CN104178807A - Method for obtaining self-supporting gallium nitride substrates by using thermal decomposition characteristics - Google Patents

Method for obtaining self-supporting gallium nitride substrates by using thermal decomposition characteristics Download PDF

Info

Publication number
CN104178807A
CN104178807A CN 201410382392 CN201410382392A CN104178807A CN 104178807 A CN104178807 A CN 104178807A CN 201410382392 CN201410382392 CN 201410382392 CN 201410382392 A CN201410382392 A CN 201410382392A CN 104178807 A CN104178807 A CN 104178807A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
gallium nitride
buffer layer
thermal decomposition
substrate
method
Prior art date
Application number
CN 201410382392
Other languages
Chinese (zh)
Inventor
金施耐
许桢
金东植
Original Assignee
上海世山科技有限公司
上海正帆科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention discloses a method for obtaining self-supporting gallium nitride substrates by using thermal decomposition characteristics. The method comprises the following steps: sequentially growing a first buffer layer and a second buffer layer on a sapphire substrate; growing a gallium nitride thick film layer on the second buffer layer at high temperature; when the gallium nitride thick film layer grows, the first buffer layer is prepared into gallium and nitrogen by high-temperature thermal decomposition, so that a gap is produced between the gallium nitride thick film layer and the sapphire substrate; and after the buffer layers and the gallium nitride thick film layer completely grow, the gallium nitride thick film layer and the sapphire substrate are gradually separated in the process of cooling, so that a gallium nitride substrate is obtained. The method for obtaining self-supporting gallium nitride substrates provided by the invention is high in production efficiency, and can be used for producing gallium nitride substrates with a certain thickness, and cracks are not easily produced on the gallium nitride substrates, thereby improving the quality of production.

Description

一种利用热分解特性获得自支撑氮化镓基板的方法 A thermal decomposition method for obtaining a self-supporting properties by using the gallium nitride substrate

技术领域 FIELD

[0001] 本发明涉及一种在蓝宝石(Sapphire wafer)和其上面生长出来的氮化镓(GaN)之间插入一种选择性热分解特性很好的缓冲层,然后通过热分解将氮化镓从蓝宝石衬底分离出来以得到单晶氮化镓基板。 [0001] The present invention relates to a method of selectively inserting a good thermal decomposition characteristics of the buffer layer between the sapphire (Sapphire wafer) and gallium nitride (GaN) grown out thereon, and then by thermal decomposition of gallium nitride separated from the sapphire substrate to obtain a single crystal gallium nitride substrate.

背景技术 Background technique

[0002] AlN.GaN.1nN等氮化物半导体材料是带隙(Band gap)为0.65eV~6.2eV的直接迁移型半导体材料,所以这三种材料可以发出红外线至紫外线的所有的可视光线,也因为这样,它们作为LED (Light Emitting D1de), LD (Laser D1de)的发光元件的材料而备受关注。 [0002] AlN.GaN.1nN other nitride semiconductor material bandgap (Band gap) is a direct transition type semiconductor material 0.65eV ~ 6.2eV, so these three materials may emit infrared light to all the visible ultraviolet, because of this, they are as a LED (Light emitting D1de), material LD ​​(Laser D1de) of the light emitting element and concern. 另外,因其材料具有物性坚硬、电子移动率(Electron mobility)高的优点,所以它在高温、放射能等恶劣的环境中也广泛用作高温/高功率/高速的电子元件。 Further, because of a hard material having a physical property, electron mobility (Electron mobility) the advantages of high, so it is widely used as a high temperature / high power / high speed electronic components at a high temperature, radioactivity and other harsh environments.

[0003] 一般来说的绿色LED或者白色LED是通过在蓝宝石基板上生长氮化镓(GaN)薄膜来制作的,但是为了制作超高功率LED,LD等这种电流密度要求很高的氮化镓元件,就需要氮化镓基板。 [0003] In general white LED or a green LED on the sapphire substrate by growing a gallium nitride (GaN) thin film fabricated, but in order to produce high power LED, LD, etc. Such high current densities in claim nitride gallium element, it is necessary gallium nitride substrate. 究其原因是因为在蓝宝石基板上生长的氮化镓薄膜的缺陷密度大约为19~109/Cm2,也就是说很高的缺陷密度会导致元件寿命减少的问题。 The reason is because the defect density in GaN films grown on a sapphire substrate is about 19 ~ 109 / Cm2, that is to say a high defect density leads to a reduction of element life issues.

