CN104169724B - 改进的加速计 - Google Patents
改进的加速计 Download PDFInfo
- Publication number
- CN104169724B CN104169724B CN201380013993.XA CN201380013993A CN104169724B CN 104169724 B CN104169724 B CN 104169724B CN 201380013993 A CN201380013993 A CN 201380013993A CN 104169724 B CN104169724 B CN 104169724B
- Authority
- CN
- China
- Prior art keywords
- accelerometer
- mass
- deflection
- actuator
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 230000001133 acceleration Effects 0.000 claims abstract description 8
- 230000003287 optical effect Effects 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 230000008485 antagonism Effects 0.000 claims description 2
- 239000013307 optical fiber Substances 0.000 description 10
- 230000035945 sensitivity Effects 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000004484 Briquette Substances 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000009501 film coating Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000006117 anti-reflective coating Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5642—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/0802—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/093—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by photoelectric pick-up
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/125—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5607—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5642—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
- G01C19/5649—Signal processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5719—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0805—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
- G01P2015/0808—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
- G01P2015/0811—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
- G01P2015/0814—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Micromachines (AREA)
- Pressure Sensors (AREA)
Abstract
本发明提供了一种加速计,该加速计包括置于固定的基底内的质量块,其中该质量块借助一个或多个V形梁连接到所述基底。通过测量所述一个或多个V形梁的挠度来确定加速度。
Description
技术领域
本发明涉及加速计等。
背景技术
加速计通常采用弹簧上的阻尼质量块。在外部加速度的影响下,质量块从其中立位置挠曲。测量挠度并由此计算加速度。通常来说,对一组固定电极与一组附接到质量块的电极之间的电容加以测量。这种方法是简单、可靠且低成本的。
现代加速计通常是小的微机电系统(MEMS),并且仅仅由具有质量块(也称为惯性质量)的悬臂梁组成。由密封在该装置中的残余气体来产生阻尼。制造这种装置的通用方法为由单个硅块蚀刻出这些部件。质量块移动时,测量该质量块与悬挂该质量块的悬臂梁的基座之间的位移。
因为是低成本且体积小的,所以MEMS加速计在很多现代装置中常常被作为部件来使用。固态加速计出现在很多当下的智能手机中,例如,使得手机软件能够检测其朝向并相应地旋转显示器。
发明内容
然而,这种装置的灵敏度是有限的,创建具有增大的灵敏度的MEMS型装置就是有利的。因此本发明提供了一种加速计,该加速计包括置于固定的基底内的质量块,其中所述质量块通过一个或多个V形梁连接到所述基底,通过测量所述V形梁的挠度来确定基底的加速度。
这样一种布置导致挠度被放大,从而提高装置对加速度的灵敏度。
如果所述质量块关于所述固定的基底移动,则V形梁通过在中部弓曲或弯曲而挠曲并且该挠曲被探测器拾取。因为几何学上,所述V形梁的挠度大于所述质量块的运动,这在加速计中形成放大从而使其更灵敏。
可以通过检测电容变化或通过光电检测来进行检测。其中,在利用光学检测方法时,将光学反射覆层置于所述V形梁的顶点以提高灵敏度是可行的,例如金或其它合适的反射性金属。这形成了可用于测量挠度的法布里-珀罗干涉仪的一个镜。
如果使用一个V形梁,则法布里-珀罗腔可以由来自V形梁镜的反射和询问该装置的光纤端部形成。所述V形梁无需是铰接式的。可以使用笔直的或弓形的梁,只要其在正确的方向上以可预知的方式挠曲即可。
所述法布里-珀罗腔可以形成于两个相邻硅块的对置的侧壁之间。硅在光学波长超过1.13μm时是可透射光的,因此选择在红外区的适当波长,例如:1.55μm,所述腔可以被穿过其中一个硅块进入的光照亮。通过将这些硅块制造成楔形而不是矩形,可以防止来自硅块的外侧壁的不期望的附加反射。
光照可以由单模光纤递送,然而也可以采用多模光纤。从所述腔输出的光会由同一光纤来收集(反射模式),或者由腔的相反侧上的第二光纤来收集(透射模式)。所述光纤可具有透镜以便校准光。校准会产生更高精细度的腔,同时也确保光至输出光纤中以进行感测的最大耦合。如果镜块是楔形的,则输入光纤应被倾斜安装,使得从该光纤发出的轴向射线被折射而在进入第一块时沿着所述腔的轴线。
对于具有单个V形梁的设计来说,所述法布里-珀罗腔可以另外形成于所述V形梁上的镜与所述光纤的端面之间。
对于所述加速计的所有变型来说,镜面可以被覆有薄金属层,以便实现更高的反射率并因此实现更高的腔精细度。也可以使用高反射率的薄膜覆层或者分布式布拉格反射器。此外,输入和输出光纤端面可以被覆有抗反射覆层以防止从这些表面产生不期望的反射。
值得注意的是,尽管此处所描述的装置为光学加速计,所描述的机械放大方法也可被用于增大采用电读出器的加速计的灵敏度和/或带宽。
在一个实施方式中使用两个V形梁。它们沿反方向挠曲。这使得通过允许对分隔开的梁的两个最大挠曲点之间进行测量,对于给定质量位移腔长度的变化加倍从而进一步提高了该装置的灵敏度。在此实施方式中,所述两个梁之间的间隔可方便地用于减轻例如导致错误测量的系统横动运动之类的影响,因此这个两个梁系统促进更高精确度以及更高放大率。在此情况下,所述法布里-珀罗腔形成于V形梁上的两个反射表面之间。
虽然本说明着眼于测量一个方向上的加速度,但是所述质量块的各个面都可以固定有V形梁。在适当弹性的情况下这些梁也可提供用于所述质量块的回复力。
该装置具有MEMS装置的所有优点(包括例如紧密度、可加工性、精密度之类的品质)。此外,在光学寻址时,其具有光电系统的所有优点(包括适于恶劣环境、无电磁干扰、高带宽、没有连接导体而因此可被用在敏感环境中)。
质量块运动的放大在保留相同灵敏度的同时允许所述加速计的谐振频率增大并由此测量带宽增大。另选地,对于给定带宽允许灵敏度提高。最普遍来说,其允许增大带宽-灵敏度的乘积。
所述装置可被用在任何采用加速计的环境中。因此存在巨大的商机。这可以用于导航和制导系统、材料和结构/系统的动态检测。其特别适合于例如用于安全气囊、惯性传感器、虚拟现实/娱乐系统(例如Nintendo WiiTM)以及移动通信的MEMS加速计之类的微型系统。这使其本身在例如恶劣环境(高EMI、爆炸物等等)或者高保真、高带宽应用时光学系统比电气系统更受青睐的情况下实现小型化和高性能。
附图说明
现在将参照下列附图来描述本发明:
图1示出了根据本发明第一实施方式的加速计的平面图。
图2示出了根据本发明第二实施方式的加速计的平面图。
图3示出了根据本发明第三实施方式的加速计的平面图。
具体实施方式
在图1中,质量块10被蚀刻到硅块12中,使得其能够在硅腔内移动。这通过在绝缘体硅片上对硅进行光刻和反应离子刻蚀(RIE)以及湿法刻蚀制造腔来实现。单个V形梁被定位在质量块10与块12的边缘之间并且被附接到该块的壁上。利用UV固化环氧树脂和主动对准技术来组装该装置。质量块通过弹簧15与块的壁相接触,该弹簧将运动限定在一个方向上并且提供回复力。
质量块的运动导致V形梁挠曲,这会导致在其中心在与质量块运动正交的方向上的放大挠曲。硅镜被安装在V形梁的中心处,使得在该镜与固定镜之间形成法布里-珀罗腔。
利用薄膜涂层技术的溅射涂膜/蒸发,薄的金涂层或其它反射层16可另选地设置在梁上以用作镜子。光分析仪18可以检测梁的运动。通过一个或两个光纤的询问来检测放大的运动。该装置可以采用标准微机电系统(MEMS)加工过程由硅来制成。
在图2的第二实施方式中,使用两个V形梁,使得每个梁中的放大的运动与另一个中的方向相反。因为这两个梁沿相反且相等的方向挠曲,所以这使得质量块运动能够另外放大2倍。
在此情况下,在安装于两个V形梁14、14’上的镜子16、16’之间形成法布里-珀罗腔。
与单个V形梁的设计相比,具有两个V形梁的设计在交叉轴灵敏度方面提供了更好的性能,因为沿着与镜子运动相同的轴线所施加的加速度在两个V形梁上会具有相同的效果,而不改变该腔的长度。
在图3中,第二V形梁24被附接到第一V形梁14的中部并被附接到基底的壁。因为当第一V形梁挠曲则第二V形梁会将该挠曲再放大,这就使放大率倍增。第三V形梁34被附接到第二V形梁24与基底的壁的中点,因此还提供了由第一V形梁14、第二V形梁24和第三V形梁34所引起的幅度的成倍增大。事实上,能够具有所有梁都位于基底的壁与前一V形梁的顶点之间的级联V形梁4。尽管这在研究和蚀刻过程中都为加工增添了复杂性并且会降低稳健性,然而在高度精确化的应用中,所需的工程挑战对于所获得的利益来说是值得的。
在本发明的另一实施方式中,V形梁挠曲的程度确定由致动器产生的对抗质量块运动的作用力的大小。该致动器可以例如为静电致动器或热致动器。这将出现在以如下方式操作的闭环模式中,即:使得V形梁的挠度持续确定防止加速计以非线性模式操作所需的作用力的大小。因此,可以另外通过测量由致动器施加的作用力的大小来确定加速度。
Claims (11)
1.一种加速计,该加速计包括置于固定的基底内的质量块,其中所述质量块通过一个或多个V形梁连接到所述基底,并且通过测量所述一个或多个V形梁的挠度来确定加速度,所述一个或多个V形梁包括被覆有反射率增大层的区段,其中通过光学装置测量所述挠度。
2.根据权利要求1所述的加速计,其中在所述一个或多个V形梁的最大挠曲点处测量所述一个或多个V形梁的挠度。
3.根据权利要求1所述的加速计,其中所述光学装置是光缆,并且所述光缆的端部与一个V形梁形成法布里-珀罗腔。
4.根据权利要求1所述的加速计,该加速计包括位于所述质量块的同一侧上的两个梁,其中这两个V形梁沿彼此相反的方向挠曲。
5.根据权利要求4所述的加速计,其中,在这两个相反的V形梁之间形成法布里-珀罗腔。
6.根据权利要求1所述的加速计,其中所述反射率增大层包含金。
7.根据权利要求1所述的加速计,其中另一V形梁从所述V形梁悬垂并被连接到所述基底。
8.根据权利要求1所述的加速计,其中所述质量块和基底均由硅制成。
9.根据权利要求1所述的加速计,其中所述一个或多个V形梁的挠度确定由致动器产生的对抗质量块运动的作用力的大小。
10.根据权利要求9所述的加速计,其中所述致动器是静电致动器。
11.根据权利要求9所述的加速计,其中所述致动器是热致动器。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1200521.1 | 2012-01-13 | ||
GB1200521.1A GB2498520A (en) | 2012-01-13 | 2012-01-13 | Accelerometer |
PCT/GB2013/000012 WO2013104890A1 (en) | 2012-01-13 | 2013-01-11 | Improvements in accelerometers |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104169724A CN104169724A (zh) | 2014-11-26 |
CN104169724B true CN104169724B (zh) | 2016-12-07 |
Family
ID=45813948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380013993.XA Expired - Fee Related CN104169724B (zh) | 2012-01-13 | 2013-01-11 | 改进的加速计 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9470527B2 (zh) |
EP (1) | EP2802882A1 (zh) |
JP (1) | JP6082028B2 (zh) |
CN (1) | CN104169724B (zh) |
GB (2) | GB2498520A (zh) |
HK (1) | HK1203628A1 (zh) |
WO (1) | WO2013104890A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2498520A (en) * | 2012-01-13 | 2013-07-24 | Secr Defence | Accelerometer |
DE102015217430A1 (de) * | 2015-09-11 | 2017-03-16 | Siemens Aktiengesellschaft | Faseroptischer Beschleunigungssensor |
CN111337701B (zh) * | 2020-03-20 | 2023-08-04 | 南京智慧基础设施技术研究院有限公司 | 一种加速度检测的传感装置 |
CN114034300A (zh) * | 2021-11-09 | 2022-02-11 | 中国电子科技集团公司信息科学研究院 | 光学加速度计和惯性导航系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001098786A1 (en) * | 2000-06-21 | 2001-12-27 | Input Output, Inc. | Accelerometer with folded beams |
EP1245960A2 (fr) * | 2001-02-26 | 2002-10-02 | Sagem S.A. | Accéléromètre à lames vibrantes. |
CN101131354A (zh) * | 2006-08-23 | 2008-02-27 | 中国科学院微电子研究所 | 一种三角形结构的微悬臂梁传感器及其制作方法 |
CN101271124A (zh) * | 2008-05-16 | 2008-09-24 | 中国科学院上海微系统与信息技术研究所 | L形梁压阻式微加速度计及其制作方法 |
CN101443629A (zh) * | 2006-03-10 | 2009-05-27 | 大陆-特韦斯贸易合伙股份公司及两合公司 | 具有联接梁的转速传感器 |
CN101858929A (zh) * | 2010-05-21 | 2010-10-13 | 中国科学院上海微系统与信息技术研究所 | 对称组合弹性梁结构电容式微加速度传感器及制作方法 |
CN102128953A (zh) * | 2010-12-10 | 2011-07-20 | 中国科学院上海微系统与信息技术研究所 | 对称倾斜折叠梁结构电容式微加速度传感器 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69509312T2 (de) * | 1994-06-29 | 1999-11-04 | New Sd, Inc. | Beschleunigungsmesser sowie Verfahren zu seiner Herstellung |
GB9416683D0 (en) * | 1994-08-18 | 1994-10-19 | British Tech Group | Accelerometer |
US6046840A (en) * | 1995-06-19 | 2000-04-04 | Reflectivity, Inc. | Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements |
US6183097B1 (en) | 1999-01-12 | 2001-02-06 | Cornell Research Foundation Inc. | Motion amplification based sensors |
US6401536B1 (en) * | 2000-02-11 | 2002-06-11 | Motorola, Inc. | Acceleration sensor and method of manufacture |
US6662658B2 (en) * | 2001-01-17 | 2003-12-16 | Honeywell International, Inc. | Whiffletree accelerometer |
US7428054B2 (en) * | 2002-10-15 | 2008-09-23 | University Of Maryland | Micro-optical sensor system for pressure, acceleration, and pressure gradient measurements |
US6955085B2 (en) * | 2003-06-02 | 2005-10-18 | Weatherford/Lamb, Inc. | Optical accelerometer or displacement device using a flexure system |
US7137299B2 (en) * | 2005-04-21 | 2006-11-21 | Northrop Grumman Corporation | Fiber optic accelerometer |
US7583390B2 (en) * | 2006-03-02 | 2009-09-01 | Symphony Acoustics, Inc. | Accelerometer comprising an optically resonant cavity |
CA2569159C (en) * | 2006-11-28 | 2015-01-13 | Nanometrics Inc. | Inertial sensor |
US20080289429A1 (en) * | 2007-05-22 | 2008-11-27 | Zhou Tiansheng | Fiber optic mems seismic sensor with mass supported by hinged beams |
WO2008156018A1 (ja) * | 2007-06-18 | 2008-12-24 | Alps Electric Co., Ltd. | 静電容量型加速度センサ |
US7661313B2 (en) * | 2007-11-05 | 2010-02-16 | The United States Of America As Represented By The Secretary Of The Navy | Acceleration strain transducer |
JP5431076B2 (ja) * | 2009-09-03 | 2014-03-05 | 日本発條株式会社 | 車両用シートのスライド構造 |
JP2011153836A (ja) * | 2010-01-26 | 2011-08-11 | Seiko Epson Corp | 加速度センサー、及び加速度計 |
US8904867B2 (en) * | 2010-11-04 | 2014-12-09 | Qualcomm Mems Technologies, Inc. | Display-integrated optical accelerometer |
GB2498520A (en) * | 2012-01-13 | 2013-07-24 | Secr Defence | Accelerometer |
-
2012
- 2012-01-13 GB GB1200521.1A patent/GB2498520A/en not_active Withdrawn
-
2013
- 2013-01-11 EP EP13703854.3A patent/EP2802882A1/en not_active Withdrawn
- 2013-01-11 GB GB1300511.1A patent/GB2498454B/en active Active
- 2013-01-11 WO PCT/GB2013/000012 patent/WO2013104890A1/en active Application Filing
- 2013-01-11 US US14/371,225 patent/US9470527B2/en not_active Expired - Fee Related
- 2013-01-11 CN CN201380013993.XA patent/CN104169724B/zh not_active Expired - Fee Related
- 2013-01-11 JP JP2014551670A patent/JP6082028B2/ja not_active Expired - Fee Related
-
2015
- 2015-04-29 HK HK15104167.2A patent/HK1203628A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001098786A1 (en) * | 2000-06-21 | 2001-12-27 | Input Output, Inc. | Accelerometer with folded beams |
EP1245960A2 (fr) * | 2001-02-26 | 2002-10-02 | Sagem S.A. | Accéléromètre à lames vibrantes. |
CN101443629A (zh) * | 2006-03-10 | 2009-05-27 | 大陆-特韦斯贸易合伙股份公司及两合公司 | 具有联接梁的转速传感器 |
CN101131354A (zh) * | 2006-08-23 | 2008-02-27 | 中国科学院微电子研究所 | 一种三角形结构的微悬臂梁传感器及其制作方法 |
CN101271124A (zh) * | 2008-05-16 | 2008-09-24 | 中国科学院上海微系统与信息技术研究所 | L形梁压阻式微加速度计及其制作方法 |
CN101858929A (zh) * | 2010-05-21 | 2010-10-13 | 中国科学院上海微系统与信息技术研究所 | 对称组合弹性梁结构电容式微加速度传感器及制作方法 |
CN102128953A (zh) * | 2010-12-10 | 2011-07-20 | 中国科学院上海微系统与信息技术研究所 | 对称倾斜折叠梁结构电容式微加速度传感器 |
Also Published As
Publication number | Publication date |
---|---|
GB201200521D0 (en) | 2012-02-29 |
JP2015503759A (ja) | 2015-02-02 |
HK1203628A1 (zh) | 2015-10-30 |
GB2498454A (en) | 2013-07-17 |
GB2498454B (en) | 2016-06-22 |
WO2013104890A1 (en) | 2013-07-18 |
GB201300511D0 (en) | 2013-02-27 |
CN104169724A (zh) | 2014-11-26 |
US9470527B2 (en) | 2016-10-18 |
US20140352432A1 (en) | 2014-12-04 |
GB2498520A (en) | 2013-07-24 |
JP6082028B2 (ja) | 2017-02-15 |
EP2802882A1 (en) | 2014-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10401377B2 (en) | Optical sensor system and methods of use thereof | |
CN104169724B (zh) | 改进的加速计 | |
CN104166015A (zh) | 基于单片集成的高精度、大量程光学nems微加速度计 | |
Lee et al. | Air gap fiber Fabry–Pérot interferometer for highly sensitive micro-airflow sensing | |
IL264238A (en) | Display of a microelectromechanical system device with an optical directional coupler | |
US9778042B2 (en) | Opto-mechanical inertial sensor | |
CN103901227A (zh) | 硅微谐振式加速度计 | |
CN112816737A (zh) | 一种基于半球形fp腔片上集成光机加速度计及制造方法 | |
CN102060259A (zh) | 基于硅mems敏感结构融合光学检测技术的微光机电传感器及其应用方法 | |
US5099690A (en) | Fiber-optic gyroscope accelerometer | |
CN201382956Y (zh) | 集成光波导加速度计 | |
US20230204360A1 (en) | Optical fiber sensor-based inertial measurement system | |
CN206161145U (zh) | 一种分布式光纤振动传感系统 | |
CN109655635A (zh) | 基于迈克尔逊干涉仪的微型偏轴光纤迈克尔逊非本征型加速度计 | |
CN101726628B (zh) | 基于光纤多模干涉效应的光学微机械加速度传感器及方法 | |
CN108982912A (zh) | 一种微型差动式偏轴光纤迈克尔逊非本征型加速度计 | |
CN109959402A (zh) | 一种采用光程抵消抑制强背景噪声的微弱信号检测系统及方法 | |
CN113884703A (zh) | 一种三轴光纤加速度计 | |
Gholamzadeh et al. | A high sensitive, low foot print, SU-8 material-based, light intensity modulated MOMS accelerometer | |
CN116699172A (zh) | 一种基于纳米光栅干涉式二维加速度传感装置 | |
CN118641789A (zh) | 一种高灵敏度大量程的微型超晶格波导型片上加速度计 | |
CN109298207A (zh) | 一种微型同轴差动式光纤迈克尔逊非本征型加速度计 | |
CN1204048A (zh) | 一种不平衡纤维光学米切尔森干涉计作为一个光学传感器 | |
En et al. | Research of MOEMS pressure sensor | |
CN102809663A (zh) | 采用无接触光纤组检测哥氏振动的角速率传感系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20161207 Termination date: 20210111 |
|
CF01 | Termination of patent right due to non-payment of annual fee |