CN104177628B - 一种纳米银复合聚合物抗菌胶束及其制备方法 - Google Patents

一种纳米银复合聚合物抗菌胶束及其制备方法 Download PDF

Info

Publication number
CN104177628B
CN104177628B CN201410421010.2A CN201410421010A CN104177628B CN 104177628 B CN104177628 B CN 104177628B CN 201410421010 A CN201410421010 A CN 201410421010A CN 104177628 B CN104177628 B CN 104177628B
Authority
CN
China
Prior art keywords
micella
poly
polymer
aam
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410421010.2A
Other languages
English (en)
Other versions
CN104177628A (zh
Inventor
张超
童国权
黄岗
全昌云
刘杰
蒋庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN201410421010.2A priority Critical patent/CN104177628B/zh
Publication of CN104177628A publication Critical patent/CN104177628A/zh
Application granted granted Critical
Publication of CN104177628B publication Critical patent/CN104177628B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种纳米银复合聚合物抗菌胶束及其制备方法,所述的抗菌胶束以聚乙二醇和具有高临界溶解温度(UCST)响应特性的聚(丙烯酰胺-共聚-丙烯腈)分别为亲疏水链段,银离子通过配位键结合到胶束疏水内核的氰基上,经硼氢化钠还原,原位生成平均直径为4纳米的纳米银颗粒并均匀分散在平均直径为40纳米的胶束内。该纳米银修饰的聚合物胶束具有良好的生物相容性、独特的热响应性、优异的抗菌性能,能够有效抑制、杀灭大肠杆菌等微生物。

Description

一种纳米银复合聚合物抗菌胶束及其制备方法
技术领域
本发明涉及一种纳米银复合聚合物抗菌胶束及其制备方法,属于高分子化学、生物医学工程和生物医用材料领域。
背景技术
细菌无处不在,并在一定条件下生长、繁殖,甚至变异,不仅会引起各种材料的分解、变质和腐败,还会危害人类的健康。因此,如何有效地抑制细菌的生长和繁殖具有重要的现实意义。在众多的抗菌剂中,银系抗菌剂具有广谱、高效及不易产生耐药性等优点,广泛地运用于各种抗菌场合。银系抗菌剂主要分为银离子抗菌剂和银单质抗菌剂。目前市场上有多种银离子抗菌剂产品,如山宁泰Sanitized产品、TRA公司Silpure、陶氏SilvaDur™ET等产品都有广泛的使用。银单质抗菌剂也受广泛的关注。据统计,在全球范围内,有超过250种消费产品使用了银单质抗菌剂。
然而,无论是银离子还是单质银抗菌剂均存在许多不足之处。例如,银离子具有水溶性,在溶液中容易流失,从而降低其局部浓度;其次,银离子化学性质较活泼,对光和热敏感,易发生氧化反应,也导致其抗菌和杀菌性能下降。另外,人体内存在大量的蛋白质和氨基酸,银离子容易与巯基(-SH),氨基(-NH2)形成配位键,使蛋白质凝固,破坏细胞合成酶的活性,产生一定的毒性。银单质存在一个难以忽视的缺点,即银单质抗菌剂易发生团聚,释放银的速率较慢,抗菌效果不如银离子抗菌剂。
针对银离子在水溶液中易流失、易氧化、毒性大等问题,目前常通过静电相互作用或配位键将银离子负载在基质材料上,基质材料多采用天然高分子和合成高分子材料。也可将银离子还原为单质银颗粒,增加银系抗菌材料的稳定性。与微米或更大尺寸的单质银相比,纳米银处于固体和分子之间的“介态”,比表面积极大,具有表面效应、小尺寸效应和宏观隧道效应,具备超强的抗菌能力。公开号为CN 101278896A的中国专利申请公开了一种壳聚糖纳米银凝胶剂,具有抗菌效果好、药效持续时间长、无耐药性、对组织有修复功能等优点。
聚合物胶束是一种基于两亲性聚合物链段在溶液中亲疏水链段性质不同自组装形成具有“核-壳”结构的聚集体。组成胶束的聚合物分子随着外界的pH、温度、磁场、电场、光和氧化还原等条件的变化会发生相应的形态、结构或组成上的变化,从而可赋予胶束优异的生物化学性能和应用发展潜力。聚合物胶束常用于纳米药物载体的的构建。聚合物胶束作为负载银颗粒的基质材料用于生物体内抗菌、杀菌用途也具有独特的优势:胶束具有极低的临界胶束浓度(通常为10-6 M),经静脉稀释后,仍能在较低浓度下稳定存在;胶束尺寸极小,渗透性强,能穿透生物体组织杀死深层的细菌;胶束具有“核-壳”结构,核层多为亲水层,能有效地避免蛋白质吸附,延长体内循环时间,同时也避免了纳米银发生氧化及团聚。当嵌段共聚物中引入具有温度敏感性的链段时,在聚合物胶束具备天然被动靶向功能的同时,还赋予了其主动靶向给药功能。公开号为CN102671201A的中国专利申请公开了一种制备纳米银修饰聚合物胶束的方法,使用具有一定温度和pH敏感性的两亲性嵌段聚合物聚氧乙烯-聚(甲基丙烯酸二甲胺基乙酯-丙烯酸叔丁酯-丙烯酸)(PEO-b-P(DMA-stat-tBA-stat-AA))自组装所形成的聚合物胶束为载体,银离子通过静电相互作用吸附到胶束内核的丙烯酸结构单元侧链羧基上,经硼氢化钠还原,在胶束内核原位生成纳米银颗粒,有效地避免了纳米银颗粒的团聚问题,同时具有良好的抗菌杀菌效果。
通过银离子或银单质与聚合物配体基团之间的配位键,将银离子负载在基质材料上是本发明的理论依据。氮、氧原子含有孤对电子,可提供给银离子空轨道,形成银-氧和银-氮的金属配位键。公开号为CN103588931A的中国专利申请公开了一种温度响应性纳米银复合水凝胶的双原位合成方法,以甲基丙烯酸二甲氨基乙酯和2-丙烯酰胺基-2-甲基丙磺酸为单体,N,N’-亚甲基双丙烯酰胺为交联剂,聚乙二醇为成孔剂,硝酸银为银离子源,银离子与酰胺键上的氧和氮原子形成配位键,在氮气氛围下合成了温度响应性纳米纳米颗粒复合水凝胶,纳米银粒子均匀分散在水凝胶中,化学交联稳定性好。
发明内容
本发明的目的在于针对上述存在问题和不足,提供一种通过银离子与聚合物的氮、氧原子形成配位键,以硼氢化钠为还原剂,原位还原银离子生成银纳米颗粒,制备具有良好的生物相容性、独特的热响应性、优异的抗菌性能,能够有效抑制、杀灭大肠杆菌等微生物的纳米银复合聚合物抗菌胶束及其制备方法。
本发明的技术方案是这样实现的:
本发明所述的纳米银复合聚合物抗菌胶束,其特点是该抗菌胶束由甲氧基封端的聚乙二醇-聚(丙烯酰胺-丙烯腈)两亲性嵌段共聚物构成,且该抗菌胶束的结构为核壳结构,其内核的疏水段包载纳米银颗粒且具有UCST响应性,纳米银颗粒由可溶性银离子通过硼氢化钠还原剂被原位还原生成,银离子与聚合物中的氮、氧原子形成配位键。
其中,上述两亲性嵌段共聚物中丙烯酰胺与丙烯腈结构单元的摩尔比例为5:95~95:5。进一步地,上述两亲性嵌段共聚物中丙烯酰胺与丙烯腈结构单元的摩尔比例为40:60~60:40。
上述可溶性银离子来自于硝酸银。
上述抗菌胶束为球形。
本发明所述的纳米银复合聚合物抗菌胶束的制备方法,其特点是包括如下步骤:
1)ω-丙烯酰-聚乙二醇单甲醚的合成
将聚乙二醇单甲醚(mPEG)与碳酸钾按3:1的质量比加入到烧瓶中,加入适量溶剂,冰浴下逐滴滴加丙烯酰氯,丙烯酰氯与mPEG摩尔比为5:1,室温搅拌48 h,过滤、浓缩、沉淀后,真空干燥得到白色固体产物;
2)可逆加成-断裂链转移(RAFT)自由基聚合制备疏水链段Poly(AAm-co-AN)
将丙烯酰胺单体(AAm)和丙烯腈单体(AN)按一定摩尔比加入到茄形反应瓶中,加入适量链转移剂S-(苄酯)-S´-(乙醇)三硫代碳酸酯和引发剂偶氮二异丁腈(AIBN),加入适量溶剂充分搅拌溶解,无氧无水条件下反应24h,沉淀,真空干燥得到聚合物Poly(AAm-co-AN);
3)聚乙二醇-聚(丙烯酰胺-丙烯腈)[mPEG-b-Poly(AAm-co-AN)]的合成
将Poly(AAm-co-AN)和ω-丙烯酰-聚乙二醇单甲醚按1:10的摩尔比充分共溶于适量溶剂中,加入正己胺和三乙胺,正己胺、三乙胺与Poly(AAm-co-AN)的摩尔比为60:20:1,无水无氧条件下反应48h,沉淀,真空干燥得到聚合物mPEG-b- Poly(AAm-co-AN);
4)制备负载纳米银颗粒的抗菌胶束
将适量的mPEG-b-Poly(AAm-co-AN)聚合物溶于一定量的去离子水中,制得聚合物胶束溶液,升高温度加热至胶束溶液完全澄清透明,在超声下逐滴加入适量的硝酸银(AgNO3)溶液,mPEG-b-Poly(AAm-co-AN)聚合物中氰基与AgNO3的摩尔比为1:1,室温搅拌24h,逐滴加入硼氢化钠溶液,硼氢化钠与AgNO3的摩尔比为30:1,继续搅拌4h,透析除去未反应的硼氢化钠,得到包载纳米银颗粒的mPEG-b-Poly(AAm-co-AN)胶束,冷冻干燥备用即可。
本发明以丙烯酰胺、丙烯腈和ω-丙烯酰-聚乙二醇单甲醚(mPEG)为原料,制备两亲性聚合物聚乙二醇单甲醚-聚(丙烯酰胺-丙烯腈),并通过直接溶解法自组装形成具有高临界溶解温度响应性(UCST)的胶束,且该胶束具有良好的生物相容性、优异的抗菌性能,能够有效抑制、杀灭大肠杆菌等微生物,而且本发明中所涉及的聚乙二醇单甲醚(mPEG)和Poly(AAm-co-AN)的数均分子量对应为2000 g/mol和7000 g/mol,与目前制备银抗菌材料的方案相比,本发明制备的两亲性聚合物胶束具有独特的温度敏感性质,且制备方法简单,聚合物在加热条件下可直接溶解在水中,避免了有机溶剂溶剂残留问题,同时聚合物中含有大量的氮原子和氧原子,利用银离子与聚合物侧链胺基和氰基的氮原子或mPEG链段上的氧原子形成配位键,在硼氢化钠作用下,原位还原生成纳米银纳米颗粒,避免了纳米银的团聚,因此本发明有着重要的研究价值和应用前景。
下面结合附图对本发明作进一步的说明。
附图说明
图1是本发明中聚合物Poly(AAm-co-AN)7k和mPEG2k-b-Poly(AAm-co-AN)7k的核磁共振氢谱谱图。
图2是本发明中聚合物mPEG2k-b-Poly(AAm-co-AN)7k胶束的温度响应性曲线图。
图3是本发明中负载纳米银的mPEG2k-b-Poly(AAm-co-AN)7k胶束的X射线光电子能谱图。
图4是本发明中所得纳米银复合聚合物胶束的粒径大小和形态示意图。
图5是本发明中由动态光散射系统进行测量的纳米银复合聚合物胶束一周时间内的稳定性结果示意图。
图6是本发明中负载纳米银前后的mPEG2k-b-Poly(AAm-co-AN)7k胶束图片和紫外吸收情况示意图。
图7是本发明中纳米银复合mPEG2k-b-Poly(AAm-co-AN)7k胶束抗菌效果照片。
图8是本发明中空白胶束与负载纳米银胶束的细胞毒性结果示意图。
具体实施方式
如图4所示,本发明所述的纳米银复合聚合物抗菌胶束,是由甲氧基封端的聚乙二醇-聚(丙烯酰胺-丙烯腈)两亲性嵌段共聚物构成,且该抗菌胶束的结构为核壳结构,且为球形,其内核的疏水段包载纳米银颗粒且具有UCST响应性,纳米银颗粒由可溶性银离子通过硼氢化钠还原剂被原位还原生成,而且是原位生成平均直径为4纳米的纳米银颗粒并均匀分散在平均直径为40纳米的胶束内,可溶性银离子来自于硝酸银,银离子与聚合物中的氮、氧原子形成配位键。其中,两亲性嵌段共聚物中丙烯酰胺与丙烯腈结构单元的摩尔比例为5:95~95:5。进一步地,两亲性嵌段共聚物中丙烯酰胺与丙烯腈结构单元的摩尔比例为40:60~60:40。
本发明所述的纳米银复合聚合物抗菌胶束的制备方法如下:
1)ω-丙烯酰-聚乙二醇单甲醚的合成
将5.25g mPEG2k、1.80g无水碳酸钾与20 mL 二氯甲烷均匀混合,冷却至0℃;缓慢滴加2 mL含丙烯酰氯(1.10g)的二氯甲烷溶液,室温下搅拌48 h。反应完毕后,过滤,浓缩,在冷乙醚中重沉淀三次,抽滤,真空干燥得到白色固体产物丙烯酸聚乙二醇单甲醚酯;
2)可逆加成-断裂链转移(RAFT)自由基聚合制备疏水链段Poly(AAm-co-AN)
将2.84g丙烯酰胺、1.74g丙烯腈、156mg链转移剂S-(苄酯)-S´-(乙醇)三硫代碳酸酯和10.5mg AIBN依次溶于10 mL N,N-二甲基甲酰胺(DMF),氮气保护60℃下反应24h,迅速冷却,在冷甲醇中重沉淀三次,抽滤,真空干燥得黄色固体Poly (AAm-co-AN)7k
3)聚乙二醇-聚(丙烯酰胺-丙烯腈)[mPEG2k-b-Poly(AAm-co-AN)7k]的合成
将0.70g Poly(AAm-co-AN)7k和2.05g丙烯酸聚乙二醇单甲醚酯共溶于15 mL DMF,加入0.61g正己胺和0.27g三乙胺,氮气保护50℃反应48 h。所得溶液在甲醇中重沉淀,离心取沉淀,溶解,纯水透析48h,真空冷冻干燥得到白色产物mPEG2k-b-Poly(AAm-co-AN)7k
4)制备负载纳米银颗粒的抗菌胶束
将20 mg mPEG2k-b-Poly(AAm-co-AN)7k溶于40 mL去离子水,形成0.5 mg/mL的聚合物胶束溶液,然后加热至60 oC,至胶束溶液完全澄清透明,在超声下逐滴加入1mL 10mg/mL的硝酸银(AgNO3)溶液,室温搅拌24h。逐滴加入1mL 2.2 mg/mL的硼氢化钠溶液,溶液迅速变为棕黄色,继续搅拌4h。透析除去未反应的硼氢化钠,得到纳米银复合的mPEG2k-b-Poly(AAm-co-AN)7k胶束,透析后的纳米银复合聚合物胶束溶液呈棕黄色,长时间无团聚现象。冷冻干燥备用即可。DLS和SEM结果显示胶束直径在40nm左右。
纳米银复合聚合物胶束基质材料mPEG2k-b-Poly(AAm-co-AN)7k的结构表征:
聚合物胶束基质材料mPEG2k-b-Poly(AAm-co-AN)7k的结构由核磁共振氢谱表征,测试结果如图1所示。
所得纳米银复合聚合物胶束基质材料的UCST响应性由紫外分光光度计测量,聚合物胶束浓度为0.3mg/mL,温度区间为15~81℃,测试结果如图2所示,胶束溶液随着温度升高,透射率逐渐变大。
纳米银复合聚合物胶束的配位键表征和形貌及稳定性评价:
银离子,银单质与氧原子和氮原子胶束间的配位共价键作用通过X射线光电子能谱表征(XPS)。在Ag3d XPS 谱图中,空白胶束没有出现银的特征吸收峰。银离子胶束在374.5和 368.5 eV 出现了银的特征吸收峰。经硼氢化钠还原后,在纳米银复合聚合物胶束,银的特征峰发生了偏移,出现在374和368 eV,说明银与聚合物形成了金属配位键。在N1s,C1s,和O1s XPS 谱图中也发生了类似的偏移,证明了银与聚合物中的氮、氧原子形成了配位键。测量结果如图3所示。
所得纳米银复合聚合物胶束的粒径大小采用动态光散射系统进行测量,其形态则通过透射电子显微镜来观察确定,测试结果如图4所示。
所得纳米银复合聚合物胶束的稳定性由动态光散射系统进行测量,连续测量一周,测量结果如图5所示。
包载纳米银前后聚合物胶束紫外吸收情况有紫外分光光度计测得,可以看到包载纳米银后在400 nm波长处有明显的吸收峰,证明纳米银的存在,测量结果如图6所示。
纳米银复合聚合物胶束的抗菌性能评价:
将不同浓度的溶有纳米银复合聚合物胶束的营养肉汤培养基加入到96孔板内,调节每孔大肠埃希菌浓度为1×107 CFU/mL,每孔体积为200 L,每孔加入纳米银复合聚合物胶束浓度分别为6.25、12.5、18.75、25、37.5、50、75、100 g/mL,37℃培养24 h,每个浓度三个平行测试。将没空菌液接种到平板计数培养基上,37℃培养24 h。抗菌性能结果如图7所示,分别为12.5、25、37.5、50 g/mL,显示在胶束浓度分别是37.5和50g/mL具有杀菌性,在12.5和 25g/mL具有抗菌性。
纳米银复合聚合物胶束的体外毒性测试实验:
将L02细胞以每孔5000个细胞植于培养板内,每孔预先加入200 L RPMI-1640培养基,在37℃培养箱内培养24 h。然后,分别加入空白聚合物胶束和纳米银复合聚合物胶束,调节至浓度分别为12.5、25、50、75、100 g/mL,37℃培养1天。样品分别在同一时间取样,移去培养基,用PBS清洗细胞两次后置于含80 μL RPMI-1640培养基和20μL MTT的PBS溶液(5mg/mL)的培养板内。所得沉淀物溶解于150 L DMSO并用酶标仪进行分析。实验结果如图8所示,显示在较低浓度,负载纳米银胶束具有较小的细胞毒性。
本发明是通过实施例来描述的,但并不对本发明构成限制,参照本发明的描述,所公开的实施例的其他变化,如对于本领域的专业人士是容易想到的,这样的变化应该属于本发明权利要求限定的范围之内。

Claims (5)

1.一种纳米银复合聚合物抗菌胶束,其特征在于该抗菌胶束由甲氧基封端的聚乙二醇-聚(丙烯酰胺-丙烯腈)两亲性嵌段共聚物构成,且该抗菌胶束的结构为核壳结构,其内核的疏水段包载纳米银颗粒且当两亲性嵌段共聚物中丙烯酰胺与丙烯腈结构单元按摩尔比例为5:95~95:5进行配比时具有UCST响应性,纳米银颗粒由可溶性银离子通过硼氢化钠还原剂被原位还原生成,银离子与聚合物中的氮、氧原子形成配位键。
2.根据权利要求1所述的纳米银复合聚合物抗菌胶束,其特征在于上述两亲性嵌段共聚物中丙烯酰胺与丙烯腈结构单元的摩尔比例为40:60~60:40。
3.根据权利要求1所述的纳米银复合聚合物抗菌胶束,其特征在于上述可溶性银离子来自于硝酸银。
4.根据权利要求1所述的纳米银复合聚合物抗菌胶束,其特征在于上述抗菌胶束为球形。
5.一种制备如权利要求1-4所述纳米银复合聚合物抗菌胶束的方法,其特征在于包括如下步骤:
1)ω-丙烯酰-聚乙二醇单甲醚的合成
将聚乙二醇单甲醚mPEG与碳酸钾按3:1的质量比加入到烧瓶中,加入适量溶剂,冰浴下逐滴滴加丙烯酰氯,丙烯酰氯与mPEG摩尔比为5:1,室温搅拌48 h,过滤、浓缩、沉淀后,真空干燥得到白色固体产物;
2)可逆加成-断裂链转移(RAFT)自由基聚合制备疏水链段Poly(AAm-co-AN)
将丙烯酰胺单体(AAm)和丙烯腈单体(AN)按一定摩尔比加入到茄形反应瓶中,加入适量链转移剂S-(苄酯)-S´-(乙醇)三硫代碳酸酯和引发剂偶氮二异丁腈(AIBN),加入适量溶剂充分搅拌溶解,无氧无水条件下反应24h,沉淀,真空干燥得到聚合物Poly(AAm-co-AN);
3)聚乙二醇-聚(丙烯酰胺-丙烯腈)[mPEG-b-Poly(AAm-co-AN)]的合成
将Poly(AAm-co-AN)和ω-丙烯酰-聚乙二醇单甲醚按1:10的摩尔比充分共溶于适量溶剂中,加入正己胺和三乙胺,正己胺、三乙胺与Poly(AAm-co-AN)的摩尔比为60:20:1,无水无氧条件下反应48h,沉淀,真空干燥得到聚合物mPEG-b- Poly(AAm-co-AN);
4)制备负载纳米银颗粒的抗菌胶束
将适量的mPEG-b-Poly(AAm-co-AN)聚合物溶于一定量的去离子水中,制得聚合物胶束溶液,升高温度加热至胶束溶液完全澄清透明,在超声下逐滴加入适量的硝酸银(AgNO3)溶液,mPEG-b-Poly(AAm-co-AN)聚合物中氰基与AgNO3的摩尔比为1:1,室温搅拌24h,逐滴加入硼氢化钠溶液,硼氢化钠与AgNO3的摩尔比为30:1,继续搅拌4h,透析除去未反应的硼氢化钠,得到包载纳米银颗粒的mPEG-b-Poly(AAm-co-AN)胶束,冷冻干燥备用即可。
CN201410421010.2A 2014-08-25 2014-08-25 一种纳米银复合聚合物抗菌胶束及其制备方法 Expired - Fee Related CN104177628B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410421010.2A CN104177628B (zh) 2014-08-25 2014-08-25 一种纳米银复合聚合物抗菌胶束及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410421010.2A CN104177628B (zh) 2014-08-25 2014-08-25 一种纳米银复合聚合物抗菌胶束及其制备方法

Publications (2)

Publication Number Publication Date
CN104177628A CN104177628A (zh) 2014-12-03
CN104177628B true CN104177628B (zh) 2017-03-15

Family

ID=51958991

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410421010.2A Expired - Fee Related CN104177628B (zh) 2014-08-25 2014-08-25 一种纳米银复合聚合物抗菌胶束及其制备方法

Country Status (1)

Country Link
CN (1) CN104177628B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104841483B (zh) * 2015-04-21 2019-03-01 南开大学 一种温敏材料负载的Pd催化剂的制备方法及其应用研究
CN106589408B (zh) * 2016-10-31 2019-03-01 华东师范大学 一种基于胞嘧啶核苷的超分子水凝胶及其制备方法和应用
CN108671262B (zh) * 2018-07-06 2021-09-24 华南师范大学 一种栓塞剂及其制备方法和应用
CN111116859B (zh) * 2019-12-31 2021-08-03 杭州吉华高分子材料股份有限公司 一种抗菌改性水性聚氨酯的制备方法
CN111690917A (zh) * 2020-05-26 2020-09-22 复旦大学 一种稳定嵌段共聚物胶束模板法制备的材料表面金属纳米阵列的方法
CN112480340B (zh) * 2020-11-13 2022-12-16 江苏大学 一种ucst型非离子水溶性聚合物及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Diverse Thermoresponsive Behaviors of Uncharged UCST Block";Hu Zhang et al.;《Langmuir》;20140821;第30卷;第11433-11441页 *

Also Published As

Publication number Publication date
CN104177628A (zh) 2014-12-03

Similar Documents

Publication Publication Date Title
CN104177628B (zh) 一种纳米银复合聚合物抗菌胶束及其制备方法
Tian et al. Smart stimuli-responsive chitosan hydrogel for drug delivery: A review
Youssef et al. Morphological, electrical & antibacterial properties of trilayered Cs/PAA/PPy bionanocomposites hydrogel based on Fe3O4-NPs
Zhang et al. Synthesis of lanthanum doped carbon dots for detection of mercury ion, multi-color imaging of cells and tissue, and bacteriostasis
Gao et al. pH/redox responsive core cross-linked nanoparticles from thiolated carboxymethyl chitosan for in vitro release study of methotrexate
Fan et al. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique
Mohan et al. Controlling of silver nanoparticles structure by hydrogel networks
Bardajee et al. Kappa carrageenan-g-poly (acrylic acid)/SPION nanocomposite as a novel stimuli-sensitive drug delivery system
CN102344151B (zh) 一种普鲁士蓝纳米空心橄榄球
Eivazzadeh-Keihan et al. The latest advances in biomedical applications of chitosan hydrogel as a powerful natural structure with eye-catching biological properties
CN102432974B (zh) 一种表面沉积抗菌纳米银的聚合物囊泡及其制备方法
Zheng et al. Synthesis and characterization of dopamine-modified Ca-alginate/poly (N-isopropylacrylamide) microspheres for water retention and multi-responsive controlled release of agrochemicals
Jin et al. Facile synthesis of gold nanorods/hydrogels core/shell nanospheres for pH and near-infrared-light induced release of 5-fluorouracil and chemo-photothermal therapy
Gui et al. Embedding fluorescent mesoporous silica nanoparticles into biocompatible nanogels for tumor cell imaging and thermo/pH-sensitive in vitro drug release
Li et al. Hybrid vesicles co-assembled from anionic graft copolymer and metal ions for controlled drug release
Zhou et al. Preparation of biodegradable PEGylated pH/reduction dual-stimuli responsive nanohydrogels for controlled release of an anti-cancer drug
El-Sherif et al. Hydrogels as template nanoreactors for silver nanoparticles formation and their antimicrobial activities
Li et al. Efficient fabrication of reversible pH-induced carboxymethyl chitosan nanoparticles for antitumor drug delivery under weakly acidic microenvironment
CN103705460B (zh) 一种酶促交联载药纳米胶束的制备方法
CN102702451B (zh) 一种pH敏感且生物相容高效抗菌的聚合物胶束及其制备方法
Yi et al. Study on β-cyclodextrin-complexed nanogels with improved thermal response for anticancer drug delivery
Reddy et al. pH sensitive poly (methyl methacrylate-co-acryloyl phenylalanine) nanogels and their silver nanocomposites for biomedical applications
Cui et al. Advanced in carbon dot-based hydrogels for antibacterial, detection and adsorption
Durmuş et al. Synthesis, characterization, and in vitro drug release properties of AuNPs/p (AETAC-co-VI)/Q nanocomposite hydrogels
Dong et al. The stimuli-responsive properties of hydrogels based on natural polymers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170315