[0004] 与之相反,在单晶氮化镓基板上生长的氮化镓薄膜的缺陷密度是1Vcm2以下,其优点就是可以使元件的寿命增加。 [0004] In contrast, the defect density in GaN films grown on a single crystal gallium nitride substrate is less 1Vcm2, which has the advantage that the life of the element can be increased. 制作氮化镓基板的方法中氢气气相外延生长(HydrideVapor Phase Epitaxy:HVPE)法是最为常用的方法,除此之外,还有有机金属化学沉积(Metal-Organic Chemical Vapor Deposit1n:MOCVD)法,分子束外延生长(MolecularBeam Epitaxy:MBE)法等。 Method of making a gallium nitride substrate in hydrogen vapor phase epitaxy (HydrideVapor Phase Epitaxy: HVPE) method is the most commonly used method, in addition, also organic metal chemical deposition (Metal-Organic Chemical Vapor Deposit1n: MOCVD), molecular beam epitaxy (MolecularBeam epitaxy: MBE) method or the like. HVPE作为气相生长方法之一,它的优点在于生长速度较快且成本较低,所以广泛用于薄膜的生长以及厚膜结晶的生长。 As one of gas-phase growth method HVPE, it is advantageous in that faster growth and lower cost, it is widely used for the growth and the growth of thick crystalline film.

[0005]目前的氮化镓基板制作工艺是在蓝宝石基板上生长出氮化镓单晶厚膜后,利用激光或者化学蚀刻(Chemical etching)又或者物理上的加工方法将蓝宝石基板和氮化镓单晶厚膜分离,接着将氮化镓单晶厚膜用抛光加工。 [0005] The present production process is a gallium nitride substrate on a sapphire substrate after growing a gallium nitride single crystal thick-film by using a laser or chemical etching (Chemical etching) process or a physical method and on the sapphire substrate and a gallium nitride separating a single crystal thick film, followed by polishing gallium nitride single crystal thick-film processing.

[0006] 例如,利用激光分离氮化镓基板的方法是在蓝宝石基板一侧射入比氮化镓的Band gap波长小的激光束,这样可以将此界面上的氮化镓热分解为金属镓(Ga metal)和氮气(N2 gas)及分离蓝宝石基板和GaN厚膜。 [0006] For example, using a laser separation method of the gallium nitride substrate is a sapphire substrate side incident Band gap is smaller than the wavelength of the laser beam of gallium nitride, gallium nitride so that this heat can be decomposed at the interface of gallium (Ga metal) and nitrogen (N2 gas), and separating the sapphire substrate and the GaN thick film.

[0007] 但是,目前的HVPE只是用作GaN的生长而无法分离蓝宝石基板上生长的GaN层,因此必须有额外的激光基板分离工艺,然而激光基板分离工艺过程中GaN单晶厚膜上很容易产生裂痕,继而会导致GaN基板制造良率低下的问题。 [0007] However, currently only used as HVPE growth of GaN can not be separated from the GaN layer grown on a sapphire substrate, the laser must have an additional substrate separation process, however, is easily separated from the substrate on the laser crystal GaN thick film process cracks, in turn, leads to low manufacturing yield of the GaN substrate problem.

[0008] 将蓝宝石基板从氮化物半导体中分离或去除的问题在提高元件本身的电子特性、最终不仅仅在效率和可靠性的提升方面、还有在蓝宝石的回收利用和工艺上的制造成本问题上,都是需要解决的部分。 [0008] The problem of separating or removing the sapphire substrate from the nitride semiconductor in improving the electronic properties of the element itself, not only in the efficiency and ultimately improve the reliability aspect, there is a problem in the manufacturing cost and the recycling process of the sapphire on, we need to be addressed portions.

发明内容 SUMMARY

[0009]本发明所要解决的是现有GaN单晶厚膜制作过程中,将蓝宝石基板与生长的GaN膜分离时,GaN膜容易产生裂痕的问题。 [0009] The present invention is to solve the problems of the prior thick GaN single crystal manufacturing process, when separated from the sapphire substrate and the GaN film growth, the GaN film and cracks occur easily.

[0010]为了解决上述问题,本发明提供了一种利用热分解特性获得自支撑氮化镓基板的方法,其特征在于,包括以下步骤: [0010] In order to solve the above problems, the present invention provides a method of thermal decomposition characteristic obtained GaN self-supporting substrate, comprising the steps of:

[0011] 步骤I):在蓝宝石基板上依次生长第一缓冲层、第二缓冲层; [0011] Step I): are sequentially grown on a sapphire substrate, a first buffer layer a second buffer layer;

[0012] 步骤2):在第二缓冲层上高温生长氮化镓厚膜层; [0012] Step 2): In the high-temperature buffer layer grown on the second GaN thick film layer;

[0013] 步骤3):在氮化镓厚膜层生长时,第一缓冲层高温热分解为镓和氮气,使氮化镓厚膜层与蓝宝石基板之间产生空隙; [0013] Step 3): when grown GaN thick film layer, the first buffer storey Thermal Decomposition of gallium and nitrogen, so that a void between the sapphire substrate and the GaN thick film layer;

[0014] 步骤4):氮化镓厚膜层生长完后,在冷却过程中氮化镓厚膜层与蓝宝石基板逐渐分离,得到的氮化镓基板。 [0014] Step 4): After the GaN thick layer is grown, the sapphire substrate and the GaN thick film layer is gradually cooled in the separation process, the gallium nitride substrate obtained.

[0015] 优选地,所述步骤I)中第一缓冲层是通过HVPE生长出来的氮化镓,它是在600~800°C温度中生长的,其生长厚度为I~3μπι,V/III比为10~100。 [0015] Preferably, the gallium step I) in a first buffer layer is grown by HVPE out, it is grown in a temperature of 600 ~ 800 ° C, which is grown to a thickness of I ~ 3μπι, V / III ratio of 10 to 100.

[0016] 优选地,所述步骤I)中第二缓冲层是在第一缓冲层生长完成后升温至90(TC生长的,其厚度为50~100 μ m,V/III比为10~1000。 [0016] Preferably, the step I), the second buffer layer is heated after the completion of the first buffer layer is grown to 90 (TC grown, having a thickness of 50 ~ 100 μ m, V / III ratio of 10 to 1000 .

[0017] 优选地,所述步骤2)与步骤I)之间,第二缓冲层还升温至1000°C经热处理。 Between [0017] Preferably, the step 2) with the I step), a second buffer layer further heated to 1000 ° C heat treatment.

[0018] 进一步地,所述步骤2)中氮化镓厚膜层是在第二缓冲层经热处理后继续升温至1200°C生长的,其厚度为300ymWi,V/III比为10~50。 [0018] Further, the step 2) is a gallium nitride thick film layer continues to heat the second buffer layer after heat treatment to 1200 ° C the growth of a thickness of 300ymWi, V / III ratio of 10 to 50.

[0019] 优选地,所述第一缓冲层在温度达到900°C以上时热分解为液体镓和氮气。 [0019] Preferably, the first buffer layer at the above temperature reaches 900 ° C thermal decomposition of liquid gallium and nitrogen.

[0020] 优选地,所述氮化镓可用氮化铝或氮化铟替代,制备氮化铝或氮化铟厚膜层。 [0020] Preferably, the indium gallium nitride or aluminum nitride can be used alternatively, preparing aluminum nitride or indium nitride thick film layer.

[0021] 本发明提供了一种热分解特性很好的氮化镓缓冲层以及用此来生长并分离氮化物半导体的技术,缓冲层作为将半导体从生长基板中分离的方法,可以简化工艺且实施性强,便于量产。 [0021] The present invention provides a good thermal decomposition characteristics and the GaN buffer layer is grown and isolated using this technique nitride semiconductor, the buffer layer as a method for separating from the growth of the semiconductor substrate, the process can be simplified and embodiment strong, easy to mass production.

[0022] 在蓝宝石基板等异质基板上生长的两个缓冲层因热处理效果而发生化学分解过程。 [0022] The two buffer layers on a heterogeneous substrate like sapphire substrate grown by the heat treatment during chemical decomposition effect occurs. 特别指出的是,低温生长的第一缓冲层比起其他层其结构相对不稳定,所以很容易发生热分解,正因为如此,可以在第一缓冲层上选择性地加速热分解过程。 In particular, the first buffer layer grown at low temperature than the other layer of the structure is relatively unstable, it readily thermally decomposed, and as such, can be selectively accelerated thermal decomposition process on the first buffer layer.

[0023] 为了使第一缓冲层起作用及热分解务必要有第二缓冲层,这时第二缓冲层的作用是在温度上升过程中防止第一缓冲层的变化即再结晶化,并且对于第二缓冲层上面生长的高温氮化物半导体起到缓冲层的作用。 [0023] In order to make the first buffer layer and the thermal decomposition act sure to have a second buffer layer, when the role of the second buffer layer is to prevent the change of the first buffer layer, i.e. recrystallization, the temperature rising process and for growing a second buffer layer above the temperature of the nitride semiconductor layer functions as a buffer.

[0024] 虽然,没有第一缓冲层的第二缓冲层在结构上可起到厚膜生长的缓冲作用,但是很难制作出自支撑氮化物半导体基板。 [0024] Although, there is no first buffer layer a second buffer layer may be grown thick cushion in structure, but it is difficult to produce by a nitride semiconductor substrate support. 相反,没有第二缓冲层的第一缓冲层在升温的过程中会再结晶化并导致氮化镓的特性发生改变,这样热分解特性会减弱以致最终很难完成基板的分尚。 In contrast, no first buffer layer a second buffer layer in the course of temperature rise will result in recrystallization and properties of gallium nitride is changed, so that thermal decomposition characteristics will diminish and eventually still difficult to achieve sub-substrate.

[0025] 综上而言,为了使氮化物半导体的缓冲层能够通过它的热分解特性很好地起到作用,必须同时具有第一缓冲层和第二缓冲层。 [0025] In summary, in order to make the nitride semiconductor buffer layer can function through its good thermal decomposition characteristics, it must have a first buffer layer and second buffer layer.

[0026] 与现有技术相比,本发明的有益效果在于: [0026] Compared with the prior art, the beneficial effects of the present invention:

[0027] 1.在初期生长所用的基板与生长的氮化物厚膜半导体之间插入第一缓冲层和第二缓冲层之后,可利用第一缓冲层的选择性热分解效应在半导体的损伤最低的情况下进行分离; Minimum damage after selective effect thermal decomposition [0027] 1. Insert the first buffer layer and second buffer layer between the substrate used in the initial growth of the nitride semiconductor grown thick, the first buffer layer may be utilized in a semiconductor in the case of separation;

[0028] 2.从氮化镓层分离出的蓝宝石基板因为没有损伤,所以可以重新用于氮化镓生长的基板; [0028] 2. The gallium nitride layer separated from the sapphire substrate because there is no damage, it can be re-used for the growth of the gallium nitride substrate;

[0029] 3.第一缓冲层和第二缓冲层是在氮化物半导体的生长过程中插入的,所以不需要外加其他工艺并可在简单的步骤下完成生长,因此在经济性层面上也显优势; [0029] 3. The first buffer layer and second buffer layer is inserted during the growth of the nitride semiconductor, it is not necessary to complete growth and other processes applied in simple steps, and therefore substantially at the level of economy Advantage;

[0030] 4.第一缓冲层和第二缓冲层本身是氮化物半导体层,所以作为缓冲层可以保证在其上面生长的氮化物半导体的高品质性; [0030] 4. The first buffer layer and second buffer layer itself is a nitride semiconductor layer, a buffer layer may be so as to ensure a high quality property on which a nitride semiconductor is grown;

[0031] 5.采用本发明提供的方法能利用第一缓冲层和第二缓冲层可以有效地制作高品质的自支撑单晶氮化物半导体基板。 [0031] The present invention provides a method capable of using the first buffer layer and second buffer layer may be efficiently produced a high quality single crystal nitride semiconductor self-supporting substrate.

附图说明 BRIEF DESCRIPTION

[0032]图1a-C为实施例提供的一种利用热分解特性获得自支撑氮化镓基板的方法的各步骤的示意图; [0032] A thermal decomposition characteristic diagram of Example 1a-C provide a schematic view of the steps of the obtained self-supporting method of the gallium nitride substrate;

图2为分离过程中不同氮化镓层截面的SEM照片比较图。 FIG 2 is a SEM photograph of Comparative separation process views of different sections gallium nitride layer.

其中:a为第一缓冲层开始分解时的截面;b为第一缓冲层和第二缓冲层从蓝宝石基板分离出的氮化镓层截面;c为热处理结束之后分离的氮化镓基板和蓝宝石基板。 Wherein: a is a cross-section when the first buffer layer begins to decompose; B is a first buffer layer and second buffer layer separated from the sapphire substrate, gallium nitride layer cross section; C after the heat treatment of the separated sapphire substrate and the GaN end substrate.

[0033] [0033]

[0034] [0034]

具体实施方式 detailed description

[0035] 为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。 [0035] To make the present invention more comprehensible, a preferred embodiment hereby embodiments accompanied with figures are described in detail as follows.

[0036] 实施例1 [0036] Example 1

[0037] —种利用热分解特性获得自支撑氮化镓基板的方法,包括以下步骤: [0037] - Species thermal decomposition method for obtaining a self-supporting properties of the gallium nitride substrate, comprising the steps of:

[0038] 步骤I):在蓝宝石基板I上依次生长第一缓冲层3、第二缓冲层4(如图1a所示);第一缓冲层3是通过HVPE生长出来的氮化镓,它是在700°C温度中生长的,其生长厚度为2 μ m,生长时间为lOmin,V/III比为10 ;第二缓冲层是在第一缓冲层3生长完成后升温至9000C生长的,其厚度为100 μ m,生长时间为60min ;此时,第一缓冲层3在温度达到900°C以上时热分解为液体镓Ga和氮气N(如图1b所示); [0038] Step I): a first buffer layer 3 are sequentially grown on a sapphire substrate I, a second buffer layer 4 (FIG. 1a); a first GaN buffer layer 3 is grown by HVPE out, it is grown at 700 ° C temperature, which is grown to a thickness of 2 μ m, the growth time of lOmin, V / III ratio of 10; the second buffer layer is heated after the completion of the growth of the first buffer layer 3 is grown to 9000C, which thermal decomposition of a liquid gallium (Ga) and nitrogen N (shown in FIG. 1b) at this time, the first buffer layer 3 at a temperature of more than 900 ° C; thickness of 100 μ m, the growth time is 60min;

[0039] 步骤2):将第二缓冲层4升温至1000°C经热处理30min ;然后在第二缓冲层4上高温生长氮化镓厚膜层2,氮化镓厚膜层2是在第二缓冲层4热处理后升温至120(TC生长的,其厚度为300 um以上,生长时间为4hr ; [0039] Step 2): The second buffer layer 4 is heated by heat treatment to 1000 ° C for 30 min; then a second buffer layer 4 on the GaN thick film layer 2 grown at high temperatures, the gallium nitride layer 2 is thick at the two heat buffer layer 4 was heated to 120 (TC grown, having a thickness less than 300 um, the growth time of 4 hr;

[0040] 步骤3):在氮化镓厚膜层生长时,第一缓冲层3高温热分解为液体镓Ga和氮气N,使氮化镓厚膜层2与蓝宝石基板I之间产生空隙; [0040] Step 3): when grown GaN thick film layer, the first buffer layer 3 the thermal decomposition temperature of the liquid gallium (Ga) and nitrogen N, thick gallium nitride layer 2 and the voids between the sapphire substrate I;

[0041] 步骤4):氮化镓厚膜层2生长完后,在冷却过程中氮化镓厚膜层2与蓝宝石基板I逐渐分离,得到的氮化镓基板(如图1c所示)。 [0041] Step 4): After the growing gallium nitride thick film layer 2, a gallium nitride layer 2 is thick and the sapphire substrate I gradually separated during cooling, the resulting gallium nitride substrate (as shown in Figure 1c).

[0042] 上述步骤中氮化镓可用氮化铝或氮化铟替代,制备氮化铝或氮化铟厚膜层。 [0042] The above steps can be used gallium indium nitride aluminum nitride or alternatively, preparing aluminum nitride or indium nitride thick film layer.

[0043] 第一缓冲层3和第二缓冲层4是在相对低的温度下生长的,所以其物性热稳定性较差。 [0043] 3 and the first buffer layer a second buffer layer 4 is grown at a relatively low temperature, the physical properties of its poor thermal stability. 经过热处理之后,第一缓冲层3上会发生分解反应,容易气化的氮气N会变成气体挥发掉,镓Ga会以液体残留在蓝宝石基板I和氮化物基板的界面上。 After heat treatment, the first buffer layer 3 on the decomposition reaction may occur, easily gasified nitrogen N will evaporate into a gas, a liquid gallium (Ga) will remain in the interface between the sapphire substrate and the nitride substrate I. 也就是说,分解的第一缓冲层3里包括镓Ga和空隙以及未分解的氮化镓。 That is, the first buffer layer 3 in the decomposition of a void, and comprises gallium (Ga) and a gallium nitride undecomposed.

[0044] 下面显示的是上述化学分解反应式。 [0044] Shown below is a chemical decomposition reaction of the above formula.

[0045] 2GaN(s) — 2Ga(l)+N2(g) [0045] 2GaN (s) - 2Ga (l) + N2 (g)

[0046] 接着,界面上的液体镓Ga在氮化镓厚膜层2生长的时间段里部分可能会与从外面注入的氮离子重新结合。 [0046] Next, the liquid gallium Ga at the interface portion may be re-combined with the nitrogen ion implantation from outside the period of the gallium nitride layer 2 is grown in thick.

[0047] 因为此时的重新结合主要发生在异种基板(即蓝宝石基板I)的表面和氮化物基板的背面(对着异种基板的那一面),所以异种基板和第一缓冲层3上面的氮化物基板的结合力明显减弱,以一种空隙形式存在。 [0047] At this time, since the back surface recombination occurs primarily in the different substrate (i.e., a sapphire substrate I) and the surface of the nitride substrate (that side facing the different substrate), so the above heterogeneous substrate and the first buffer layer 3 nitrogen bonding force of the substrate was significantly reduced, voids exist in one form. 图2可见,a图中只有在第一缓冲层3中发生了选择性分离。 Figure 2 shows, a selective separation of FIG occurs only in the first buffer layer 3. 在氮化物基板与蓝宝石基板I分离的状态下,可以看到在氮化物基板的背面氮化镓的再结晶较多,这时因为比起异种基板的蓝宝石,在同种物质的氮化物表面上较容易发生液体镓的重新结合的过程。 In the sapphire substrate and the nitride substrate separated state I, the recrystallization can be seen more in the back of the gallium nitride substrate, then, as compared to on the surface of the sapphire substrate with dissimilar substances nitride more prone to liquid gallium during recombination. b图显示的是利用第一缓冲层和第二缓冲层从蓝宝石基板分离出的氮化物基板的截面的SEM照片。 FIG b shows a sectional SEM photograph using a first buffer layer and second buffer layer separated from the sapphire substrate, a nitride substrate. c图是热处理结束之后分离氮化物基板和蓝宝石基板后测得的SEM表面照片。 FIG c after the sapphire substrate and the nitride substrate after the separation heat treatment is an SEM photograph of the surface measured.

Claims (7)

  1. 1.一种利用热分解特性获得自支撑氮化镓基板的方法,其特征在于,包括以下步骤: 步骤I):在蓝宝石基板(I)上依次生长第一缓冲层(3)、第二缓冲层(4); 步骤2):在第二缓冲层(4)上高温生长氮化镓厚膜层(2); 步骤3):在氮化镓厚膜层(2)生长时,第一缓冲层(3)高温热分解为镓(Ga)和氮气(N),使氮化镓厚膜层(2)与蓝宝石基板(I)之间产生空隙; 步骤4):氮化镓厚膜层(2)生长完后,在冷却过程中氮化镓厚膜层(2)与蓝宝石基板(I)逐渐分离,得到的氮化镓基板。 1. A method for obtaining free-standing gallium nitride substrate by thermal decomposition characteristics, characterized by comprising the following steps: the I): on a sapphire substrate (I) successively growing a first buffer layer (3), a second buffer layer (4); step 2): on the second buffer layer (4) high-temperature grown GaN thick film layer (2); step 3): (2) grown on gallium nitride thick film layer, the first buffer layer (3) thermal decomposition of gallium (Ga) and nitrogen (N), gallium nitride thick film layer (2) and the sapphire substrate (I) voids; step 4): GaN thick film layer ( 2) after growth, thick gallium nitride layer (2) and the sapphire substrate (I) is gradually separated during cooling, the resulting gallium nitride substrate.
  2. 2.如权利要求1所述的利用热分解特性获得自支撑氮化镓基板的方法,其特征在于,所述步骤I)中第一缓冲层(3)是通过HVPE生长出来的氮化镓,它是在600~800°C温度中生长的,其生长厚度为I~3μπι,V/III比为10~100。 2. The thermal decomposition characteristics of the method of claim 1 obtained GaN self-supporting substrate, wherein said step I) a first buffer layer (3) is grown by HVPE GaN out, it is grown at a temperature of 600 ~ 800 ° C, which is grown to a thickness of I ~ 3μπι, V / III ratio of 10 to 100.
  3. 3.如权利要求1所述的利用热分解特性获得自支撑氮化镓基板的方法,其特征在于,所述步骤I)中第二缓冲层(4)是在第一缓冲层(3)生长完成后升温至900°C生长的,其厚度为50 ~100 μ m, V/III 比为10 ~1000。 3. The thermal decomposition characteristics of the method of claim 1 obtained GaN self-supporting substrate, wherein said step I), the second buffer layer (4) is (3) grown on the first buffer layer after completion of the growth temperature was raised to 900 ° C in a thickness of 50 ~ 100 μ m, V / III ratio of 10 to 1000.
  4. 4.如权利要求1所述的利用热分解特性获得自支撑氮化镓基板的方法,其特征在于,所述步骤2)与步骤I)之间,第二缓冲层(4)还升温至1000°C经热处理。 4. The thermal decomposition characteristics of the method of claim 1 obtained GaN self-supporting substrate, wherein between said step 2) with the I step), a second buffer layer (4) further heating to 1000 ° C heat treatment.
  5. 5.如权利要求4所述的利用热分解特性获得自支撑氮化镓基板的方法,其特征在于,所述步骤2)中氮化镓厚膜层(2)是在第二缓冲层(4)经热处理后继续升温至1200°C生长的,其厚度为300ymWi,V/III比为10~50。 5. The thermal decomposition characteristics of claim 4, wherein the self-supporting method of obtaining the gallium nitride substrate, wherein said step 2) thick gallium nitride layer (2) in the second buffer layer (4 ) after heat treatment was raised to 1200 ° C to continue the growth of a thickness of 300ymWi, V / III ratio of 10 to 50.
  6. 6.如权利要求1所述的利用热分解特性获得自支撑氮化镓基板的方法,其特征在于,所述第一缓冲层在温度达到900°C以上时热分解为液体镓(Ga)和氮气(N)。 6. The thermal decomposition characteristics of the method of claim 1 obtained GaN self-supporting substrate, wherein the first buffer layer at the above temperature reaches 900 ° C thermal decomposition of liquid gallium (Ga) and nitrogen (N).
  7. 7.如权利要求1所述的利用热分解特性获得自支撑氮化镓基板的方法,其特征在于,所述氮化镓可用氮化铝或氮化铟替代,制备氮化铝或氮化铟厚膜层。 7. The thermal decomposition characteristics of the method of claim 1 obtained GaN self-supporting substrate, wherein the gallium nitride or indium nitride aluminum nitride can be used alternatively, preparing aluminum nitride or indium nitride thick film layer.
CN 201410382392 2014-08-06 2014-08-06 Method for obtaining self-supporting gallium nitride substrates by using thermal decomposition characteristics CN104178807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201410382392 CN104178807A (en) 2014-08-06 2014-08-06 Method for obtaining self-supporting gallium nitride substrates by using thermal decomposition characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201410382392 CN104178807A (en) 2014-08-06 2014-08-06 Method for obtaining self-supporting gallium nitride substrates by using thermal decomposition characteristics

Publications (1)

Publication Number Publication Date
CN104178807A true true CN104178807A (en) 2014-12-03

Family

ID=51960140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201410382392 CN104178807A (en) 2014-08-06 2014-08-06 Method for obtaining self-supporting gallium nitride substrates by using thermal decomposition characteristics

Country Status (1)

Country Link
CN (1) CN104178807A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020078881A1 (en) * 2000-11-30 2002-06-27 Cuomo Jerome J. Method and apparatus for producing M'''N columns and M'''N materials grown thereon
US20030024475A1 (en) * 1998-06-18 2003-02-06 Tim Anderson Method and apparatus for producing group-III nitrides
CN1560900A (en) * 2004-03-05 2005-01-05 长春理工大学 Method of growing low dislocation gallium nitride on silicon substrate
US20070082465A1 (en) * 2005-10-12 2007-04-12 Samsung Corning Co., Ltd. Method of fabricating GaN substrate
CN101378008A (en) * 2008-09-19 2009-03-04 苏州纳维科技有限公司 Method for separating epitaxial layer and substrate
CN102031560A (en) * 2009-09-30 2011-04-27 中国科学院半导体研究所 Method for preparing large-size GaN self-support substrate
CN102828251A (en) * 2012-09-10 2012-12-19 中国科学院半导体研究所 Method for preparing aluminum nitride single crystal material
CN103633199A (en) * 2013-12-05 2014-03-12 中国科学院半导体研究所 Method for producing vertical-structured GaN-based light emitting diode by adopting sapphire substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030024475A1 (en) * 1998-06-18 2003-02-06 Tim Anderson Method and apparatus for producing group-III nitrides
US20020078881A1 (en) * 2000-11-30 2002-06-27 Cuomo Jerome J. Method and apparatus for producing M'''N columns and M'''N materials grown thereon
CN1560900A (en) * 2004-03-05 2005-01-05 长春理工大学 Method of growing low dislocation gallium nitride on silicon substrate
US20070082465A1 (en) * 2005-10-12 2007-04-12 Samsung Corning Co., Ltd. Method of fabricating GaN substrate
CN101378008A (en) * 2008-09-19 2009-03-04 苏州纳维科技有限公司 Method for separating epitaxial layer and substrate
CN102031560A (en) * 2009-09-30 2011-04-27 中国科学院半导体研究所 Method for preparing large-size GaN self-support substrate
CN102828251A (en) * 2012-09-10 2012-12-19 中国科学院半导体研究所 Method for preparing aluminum nitride single crystal material
CN103633199A (en) * 2013-12-05 2014-03-12 中国科学院半导体研究所 Method for producing vertical-structured GaN-based light emitting diode by adopting sapphire substrate

Similar Documents

Publication Publication Date Title
US7001791B2 (en) GaN growth on Si using ZnO buffer layer
US20100044719A1 (en) III-V Compound Semiconductor Epitaxy Using Lateral Overgrowth
US6648966B2 (en) Wafer produced thereby, and associated methods and devices using the wafer
US7169227B2 (en) Method for making free-standing AIGaN wafer, wafer produced thereby, and associated methods and devices using the wafer
WO2006126330A1 (en) METHOD FOR GROWTH OF GaN SINGLE CRYSTAL, METHOD FOR PREPARATION OF GaN SUBSTRATE, PROCESS FOR PRODUCING GaN-BASED ELEMENT, AND GaN-BASED ELEMENT
US20090239357A1 (en) AlGaN SUBSTRATE AND PRODUCTION METHOD THEREOF
US20110079766A1 (en) Process for fabricating iii-nitride based nanopyramid leds directly on a metalized silicon substrate
JP2008078275A (en) Method of manufacturing compound semiconductor element
JP2005247594A (en) Crystal growth method of group iii nitride, group iii nitride crystal and semiconductor device
JP2007049063A (en) Semiconductor light emitting element, lighting system employing it, and process for fabricating semiconductor light emitting element
Horng et al. Growth and characterization of 380-nm InGaN/AlGaN LEDs grown on patterned sapphire substrates
US20090087937A1 (en) Method for manufacturing nitride based single crystal substrate and method for manufacturing nitride based light emitting diode using the same
Hartono et al. Reduction of threading dislocation density in GaN grown on strain relaxed nanoporous GaN template
US8603898B2 (en) Method for forming group III/V conformal layers on silicon substrates
CN1900386A (en) Method for epitaxial growing AlxGa1-xN single crystal film on saphire lining bottom material
US20090280625A1 (en) Method for separating semiconductor layer from substrate
JP2005162526A (en) Method for making gallium nitride crystal
CN1996556A (en) A method for preparing the gallium nitride single crystal wafer
CN103915537A (en) Growth method of compound semiconductor epitaxial layer on silicon substrate and device structure with epitaxial layer
WO2007068756A1 (en) Process for growth of low dislocation density gan
JP2005064153A (en) Semiconductor layer
US20090155986A1 (en) Method for manufacturing gallium nitride single crystalline substrate using self-split
Guo et al. Comparative study of etching high crystalline quality AlN and GaN
CN1599032A (en) Growth GaN film on silicon substrate using hydride vapaur phase epitaxial method
CN101343733A (en) Method for MOVCD growth nitride epitaxial layer

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination