temperature, radioactivity and other harsh environments.

[0003] 一般来说的绿色LED或者白色LED是通过在蓝宝石基板上生长氮化镓(GaN)薄膜来制作的,但是为了制作超高功率LED,LD等这种电流密度要求很高的氮化镓元件,就需要氮化镓基板。 [0003] Generally a green LED or white LED by on a sapphire substrate, growing a gallium nitride (GaN) thin film fabricated, but in order to produce high power LED, a high LD, etc. This current density requirements nitride gallium element, it is necessary gallium nitride substrate. 究其原因是因为在蓝宝石基板上生长的氮化镓薄膜的缺陷密度大约为19~109/Cm2,也就是说很高的缺陷密度会导致元件寿命减少的问题。 The reason is because the defect density in gallium nitride thin film on a sapphire growth substrate is about 19 ~ 109 / Cm2, that is to say a high defect density leads to a reduction of element life issues.

[0004] 与之相反,在单晶氮化镓基板上生长的氮化镓薄膜的缺陷密度是1Vcm2以下,其优点就是可以使元件的寿命增加。 [0004] In contrast, the defect density gallium nitride thin film on a single crystal gallium nitride substrate is grown is 1Vcm2 or less, the advantage is that you can make the life of the element increases. 制作氮化镓基板的方法中氢气气相外延生长(HydrideVapor Phase Epitaxy:HVPE)法是最为常用的方法,除此之外,还有有机金属化学沉积(Metal-Organic Chemical Vapor Deposit1n:MOCVD)法,分子束外延生长(MolecularBeam Epitaxy:MBE)法等。 Method of making a gallium nitride substrate in hydrogen vapor phase epitaxy (HydrideVapor Phase Epitaxy: HVPE) method is the most commonly used method, in addition, also organic metal chemical deposition (Metal-Organic Chemical Vapor Deposit1n: MOCVD), molecular beam epitaxy (MolecularBeam epitaxy: MBE) method or the like. HVPE作为气相生长方法之一,它的优点在于生长速度较快且成本较低,所以广泛用于薄膜的生长以及厚膜结晶的生长。 HVPE as one of the growth gas phase, it is advantageous in that faster growth and lower cost, it is widely used to grow the growth and thick crystalline film.

[0005]目前的氮化镓基板制作工艺是在蓝宝石基板上生长出氮化镓单晶厚膜后,利用激光或者化学蚀刻(Chemical etching)又或者物理上的加工方法将蓝宝石基板和氮化镓单晶厚膜分离,接着将氮化镓单晶厚膜用抛光加工。 [0005] Current gallium nitride substrate fabrication process is on a sapphire substrate after growing a gallium nitride single crystal thick-film by using a laser or chemical etching (Chemical etching) processing methods on another or physically sapphire substrate and the gallium nitride a single crystal thick film separation, then the gallium nitride single crystal thick-film processing polishing.

[0006] 例如,利用激光分离氮化镓基板的方法是在蓝宝石基板一侧射入比氮化镓的Band gap波长小的激光束,这样可以将此界面上的氮化镓热分解为金属镓(Ga metal)和氮气(N2 gas)及分离蓝宝石基板和GaN厚膜。 [0006] For example, using a laser separation gallium nitride substrate method is the sapphire substrate side incident smaller than Band gap of gallium nitride is the wavelength of the laser beam, which can decompose this gallium nitride heat at the interface of gallium (Ga metal) and nitrogen (N2 gas), and separating the sapphire substrate and the GaN thick film.

[0007] 但是,目前的HVPE只是用作GaN的生长而无法分离蓝宝石基板上生长的GaN层,因此必须有额外的激光基板分离工艺,然而激光基板分离工艺过程中GaN单晶厚膜上很容易产生裂痕,继而会导致GaN基板制造良率低下的问题。 [0007] However, the existing HVPE only used as the growth of GaN can not be separated GaN layer grown on a sapphire substrate, so there must be an additional laser substrate separation process, however, it is easy to laser substrate separation process GaN single crystal thick film cracks, in turn, will cause the GaN substrate manufacturing yield low problem.

[0008] 将蓝宝石基板从氮化物半导体中分离或去除的问题在提高元件本身的电子特性、最终不仅仅在效率和可靠性的提升方面、还有在蓝宝石的回收利用和工艺上的制造成本问题上,都是需要解决的部分。 [0008] The problem of the sapphire substrate is separated or removed from the nitride semiconductor in improving the electronic properties of the element itself, eventually not only in efficiency and reliability improvement aspect, there are manufacturing cost in recycling and process of sapphire on, we need to be addressed portions.

发明内容 SUMMARY

[0009]本发明所要解决的是现有GaN单晶厚膜制作过程中,将蓝宝石基板与生长的GaN膜分离时,GaN膜容易产生裂痕的问题。 [0009] The present invention is to solve the problems of the prior GaN single crystal thick film production process, when the sapphire substrate from the GaN film growth, the GaN film prone to crack.

[0010]为了解决上述问题,本发明提供了一种利用热分解特性获得自支撑氮化镓基板的方法,其特征在于,包括以下步骤: [0010] In order to solve the above problems, the present invention provides a thermal decomposition characteristics of a method for obtaining free-standing gallium nitride substrate, comprising the steps of:

[0011] 步骤I):在蓝宝石基板上依次生长第一缓冲层、第二缓冲层; [0011] Step I): grown on a sapphire substrate in this order a first buffer layer a second buffer layer;

[0012] 步骤2):在第二缓冲层上高温生长氮化镓厚膜层; [0012] Step 2): on the second buffer layer, a high temperature grown GaN thick film layer;

[0013] 步骤3):在氮化镓厚膜层生长时,第一缓冲层高温热分解为镓和氮气,使氮化镓厚膜层与蓝宝石基板之间产生空隙; [0013] Step 3): In the GaN thick layer is grown, a first buffer storey warmed decomposed into gallium and nitrogen gas, so that a void between the GaN thick film layer and the sapphire substrate;

[0014] 步骤4):氮化镓厚膜层生长完后,在冷却过程中氮化镓厚膜层与蓝宝石基板逐渐分离,得到的氮化镓基板。 [0014] Step 4): GaN thick layer is grown after the gallium nitride thick film layer and the sapphire substrate is gradually separated in the cooling process, the gallium nitride substrate is obtained.

[0015] 优选地,所述步骤I)中第一缓冲层是通过HVPE生长出来的氮化镓,它是在600~800°C温度中生长的,其生长厚度为I~3μπι,V/III比为10~100。 [0015] Preferably, the step I gallium) in a first buffer layer is grown by HVPE out, it is grown in 600 ~ 800 ° C temperature, which is grown to a thickness of I ~ 3μπι, V / III ratio of 10 to 100.

[0016] 优选地,所述步骤I)中第二缓冲层是在第一缓冲层生长完成后升温至90(TC生长的,其厚度为50~100 μ m,V/III比为10~1000。 [0016] Preferably, the step I), the second buffer layer is heated after the first buffer layer is grown is completed to 90 (TC grown, having a thickness of 50 ~ 100 μ m, V / III ratio of 10 to 1000 .

[0017] 优选地,所述步骤2)与步骤I)之间,第二缓冲层还升温至1000°C经热处理。 Between [0017] Preferably, said step 2) to step the I), the second buffer layer further heated to 1000 ° C heat treatment.

[0018] 进一步地,所述步骤2)中氮化镓厚膜层是在第二缓冲层经热处理后继续升温至1200°C生长的,其厚度为300ymWi,V/III比为10~50。 [0018] Further, the step 2) of GaN thick film layer is continue to heat in the second buffer layer was heat treated to 1200 ° C the growth of a thickness of 300ymWi, V / III ratio of 10 to 50.

[0019] 优选地,所述第一缓冲层在温度达到900°C以上时热分解为液体镓和氮气。 [0019] Preferably, the first buffer layer temperature reaches 900 ° C or more thermal decomposition of liquid gallium and nitrogen.

[0020] 优选地,所述氮化镓可用氮化铝或氮化铟替代,制备氮化铝或氮化铟厚膜层。 [0020] Preferably, the gallium nitride available aluminum nitride or indium nitride Alternatively, preparation of aluminum nitride or indium nitride thick film layer.

[0021] 本发明提供了一种热分解特性很好的氮化镓缓冲层以及用此来生长并分离氮化物半导体的技术,缓冲层作为将半导体从生长基板中分离的方法,可以简化工艺且实施性强,便于量产。 [0021] The present invention provides a thermal decomposition characteristics of a good GaN buffer layer and used them to grow and isolate nitride semiconductor technology, a buffer layer as the semiconductor from the growth substrate separation method can simplify the process and the implementation of strong, easy to mass production.

[0022] 在蓝宝石基板等异质基板上生长的两个缓冲层因热处理效果而发生化学分解过程。 [0022] The two buffer layers on a heterogeneous substrate, a sapphire substrate grown chemical decomposition during the heat treatment effect occurs. 特别指出的是,低温生长的第一缓冲层比起其他层其结构相对不稳定,所以很容易发生热分解,正因为如此,可以在第一缓冲层上选择性地加速热分解过程。 In particular, the first buffer layer grown at low temperature than the other layer of the structure is relatively unstable, it readily thermally decomposed, and as such, can be selectively accelerated thermal decomposition process on the first buffer layer.

[0023] 为了使第一缓冲层起作用及热分解务必要有第二缓冲层,这时第二缓冲层的作用是在温度上升过程中防止第一缓冲层的变化即再结晶化,并且对于第二缓冲层上面生长的高温氮化物半导体起到缓冲层的作用。 [0023] In order to make the first buffer layer functions and thermal decomposition sure to have a second buffer layer, when the role of the second buffer layer is to prevent the change of the first buffer layer, i.e. recrystallization, the temperature rising process and for growing a second buffer layer above the temperature of the nitride semiconductor functions as a buffer layer.

[0024] 虽然,没有第一缓冲层的第二缓冲层在结构上可起到厚膜生长的缓冲作用,但是很难制作出自支撑氮化物半导体基板。 [0024] Although there is no second buffer layer of the first buffer layer can cushion the thick film grown on the structure, but it is difficult to produce by a nitride semiconductor substrate support. 相反,没有第二缓冲层的第一缓冲层在升温的过程中会再结晶化并导致氮化镓的特性发生改变,这样热分解特性会减弱以致最终很难完成基板的分尚。 In contrast, no first buffer layer a second buffer layer in the course of temperature rising is recrystallized and cause characteristics of gallium nitride is changed, so that the thermal decomposition characteristics will diminish and eventually difficult to complete the partial still substrate.

[0025] 综上而言,为了使氮化物半导体的缓冲层能够通过它的热分解特性很好地起到作用,必须同时具有第一缓冲层和第二缓冲层。 [0025] In summary, in order to make the buffer layer nitride semiconductor can function through its thermal decomposition characteristics well, must have a first buffer layer and second buffer layer.

[0026] 与现有技术相比,本发明的有益效果在于: [0026] Compared with the prior art, the beneficial effects of the present invention:

[0027] 1.在初期生长所用的基板与生长的氮化物厚膜半导体之间插入第一缓冲层和第二缓冲层之后,可利用第一缓冲层的选择性热分解效应在半导体的损伤最低的情况下进行分离; Minimum damage selective thermal decomposition effect after [0027] 1. Insert the first buffer layer and second buffer layer between the substrate initial growth used in the nitride thick semiconductor growth may be utilized first buffer layer on a semiconductor separating in a case;

[0028] 2.从氮化镓层分离出的蓝宝石基板因为没有损伤,所以可以重新用于氮化镓生长的基板; [0028] 2 separated from the gallium nitride layer sapphire substrate because there is no damage, it may be reused for the gallium nitride substrate growth;

[0029] 3.第一缓冲层和第二缓冲层是在氮化物半导体的生长过程中插入的,所以不需要外加其他工艺并可在简单的步骤下完成生长,因此在经济性层面上也显优势; [0029] 3. The first buffer layer and second buffer layer is inserted during the growth of nitride semiconductors, so no additional other processes and completing the growth in simple steps, and therefore substantially on the economic level Advantage;

[0030] 4.第一缓冲层和第二缓冲层本身是氮化物半导体层,所以作为缓冲层可以保证在其上面生长的氮化物半导体的高品质性; [0030] 4. The first buffer layer and second buffer layer itself is a nitride semiconductor layer, a buffer layer may ensure high quality property thereon growing nitride semiconductor;

[0031] 5.采用本发明提供的方法能利用第一缓冲层和第二缓冲层可以有效地制作高品质的自支撑单晶氮化物半导体基板。 [0031] The method provided by the invention can utilize a first buffer layer and second buffer layer may be efficiently produced high quality freestanding single crystal nitride semiconductor substrate.

附图说明 BRIEF DESCRIPTION

[0032]图1a-C为实施例提供的一种利用热分解特性获得自支撑氮化镓基板的方法的各步骤的示意图; [0032] A thermal decomposition characteristics FIGS 1a-C is provided in the embodiment to obtain a schematic view of steps in the self-supporting method of the gallium nitride substrate;

图2为分离过程中不同氮化镓层截面的SEM照片比较图。 Figure 2 is the separation process SEM photographs comparing FIG different gallium nitride layer sections.

其中:a为第一缓冲层开始分解时的截面;b为第一缓冲层和第二缓冲层从蓝宝石基板分离出的氮化镓层截面;c为热处理结束之后分离的氮化镓基板和蓝宝石基板。 Wherein: a is a cross-section when the first buffer layer begins to decompose; B is a first buffer layer and second buffer layer separated from the sapphire substrate, gallium nitride layer cross section; C is isolated after completion of heat treatment gallium nitride substrate and a sapphire substrate.

[0033] [0033]

[0034] [0034]

具体实施方式 Detailed ways

[0035] 为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。 [0035] To make the present invention more comprehensible, hereby to preferred embodiments accompanied with figures are described in detail below.

[0036] 实施例1 [0036] Example 1

[0037] —种利用热分解特性获得自支撑氮化镓基板的方法,包括以下步骤: [0037] - species by thermal decomposition characteristics of a method for obtaining a self-supporting gallium nitride substrate, comprising the steps of:

[0038] 步骤I):在蓝宝石基板I上依次生长第一缓冲层3、第二缓冲层4(如图1a所示);第一缓冲层3是通过HVPE生长出来的氮化镓,它是在700°C温度中生长的,其生长厚度为2 μ m,生长时间为lOmin,V/III比为10 ;第二缓冲层是在第一缓冲层3生长完成后升温至9000C生长的,其厚度为100 μ m,生长时间为60min ;此时,第一缓冲层3在温度达到900°C以上时热分解为液体镓Ga和氮气N(如图1b所示); [0038] Step I): sequentially growing a first buffer layer 3 on the sapphire substrate I, a second buffer layer 4 (FIG. 1a); gallium first buffer layer 3 is grown by HVPE out, it is grown at 700 ° C temperature, which is grown to a thickness of 2 μ m, the growth time of lOmin, V / III ratio of 10; the second buffer layer is heated after the first buffer layer 3 grown completed to 9000C growth which thermal decomposition of a liquid gallium (Ga) and nitrogen N (shown in FIG. 1b) at this time, the first buffer layer 3 at a temperature of more than 900 ° C; thickness of 100 μ m, the growth time is 60min;

[0039] 步骤2):将第二缓冲层4升温至1000°C经热处理30min ;然后在第二缓冲层4上高温生长氮化镓厚膜层2,氮化镓厚膜层2是在第二缓冲层4热处理后升温至120(TC生长的,其厚度为300 um以上,生长时间为4hr ; [0039] Step 2): The second buffer layer 4 is heated to 1000 ° C heat treatment 30min; then in the second buffer layer 4 on the high-temperature growth of GaN thick film layer 2, GaN thick film layer 2 is the first two buffer layer 4 heat treatment temperature was raised to 120 (TC grown, having a thickness less than 300 um, the growth time of 4 hr;

[0040] 步骤3):在氮化镓厚膜层生长时,第一缓冲层3高温热分解为液体镓Ga和氮气N,使氮化镓厚膜层2与蓝宝石基板I之间产生空隙; [0040] Step 3): In the GaN thick layer is grown, 3 high-temperature heat of the first buffer layer is decomposed to liquid gallium (Ga) and nitrogen N, gallium nitride thick film layer voids between 2 and the sapphire substrate I;

[0041] 步骤4):氮化镓厚膜层2生长完后,在冷却过程中氮化镓厚膜层2与蓝宝石基板I逐渐分离,得到的氮化镓基板(如图1c所示)。 [0041] Step 4): GaN thick film layer 2 grown after the gallium nitride thick film layer 2 and the sapphire substrate I gradually separated during cooling, the resulting gallium nitride substrate (as shown in Figure 1c).

[0042] 上述步骤中氮化镓可用氮化铝或氮化铟替代,制备氮化铝或氮化铟厚膜层。 [0042] The step gallium available aluminum nitride or indium nitride Alternatively, preparation of aluminum nitride or indium nitride thick film layer.

[0043] 第一缓冲层3和第二缓冲层4是在相对低的温度下生长的,所以其物性热稳定性较差。 [0043] The first buffer layer 3 and the second buffer layer 4 is grown at relatively low temperatures, poor physical properties heat stability. 经过热处理之后,第一缓冲层3上会发生分解反应,容易气化的氮气N会变成气体挥发掉,镓Ga会以液体残留在蓝宝石基板I和氮化物基板的界面上。 After heat treatment, the first buffer layer decomposition reaction occurs on 3, easily gasified nitrogen N becomes gas evaporate, gallium (Ga) will be liquid remaining at the interface between the sapphire substrate I and the nitride substrate. 也就是说,分解的第一缓冲层3里包括镓Ga和空隙以及未分解的氮化镓。 That is, the first buffer layer is decomposed in 3 years include gallium (Ga) and voids and undecomposed gallium nitride.

[0044] 下面显示的是上述化学分解反应式。 [0044] Shown below is the above chemical decomposition reaction formula.

[0045] 2GaN(s) — 2Ga(l)+N2(g) [0045] 2GaN (s) - 2Ga (l) + N2 (g)

[0046] 接着,界面上的液体镓Ga在氮化镓厚膜层2生长的时间段里部分可能会与从外面注入的氮离子重新结合。 [0046] Next, the liquid gallium at the interface Ga portion may recombine with nitrogen ions from outside the implantation time period GaN thick film layer 2 grown in.

[0047] 因为此时的重新结合主要发生在异种基板(即蓝宝石基板I)的表面和氮化物基板的背面(对着异种基板的那一面),所以异种基板和第一缓冲层3上面的氮化物基板的结合力明显减弱,以一种空隙形式存在。 [0047] because the recombined mainly on the back of the different substrate (i.e., a sapphire substrate I) and the surface of the nitride substrate (facing the different substrate that side), so the above heterogeneous substrate and the first buffer layer 3 nitrogen adhesion compound substrate significantly reduced, present in the interstices form. 图2可见,a图中只有在第一缓冲层3中发生了选择性分离。 Figure 2 shows, a figure selective separation only occurs in the first buffer layer 3. 在氮化物基板与蓝宝石基板I分离的状态下,可以看到在氮化物基板的背面氮化镓的再结晶较多,这时因为比起异种基板的蓝宝石,在同种物质的氮化物表面上较容易发生液体镓的重新结合的过程。 In the nitride substrate and the sapphire substrate I separated state, it can be seen more recrystallization rear surface gallium nitride substrate, then on as compared with a sapphire dissimilar substrate is a surface of the same substance nitride more prone process liquid gallium recombination. b图显示的是利用第一缓冲层和第二缓冲层从蓝宝石基板分离出的氮化物基板的截面的SEM照片。 b figure shows a SEM photograph of a section of the first buffer layer and second buffer layer separated from the sapphire substrate, a nitride substrate. c图是热处理结束之后分离氮化物基板和蓝宝石基板后测得的SEM表面照片。 c Fig after the nitride substrate and the sapphire substrate is separated after the heat treatment is measured by SEM photograph of the surface.

Claims (7)

1.一种利用热分解特性获得自支撑氮化镓基板的方法,其特征在于,包括以下步骤: 步骤I):在蓝宝石基板(I)上依次生长第一缓冲层(3)、第二缓冲层(4); 步骤2):在第二缓冲层(4)上高温生长氮化镓厚膜层(2); 步骤3):在氮化镓厚膜层(2)生长时,第一缓冲层(3)高温热分解为镓(Ga)和氮气(N),使氮化镓厚膜层(2)与蓝宝石基板(I)之间产生空隙; 步骤4):氮化镓厚膜层(2)生长完后,在冷却过程中氮化镓厚膜层(2)与蓝宝石基板(I)逐渐分离,得到的氮化镓基板。 1. A method for obtaining free-standing gallium nitride substrate by thermal decomposition characteristics, characterized by comprising the following steps: the I): on a sapphire substrate (I) successively growing a first buffer layer (3), a second buffer layer (4); step 2): on the second buffer layer (4) high-temperature grown GaN thick film layer (2); step 3): (2) grown on gallium nitride thick film layer, the first buffer layer (3) thermal decomposition of gallium (Ga) and nitrogen (N), gallium nitride thick film layer (2) and the sapphire substrate (I) voids; step 4): GaN thick film layer ( 2) growth after, GaN thick film layer (2) and the sapphire substrate (I) is gradually separated in the cooling process, the gallium nitride substrate is obtained.
2.如权利要求1所述的利用热分解特性获得自支撑氮化镓基板的方法,其特征在于,所述步骤I)中第一缓冲层(3)是通过HVPE生长出来的氮化镓,它是在600~800°C温度中生长的,其生长厚度为I~3μπι,V/III比为10~100。 2. The thermal decomposition characteristics of the claim 1 for obtaining free-standing gallium nitride substrate, characterized in that said step I) a first buffer layer (3) is grown by HVPE out of gallium nitride, it is grown in 600 ~ 800 ° C temperature, which is grown to a thickness of I ~ 3μπι, V / III ratio of 10 to 100.
3.如权利要求1所述的利用热分解特性获得自支撑氮化镓基板的方法,其特征在于,所述步骤I)中第二缓冲层(4)是在第一缓冲层(3)生长完成后升温至900°C生长的,其厚度为50 ~100 μ m, V/III 比为10 ~1000。 3. The thermal decomposition characteristics of the claim 1 for obtaining free-standing gallium nitride substrate, characterized in that said step I), the second buffer layer (4) is (3) grown on the first buffer layer after completion of the temperature was raised to 900 ° C the growth of a thickness of 50 ~ 100 μ m, V / III ratio of 10 to 1000.
4.如权利要求1所述的利用热分解特性获得自支撑氮化镓基板的方法,其特征在于,所述步骤2)与步骤I)之间,第二缓冲层(4)还升温至1000°C经热处理。 4. The thermal decomposition characteristics of the claim 1 for obtaining free-standing gallium nitride substrate, wherein between said step 2) to step the I), a second buffer layer (4) further heating to 1000 ° C heat treatment.
5.如权利要求4所述的利用热分解特性获得自支撑氮化镓基板的方法,其特征在于,所述步骤2)中氮化镓厚膜层(2)是在第二缓冲层(4)经热处理后继续升温至1200°C生长的,其厚度为300ymWi,V/III比为10~50。 5. The thermal decomposition characteristics as claimed in claim a method for obtaining self-standing gallium nitride substrate, wherein said step 2) is a gallium nitride thick film layer (2) in the second buffer layer (4 ) after the heat treatment continue to heat up to 1200 ° C the growth of a thickness of 300ymWi, V / III ratio of 10 to 50.
6.如权利要求1所述的利用热分解特性获得自支撑氮化镓基板的方法,其特征在于,所述第一缓冲层在温度达到900°C以上时热分解为液体镓(Ga)和氮气(N)。 6. The thermal decomposition characteristics of the claim 1 for obtaining free-standing gallium nitride substrate, wherein the first buffer layer at a temperature reached during heat above 900 ° C decomposition of liquid gallium (Ga) and nitrogen (N).
7.如权利要求1所述的利用热分解特性获得自支撑氮化镓基板的方法,其特征在于,所述氮化镓可用氮化铝或氮化铟替代,制备氮化铝或氮化铟厚膜层。 7. The thermal decomposition characteristics of the claim 1 for obtaining free-standing gallium nitride substrate, wherein the gallium nitride available aluminum nitride or indium nitride Alternatively, preparation of aluminum nitride or indium nitride thick film layer.
CN 201410382392 2014-08-06 2014-08-06 Method for obtaining self-supporting gallium nitride substrates by using thermal decomposition characteristics CN104178807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201410382392 CN104178807A (en) 2014-08-06 2014-08-06 Method for obtaining self-supporting gallium nitride substrates by using thermal decomposition characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201410382392 CN104178807A (en) 2014-08-06 2014-08-06 Method for obtaining self-supporting gallium nitride substrates by using thermal decomposition characteristics

Publications (1)

Publication Number Publication Date
CN104178807A true CN104178807A (en) 2014-12-03

Family

ID=51960140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201410382392 CN104178807A (en) 2014-08-06 2014-08-06 Method for obtaining self-supporting gallium nitride substrates by using thermal decomposition characteristics

Country Status (1)

Country Link
CN (1) CN104178807A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020078881A1 (en) * 2000-11-30 2002-06-27 Cuomo Jerome J. Method and apparatus for producing M'''N columns and M'''N materials grown thereon
US20030024475A1 (en) * 1998-06-18 2003-02-06 Tim Anderson Method and apparatus for producing group-III nitrides
CN1560900A (en) * 2004-03-05 2005-01-05 长春理工大学 Method of growing low dislocation gallium nitride on silicon substrate
US20070082465A1 (en) * 2005-10-12 2007-04-12 Samsung Corning Co., Ltd. Method of fabricating GaN substrate
CN101378008A (en) * 2008-09-19 2009-03-04 苏州纳维科技有限公司 Method for separating epitaxial layer and substrate
CN102031560A (en) * 2009-09-30 2011-04-27 中国科学院半导体研究所 Method for preparing large-size GaN self-support substrate
CN102828251A (en) * 2012-09-10 2012-12-19 中国科学院半导体研究所 Method for preparing aluminum nitride single crystal material
CN103633199A (en) * 2013-12-05 2014-03-12 中国科学院半导体研究所 Method for producing vertical-structured GaN-based light emitting diode by adopting sapphire substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030024475A1 (en) * 1998-06-18 2003-02-06 Tim Anderson Method and apparatus for producing group-III nitrides
US20020078881A1 (en) * 2000-11-30 2002-06-27 Cuomo Jerome J. Method and apparatus for producing M'''N columns and M'''N materials grown thereon
CN1560900A (en) * 2004-03-05 2005-01-05 长春理工大学 Method of growing low dislocation gallium nitride on silicon substrate
US20070082465A1 (en) * 2005-10-12 2007-04-12 Samsung Corning Co., Ltd. Method of fabricating GaN substrate
CN101378008A (en) * 2008-09-19 2009-03-04 苏州纳维科技有限公司 Method for separating epitaxial layer and substrate
CN102031560A (en) * 2009-09-30 2011-04-27 中国科学院半导体研究所 Method for preparing large-size GaN self-support substrate
CN102828251A (en) * 2012-09-10 2012-12-19 中国科学院半导体研究所 Method for preparing aluminum nitride single crystal material
CN103633199A (en) * 2013-12-05 2014-03-12 中国科学院半导体研究所 Method for producing vertical-structured GaN-based light emitting diode by adopting sapphire substrate

Similar Documents

Publication Publication Date Title
Hiramatsu et al. Recent Progress in Selective Area Growth and Epitaxial Lateral Overgrowth of III‐Nitrides: Effects of Reactor Pressure in MOVPE Growth
US20060166390A1 (en) Optoelectronic substrate and methods of making same
US20090001416A1 (en) Growth of indium gallium nitride (InGaN) on porous gallium nitride (GaN) template by metal-organic chemical vapor deposition (MOCVD)
US6648966B2 (en) Wafer produced thereby, and associated methods and devices using the wafer
US7169227B2 (en) Method for making free-standing AIGaN wafer, wafer produced thereby, and associated methods and devices using the wafer
JP2010056458A (en) Method of manufacturing light emitting element
JP2007049063A (en) Semiconductor light emitting element, lighting system employing it, and process for fabricating semiconductor light emitting element
Horng et al. Growth and characterization of 380-nm InGaN/AlGaN LEDs grown on patterned sapphire substrates
JP2008078275A (en) Method of manufacturing compound semiconductor element
US20090087937A1 (en) Method for manufacturing nitride based single crystal substrate and method for manufacturing nitride based light emitting diode using the same
US20110003420A1 (en) Fabrication method of gallium nitride-based compound semiconductor
JP2002050585A (en) Method for growing crystal of semiconductor
CN1996556A (en) A method for preparing the gallium nitride single crystal wafer
JP2005064153A (en) Semiconductor layer
JP2002050586A (en) Method for manufacturing semiconductor crystal
JPH11298039A (en) Method of growing gan layer ad buffer layer and structure thereof
JPH10321911A (en) Method for manufacturing epitaxial layer of compound semiconductor on single-crystal silicon and light-emitting diode manufactured therewith
CN104037287A (en) LED epitaxial wafer grown on Si substrate and preparation method thereof
US20060225643A1 (en) AlGaN substrate and production method thereof
CN1677697A (en) Epitaxial structure of gallium nitride series compound semiconductor and mfg. method
CN101343733A (en) Method for MOVCD growth nitride epitaxial layer
Li et al. Growth of GaN on ZnO for solid state lighting applications
US20050072353A1 (en) Method of manufacturing gallium nitride-based single crystal substrate
CN1659715A (en) Nitride semiconductor LED and fabrication method thereof
US20090075481A1 (en) Method of fabricating semiconductor substrate by use of heterogeneous substrate and recycling heterogeneous substrate during fabrication thereof

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination