CN104158220A - Method for controlling virtual reactance of photovoltaic grid-connected inverter - Google Patents
Method for controlling virtual reactance of photovoltaic grid-connected inverter Download PDFInfo
- Publication number
- CN104158220A CN104158220A CN201410431801.3A CN201410431801A CN104158220A CN 104158220 A CN104158220 A CN 104158220A CN 201410431801 A CN201410431801 A CN 201410431801A CN 104158220 A CN104158220 A CN 104158220A
- Authority
- CN
- China
- Prior art keywords
- virtual
- pwm
- connected inverter
- transfer function
- photovoltaic grid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000012546 transfer Methods 0.000 claims abstract description 51
- 239000003990 capacitor Substances 0.000 claims abstract description 10
- 230000003071 parasitic effect Effects 0.000 claims abstract description 6
- 238000010586 diagram Methods 0.000 claims description 11
- 230000014509 gene expression Effects 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000001514 detection method Methods 0.000 claims description 2
- 238000012360 testing method Methods 0.000 claims description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Inverter Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
光伏并网逆变器虚拟电抗控制方法,涉及光伏并网逆变器控制技术领域。解决了现有光伏并网逆变器稳定性差的问题。所述方法包括以下步骤:根据实际电网阻抗、逆变器输出阻抗以及逆变器输出阻抗稳定性判据获得虚拟电感量及其等效内阻和虚拟电容量;根据虚拟电感量及其等效内阻,并结合全桥增益获得虚拟电感的等效前馈通路传递函数;根据虚拟电容的电容量,并结合全桥增益、实际滤波电容、滤波电感及其寄生电阻、电流环传递函数和反馈滤波环传递函数获得虚拟电容的等效前馈通路传递函数;将虚拟电感和虚拟电容的等效前馈通路传递函数进行离散化,获得差分方程:将差分方程与电流环的输出量进行叠加。本发明适用于控制光伏并网逆变器。
A virtual reactance control method for a photovoltaic grid-connected inverter relates to the technical field of photovoltaic grid-connected inverter control. The problem of poor stability of existing photovoltaic grid-connected inverters is solved. The method includes the following steps: obtaining the virtual inductance, its equivalent internal resistance and virtual capacitance according to the actual grid impedance, the inverter output impedance and the stability criterion of the inverter output impedance; according to the virtual inductance and its equivalent The internal resistance, combined with the full-bridge gain to obtain the equivalent feedforward path transfer function of the virtual inductor; according to the capacitance of the virtual capacitor, combined with the full-bridge gain, the actual filter capacitor, filter inductor and its parasitic resistance, current loop transfer function and feedback The transfer function of the filter loop obtains the equivalent feedforward path transfer function of the virtual capacitor; the equivalent feedforward path transfer function of the virtual inductor and virtual capacitor is discretized to obtain a difference equation: the difference equation is superimposed on the output of the current loop. The invention is suitable for controlling photovoltaic grid-connected inverters.
Description
技术领域technical field
本发明涉及光伏并网逆变器控制技术领域。The invention relates to the technical field of photovoltaic grid-connected inverter control.
背景技术Background technique
偏远地区、海岛等电网末端的电网通常为相对较小的负载设计,其电力供应多为中低压等级,为满足分散用户的负载需求大部分输电线路较长,线路电抗较大,因而电网呈现高阻抗特性,这种电网通常被称为弱电网(weak grid)。对于正常电网设计合理的光伏并网逆变器,当电网阻抗变大时系统的稳定性变差,并网电流谐波增大。因此,在设计用于电网末端或偏远地区的光伏逆变器时不仅要考虑正常电网的工作状态,同时需要考虑电网阻抗增大即弱电网时系统的稳定性。The power grid at the end of the power grid in remote areas, islands, etc. is usually designed for relatively small loads, and its power supply is mostly of medium and low voltage levels. In order to meet the load needs of distributed users, most of the transmission lines are long and the line reactance is large, so the power grid presents high Impedance characteristics, this kind of grid is usually called weak grid (weak grid). For a photovoltaic grid-connected inverter with a reasonable design in the normal grid, when the grid impedance becomes larger, the stability of the system will deteriorate, and the harmonics of the grid-connected current will increase. Therefore, when designing photovoltaic inverters used at the end of the grid or in remote areas, not only the working state of the normal grid must be considered, but also the stability of the system when the grid impedance increases, that is, the weak grid.
对电流源型光伏并网逆变器来说,希望逆变器的输出阻抗越大越好。通过分析LC型单相光伏并网逆变器输出阻抗特性以及不同参数对逆变器输出阻抗的影响可以发现:增大滤波电感增加会使输出阻抗在高频段增大,有利于提高系统稳定性;但增大滤波电感往往会导致系统体积增大、成本升高,进一步研究发现减小逆变器输出滤波电容也是提高逆变器输出阻抗进而增强系统稳定性的有效措施之一;但减小电容往往会导致逆变器输出纹波变大,并网电能质量降低,进而对系统产生不良影响。For the current source photovoltaic grid-connected inverter, it is hoped that the output impedance of the inverter should be as large as possible. By analyzing the output impedance characteristics of the LC type single-phase photovoltaic grid-connected inverter and the influence of different parameters on the output impedance of the inverter, it can be found that increasing the filter inductance will increase the output impedance in the high frequency band, which is conducive to improving system stability. ; But increasing the filter inductance will often lead to an increase in system size and cost. Further research has found that reducing the inverter output filter capacitor is also one of the effective measures to increase the inverter output impedance and thus enhance the system stability; but reducing Capacitors tend to increase the output ripple of the inverter and reduce the quality of grid-connected power, which will have a negative impact on the system.
发明内容Contents of the invention
本发明为了解决现有光伏并网逆变器稳定性差的问题,提出了光伏并网逆变器虚拟电抗控制方法。In order to solve the problem of poor stability of existing photovoltaic grid-connected inverters, the present invention proposes a virtual reactance control method for photovoltaic grid-connected inverters.
光伏并网逆变器虚拟电抗控制方法包括以下步骤:The virtual reactance control method of a photovoltaic grid-connected inverter includes the following steps:
步骤一、根据实际电网阻抗Zg、光伏并网逆变器输出阻抗Zo(s)以及光伏并网逆变器输出阻抗稳定性判据的幅频特性和相频特性获得虚拟电感量LV、虚拟电感量的等效内阻rV和虚拟电容量CV;Step 1. Obtain the virtual inductance L V according to the actual grid impedance Z g , the output impedance Z o (s) of the photovoltaic grid-connected inverter, and the amplitude-frequency characteristics and phase-frequency characteristics of the output impedance stability criterion of the photovoltaic grid-connected inverter , the equivalent internal resistance r V of the virtual inductance and the virtual capacitance C V ;
步骤二、根据虚拟电感量LV和虚拟电感量的等效内阻rV,并结合全桥增益KPWM,获得虚拟电感的等效前馈通路传递函数GLV(s);Step 2. According to the virtual inductance L V and the equivalent internal resistance r V of the virtual inductance, combined with the full-bridge gain K PWM , obtain the equivalent feedforward path transfer function G LV (s) of the virtual inductance;
步骤三、根据虚拟电容的电容量CV,并结合全桥增益KPWM、实际滤波电容Cac、滤波电感Lac及其寄生电阻rac、电流环传递函数Gi(s)和反馈滤波环传递函数Ga(s)获得虚拟电容的等效前馈通路传递函数
步骤四、将虚拟电感的等效前馈通路传递函数和虚拟电容的等效前馈通路传递函数进行离散化,获得差分方程:Step 4. Discretize the equivalent feedforward path transfer function of the virtual inductor and the equivalent feedforward path transfer function of the virtual capacitor to obtain the difference equation:
z(n)=K1vO(n)+K2vO(n-1)-K3vO(n-2),z(n)=K 1 v O (n)+K 2 v O (n-1)-K 3 v O (n-2),
其中,Ts为采样周期,K1、K2、K3均为系数;Among them, T s is the sampling period, and K 1 , K 2 , and K 3 are coefficients;
步骤五、将y(n)、z(n)与电流环的输出量x(n)进行叠加。Step five, superimposing y(n), z(n) and the output x(n) of the current loop.
有益效果:本发明提出的控制方法通过加入虚拟电抗控制方法,而不是增大滤波电感实际容量的方法来提高电流型光伏并网逆变器输出阻抗,同时通过在控制回路中增加一个虚拟电容与原有的滤波电感串联,逆变器的等效滤波电容将会减小,使得逆变器的输出阻抗增大,进而达到增强系统稳定性。Beneficial effects: the control method proposed by the present invention improves the output impedance of the current-type photovoltaic grid-connected inverter by adding a virtual reactance control method instead of increasing the actual capacity of the filter inductor, and at the same time by adding a virtual capacitor in the control loop and If the original filter inductor is connected in series, the equivalent filter capacitance of the inverter will be reduced, which will increase the output impedance of the inverter, thereby enhancing system stability.
附图说明Description of drawings
图1为加入虚拟电感后的光伏并网逆变器的等效结构图,Vdc为直流母线电压,S1、S2、S3和S4均为全桥功率开关管;Figure 1 is the equivalent structure diagram of the photovoltaic grid-connected inverter with virtual inductor added, V dc is the DC bus voltage, S 1 , S 2 , S 3 and S 4 are full-bridge power switch tubes;
图2为加入虚拟电感后的系统线性模型;Figure 2 is the linear model of the system after adding the virtual inductor;
图3为加入虚拟电容后的光伏并网逆变器的等效结构图;Figure 3 is an equivalent structure diagram of a photovoltaic grid-connected inverter after adding a virtual capacitor;
图4为加入虚拟电容后的系统线性模型;Fig. 4 is the linear model of the system after adding the virtual capacitor;
图5为加入虚拟电抗后的光伏并网逆变器的等效结构图;Figure 5 is an equivalent structure diagram of a photovoltaic grid-connected inverter after adding a virtual reactance;
图6为加入虚拟电抗后的系统线性模型;Figure 6 is the linear model of the system after adding virtual reactance;
图7为虚拟电感前馈通路的线性模型;Fig. 7 is the linear model of virtual inductor feed-forward path;
图8为加入虚拟电抗前后逆变器输出阻抗对比图,加入虚拟电抗前的逆变器输出阻抗为Zo1曲线,加入虚拟电抗后的逆变器输出阻抗为Zo2曲线,Zg曲线为实际电网阻抗;Figure 8 is a comparison chart of inverter output impedance before and after adding virtual reactance. The inverter output impedance before adding virtual reactance is the Z o1 curve, the inverter output impedance after adding virtual reactance is Z o2 curve, and the Z g curve is the actual Grid impedance;
图9为加入虚拟电抗控制方法前后系统开环传递函数极点分布图;Fig. 9 is a pole distribution diagram of the system open-loop transfer function before and after adding the virtual reactance control method;
图10为加入虚拟电抗前系统奈氏曲线图;Fig. 10 is the Nessler curve diagram of the system before adding the virtual reactance;
图11为加入虚拟电抗后系统奈氏曲线图。Figure 11 is the Nestle curve of the system after adding virtual reactance.
具体实施方式Detailed ways
具体实施方式一、结合图1-图6说明本具体实施方式,本具体实施方式所述的光伏并网逆变器虚拟电抗控制方法包括以下步骤:Specific embodiments 1. This specific embodiment is described in conjunction with FIGS. 1-6 . The method for controlling virtual reactance of a photovoltaic grid-connected inverter described in this specific embodiment includes the following steps:
步骤一、根据实际电网阻抗Zg、光伏并网逆变器输出阻抗Zo(s)以及光伏并网逆变器输出阻抗稳定性判据的幅频特性和相频特性获得虚拟电感量LV、虚拟电感量的等效内阻rV和虚拟电容量CV;Step 1. Obtain the virtual inductance L V according to the actual grid impedance Z g , the output impedance Z o (s) of the photovoltaic grid-connected inverter, and the amplitude-frequency characteristics and phase-frequency characteristics of the output impedance stability criterion of the photovoltaic grid-connected inverter , the equivalent internal resistance r V of the virtual inductance and the virtual capacitance C V ;
步骤二、根据虚拟电感量LV和虚拟电感量的等效内阻rV,并结合全桥增益KPWM,获得虚拟电感的等效前馈通路传递函数GLV(s);Step 2. According to the virtual inductance L V and the equivalent internal resistance r V of the virtual inductance, combined with the full-bridge gain K PWM , obtain the equivalent feedforward path transfer function G LV (s) of the virtual inductance;
步骤三、根据虚拟电容的电容量CV,并结合全桥增益KPWM、实际滤波电容Cac、滤波电感Lac及其寄生电阻rac、电流环传递函数Gi(s)和反馈滤波环传递函数Ga(s)获得虚拟电容的等效前馈通路传递函数
步骤四、将虚拟电感的等效前馈通路传递函数和虚拟电容的等效前馈通路传递函数进行离散化,获得差分方程:Step 4. Discretize the equivalent feedforward path transfer function of the virtual inductor and the equivalent feedforward path transfer function of the virtual capacitor to obtain the difference equation:
z(n)=K1vO(n)+K2vO(n-1)-K3vO(n-2),z(n)=K 1 v O (n)+K 2 v O (n-1)-K 3 v O (n-2),
其中,Ts为采样周期,K1、K2、K3均为系数;Among them, T s is the sampling period, and K 1 , K 2 , and K 3 are coefficients;
步骤五、将y(n)、z(n)与电流环的输出量x(n)进行叠加。Step five, superimposing y(n), z(n) and the output x(n) of the current loop.
本发明以LC型单相光伏并网逆变器为例,图1所示为加入虚拟电感后的并网逆变器等效结构图,图中虚线框中的电感LV即为新增加的滤波电感成分,该电感与原来的滤波电感Lac串联,根据电感串联电感值增大的基本原理,增加电感LV后逆变器的滤波电感总量变为Lac'=Lac+LV;为了不增大原有光伏并网逆变器的体积和重量,电感LV并不是一个实际电感,而是在控制系统中增加一条前向通路,加入虚拟电感后的系统线性模型如图2所示,图2中虚线框部分即为新增加的控制环节,该部分可看做一个比例微分环节,从控制的角度来看,增加该前向通路后等同于将滤波电感从Lac增大到Lac+LV;The present invention takes the LC type single-phase photovoltaic grid-connected inverter as an example. Figure 1 shows the equivalent structure diagram of the grid-connected inverter after adding virtual inductance. The inductance L V in the dotted line box in the figure is the newly added The filter inductance component, the inductance is connected in series with the original filter inductance L ac , according to the basic principle of increasing the inductance value of the inductance in series, after increasing the inductance L V , the total filter inductance of the inverter becomes L ac '=L ac +L V ; In order not to increase the volume and weight of the original photovoltaic grid-connected inverter, the inductance L V is not an actual inductance, but a forward path is added in the control system, and the system linear model after adding the virtual inductance is shown in Figure 2 As shown, the dotted box in Figure 2 is the newly added control link, which can be regarded as a proportional differential link. From the control point of view, adding the forward path is equivalent to increasing the filter inductance from L ac to L ac + L V ;
减小逆变器输出电容也是弱电网情况下提高系统稳定性的有效措施之一,但减小电容往往会导致系统输出纹波变大,并网电能质量降低,在实际应用中会对系统产生不良影响,为此,本发明通过在控制回路中增加一个虚拟电容与原有的滤波电感串联,逆变器的等效滤波电容将会减小,使得逆变器的输出阻抗增大,进而达到增强系统稳定性的目的,该系统中等效滤波电容变为
将上述虚拟电感和虚拟电容控制方法加以融合即为本发明所提出的虚拟电抗控制方法,如图6所示可以看出,本发明提出的方法相当于在原系统电流环控制基础上,加入了两个控制环路,得到输出控制信号y(n)和z(n),并将该控制信号与电流环的输出信号x(n)进行叠加,最后输出合成的控制信号经SPWM调制后驱动功率开关管,实现对系统的闭环控制。Combining the above virtual inductance and virtual capacitance control methods is the virtual reactance control method proposed by the present invention. As shown in Figure 6, it can be seen that the method proposed by the present invention is equivalent to adding two A control loop to obtain the output control signals y(n) and z(n), and superimpose the control signal with the output signal x(n) of the current loop, and finally output the synthesized control signal to drive the power switch after SPWM modulation tube to achieve closed-loop control of the system.
具体实施方式二、本具体实施方式与具体实施方式一所述的光伏并网逆变器虚拟电抗控制方法的区别在于,步骤一中所述的实际电网阻抗Zg是通过阻抗测试设备或电网阻抗在线检测方法获得。Embodiment 2. The difference between this embodiment and the photovoltaic grid-connected inverter virtual reactance control method described in Embodiment 1 is that the actual grid impedance Z g described in step 1 is obtained through impedance testing equipment or grid impedance. Obtained by online detection method.
具体实施方式三、本具体实施方式与具体实施方式二所述的光伏并网逆变器虚拟电抗控制方法的区别在于,步骤一中所述的光伏并网逆变器输出阻抗Zo(s)的表达式为:Embodiment 3. The difference between this embodiment and the virtual reactance control method of the photovoltaic grid-connected inverter described in Embodiment 2 is that the output impedance Z o (s) of the photovoltaic grid-connected inverter described in step 1 The expression is:
其中,ωc为二阶低通滤波器的截止角频率,Q为品质因数,Cac为实际滤波电容,Lac为实际滤波电感,rac为Lac的寄生电阻,KPWM为全桥增益,vo为光伏并网逆变器输出电压,io为光伏并网逆变器输出电流,为电感电流给定值,KP为电流环比例系数,KI为电流换积分系数。Among them, ω c is the cut-off corner frequency of the second-order low-pass filter, Q is the quality factor, C ac is the actual filter capacitor, L ac is the actual filter inductance, r ac is the parasitic resistance of L ac , K PWM is the full-bridge gain , v o is the output voltage of the photovoltaic grid-connected inverter, i o is the output current of the photovoltaic grid-connected inverter, is the given value of the inductor current, K P is the proportional coefficient of the current loop, and K I is the current conversion integral coefficient.
具体实施方式四、本具体实施方式与具体实施方式三所述的光伏并网逆变器虚拟电抗控制方法的区别在于,步骤一中所述的光伏并网逆变器输出阻抗稳定性判据的表达式为:Embodiment 4. The difference between this embodiment and the virtual reactance control method of the photovoltaic grid-connected inverter described in Embodiment 3 is that the output impedance stability criterion of the photovoltaic grid-connected inverter described in step 1 The expression is:
其中,GM为增益裕度,PM为相角裕度,当实际电网阻抗Zg不变时,光伏并网逆变器输出阻抗的幅频特性满足|Zg|+GM<|Zo|,其相频特性不需要满足-180°+PM<∠Zg-∠Zo<180°-PM即可保证电网系统稳定;当光伏并网逆变器输出阻抗的幅频特性不满足|Zg|+GM<|Zo|,则其相频特性必须满足-180°+PM<∠Zg-∠Zo<180°-PM,以保证系统稳定。Among them, GM is the gain margin, and PM is the phase angle margin. When the actual grid impedance Z g is constant, the amplitude-frequency characteristic of the output impedance of the photovoltaic grid-connected inverter satisfies |Z g |+GM<|Z o |, Its phase-frequency characteristics do not need to satisfy -180°+PM<∠Z g -∠Z o <180°-PM to ensure the stability of the power grid system; when the amplitude-frequency characteristics of the output impedance of the photovoltaic grid-connected inverter do not satisfy |Z g |+GM<|Z o |, then its phase-frequency characteristics must satisfy -180°+PM<∠Z g -∠Z o <180°-PM to ensure system stability.
具体实施方式五、本具体实施方式与具体实施方式四所述的光伏并网逆变器虚拟电抗控制方法的区别在于,步骤一中所述的根据实际电网阻抗Zg、光伏并网逆变器输出阻抗Zo(s)以及光伏并网逆变器输出阻抗稳定性判据的幅频特性和相频特性获得虚拟电感量LV、虚拟电感量的等效内阻rV和虚拟电容量CV的过程为:保证实际电网阻抗Zg不变,根据增益裕度GM、相角裕度PM以及光伏并网逆变器输出阻抗Zo(s)的表达式获得虚拟电感量LV和虚拟电容量CV,虚拟电感量LV的等效内阻rV是根据实际电感的等效内阻等比例获得。Embodiment 5. The difference between this embodiment and the virtual reactance control method of the photovoltaic grid-connected inverter described in Embodiment 4 is that in step 1, according to the actual grid impedance Z g , the photovoltaic grid-connected inverter The output impedance Z o (s) and the amplitude-frequency characteristics and phase-frequency characteristics of the output impedance stability criterion of the photovoltaic grid-connected inverter are obtained to obtain the virtual inductance L V , the equivalent internal resistance r V of the virtual inductance and the virtual capacitance C The process of V is: to ensure that the actual grid impedance Z g remains unchanged, and obtain the virtual inductance L V and the virtual The capacitance C V and the equivalent internal resistance r V of the virtual inductance L V are obtained in proportion to the equivalent internal resistance of the actual inductance.
具体实施方式六、结合图1-图7说明本具体实施方式,本具体实施方式与具体实施方式五所述的光伏并网逆变器虚拟电抗控制方法的区别在于,步骤二中所述的根据虚拟电感量LV和虚拟电感量的等效内阻rV,并结合全桥增益KPWM,获得虚拟电感的等效前馈通路传递函数GLV(s)的过程为:Specific Embodiment 6. This specific embodiment is described in conjunction with Fig. 1-Fig. The virtual inductance L V and the equivalent internal resistance r V of the virtual inductance, combined with the full-bridge gain K PWM , the process of obtaining the equivalent feedforward path transfer function G LV (s) of the virtual inductance is:
步骤二一、将反馈输出电流信息iL和虚拟电感的等效前馈通路传递函数GLV(s)相乘后,与电流环输出进行叠加,以确定等效前馈通路在整个控制环路中的位置,并通过该位置获得虚拟电感前馈通路的线性模型;Step 21: After multiplying the feedback output current information i L and the equivalent feedforward path transfer function G LV (s) of the virtual inductor, superimpose it with the current loop output to determine the equivalent feedforward path in the entire control loop The position in , and the linear model of the virtual inductance feed-forward path is obtained through this position;
步骤二二、确定增加前馈通路后的最终控制目标,即等效目标传递函数为
步骤二三、根据自动控制原理的结构图化简方法,对虚拟电感前馈通路的线性模型进行化简,得到传递函数该传递函数与等效目标传递函数相等,从而获得虚拟电感的等效前馈通路传递函数 Step two and three, according to the structure diagram simplification method of the automatic control principle, the linear model of the virtual inductor feedforward path is simplified to obtain the transfer function This transfer function is equal to the equivalent target transfer function, resulting in the equivalent feedforward path transfer function of the virtual inductor
虚拟电容等效前馈通路传递函数GCV(s)的获得过程与GLV(s)的获得过程原理相似。The principle of obtaining the virtual capacitance equivalent feedforward path transfer function G CV (s) is similar to that of GLV (s).
具体实施方式七、本具体实施方式与具体实施方式六所述的光伏并网逆变器虚拟电抗控制方法的区别在于,步骤四中所述的
如图8所示为加入虚拟电抗前后逆变器输出阻抗对比图,从图中可以看出加入虚拟电抗后逆变器输出阻抗幅频特性提高,在中低频段可以保证逆变器输出阻抗幅频特性曲线满足阻抗稳定性判据;图9所示为加入虚拟电抗控制方法前后开环传递函数极点分布图,增加虚拟电抗后系统开环传递函数的极点更远离虚轴,系统稳定性提高;图10所示为加入虚拟电抗前系统奈氏曲线图,系统开环传函奈氏曲线包围(-1,j0)点,开环传函不存在右半平面极点,此时系统不满足奈氏稳定判据,故系统不稳定;图11所示为加入虚拟电抗后系统奈氏曲线图,系统开环传函奈氏曲线不包围(-1,j0)点,且开环传函同样不存在右半平面极点,故此时可判断出系统稳定,从而进一步证明了本发明所提出的虚拟电抗控制方法能够提高系统的稳定性。As shown in Figure 8, the inverter output impedance comparison chart before and after adding virtual reactance, it can be seen from the figure that after adding virtual reactance, the amplitude-frequency characteristics of the inverter output impedance are improved, and the output impedance amplitude of the inverter can be guaranteed in the middle and low frequency bands. The frequency characteristic curve satisfies the impedance stability criterion; Figure 9 shows the pole distribution diagram of the open-loop transfer function before and after adding the virtual reactance control method. After adding the virtual reactance, the poles of the open-loop transfer function of the system are farther away from the imaginary axis, and the system stability is improved; Figure 10 shows the Nysler curve diagram of the system before adding the virtual reactance. The Nyssler curve of the open-loop transfer function of the system surrounds the point (-1, j0). Stability criterion, so the system is unstable; Figure 11 shows the Nysler curve diagram of the system after adding virtual reactance, the system open-loop transfer transfer transfer transfer transfer function does not surround the (-1, j0) point, and the open-loop transfer transfer transfer transfer function does not exist Right half plane pole, so it can be judged that the system is stable at this time, which further proves that the virtual reactance control method proposed by the present invention can improve the stability of the system.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410431801.3A CN104158220B (en) | 2014-08-28 | 2014-08-28 | The virtual reactance control method of photovoltaic combining inverter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410431801.3A CN104158220B (en) | 2014-08-28 | 2014-08-28 | The virtual reactance control method of photovoltaic combining inverter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104158220A true CN104158220A (en) | 2014-11-19 |
CN104158220B CN104158220B (en) | 2016-04-06 |
Family
ID=51883663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410431801.3A Expired - Fee Related CN104158220B (en) | 2014-08-28 | 2014-08-28 | The virtual reactance control method of photovoltaic combining inverter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104158220B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104393620A (en) * | 2014-12-01 | 2015-03-04 | 江西仪能新能源微电网协同创新有限公司 | Control method and device for current-predicated photovoltaic grid-connected inverter |
CN104810859A (en) * | 2015-05-27 | 2015-07-29 | 哈尔滨工业大学 | Self-adaption quasi-PRD control method for photovoltaic grid-connected inverter |
GB2545235A (en) * | 2015-12-10 | 2017-06-14 | Zhong Qingchang | Current-limiting droop controller for power converters |
CN107800151A (en) * | 2017-04-10 | 2018-03-13 | 中南大学 | A kind of isolated island microgrid inverter control method of the virtual passive filter of band |
CN108306329A (en) * | 2018-02-28 | 2018-07-20 | 湖南大学 | The positive damping of HVDC transmission system reconstructs impedance stabilization control method |
CN109698517A (en) * | 2017-10-23 | 2019-04-30 | 台达电子企业管理(上海)有限公司 | A kind of method and apparatus controlling electric system |
CN109904880A (en) * | 2019-03-25 | 2019-06-18 | 爱士惟新能源技术(江苏)有限公司 | A kind of recognition methods of photovoltaic DC-to-AC converter output high impedance |
CN110112900A (en) * | 2019-06-25 | 2019-08-09 | 国网湖南省电力有限公司 | The quick suppressing method of electric current based on virtual impedance |
CN113794222A (en) * | 2021-07-30 | 2021-12-14 | 广东电网有限责任公司广州供电局 | Grid-connected inverter current prediction method and device, computer equipment and storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102097824A (en) * | 2010-12-31 | 2011-06-15 | 华中科技大学 | Control method of LCL (Lower Control Limit) type grid-connected inverter for restricting influence of grid voltage on grid-connected current |
CN103095165A (en) * | 2013-01-16 | 2013-05-08 | 武汉新能源接入装备与技术研究院有限公司 | Three-phase inverter parallel-connection control method without output isolation transformer |
WO2013163779A1 (en) * | 2012-05-02 | 2013-11-07 | 上海康威特吉能源技术有限公司 | Multi-input flyback photovoltaic grid-connected inverter |
CN103812135A (en) * | 2014-03-10 | 2014-05-21 | 南京航空航天大学 | Control method for improving adaptability of LCL type grid-connected inverter for weak grid |
-
2014
- 2014-08-28 CN CN201410431801.3A patent/CN104158220B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102097824A (en) * | 2010-12-31 | 2011-06-15 | 华中科技大学 | Control method of LCL (Lower Control Limit) type grid-connected inverter for restricting influence of grid voltage on grid-connected current |
WO2013163779A1 (en) * | 2012-05-02 | 2013-11-07 | 上海康威特吉能源技术有限公司 | Multi-input flyback photovoltaic grid-connected inverter |
CN103095165A (en) * | 2013-01-16 | 2013-05-08 | 武汉新能源接入装备与技术研究院有限公司 | Three-phase inverter parallel-connection control method without output isolation transformer |
CN103812135A (en) * | 2014-03-10 | 2014-05-21 | 南京航空航天大学 | Control method for improving adaptability of LCL type grid-connected inverter for weak grid |
Non-Patent Citations (4)
Title |
---|
GUIHUA LIU ET AL.: "1、 Stability control method based on virtual inductance of grid-connected PV inverter under weak grid", 《INDUSTRIAL ELECTRONICS SOCIETY, IECON 2013-39TH ANNUAL CONFERENCE OF THE IEEE》, 13 November 2013 (2013-11-13), pages 1867 - 1872, XP032539692, DOI: 10.1109/IECON.2013.6699416 * |
YULIN YANG ET AL.: "A single-phase grid synchronization method based on frequency locked loop for PV grid-connected inverter under weak grid", 《PROCEEDING OF THE 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION》, 4 July 2014 (2014-07-04), pages 5453 - 5456 * |
刘旺等: "基于PR控制和虚拟阻抗的光伏并网逆变器的研究", 《低压电器》, 31 December 2012 (2012-12-31) * |
姜世公等: "基于功率前馈的单相光伏并网控制策略", 《电力自动化设备》, vol. 30, no. 6, 30 June 2010 (2010-06-30), pages 16 - 19 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104393620A (en) * | 2014-12-01 | 2015-03-04 | 江西仪能新能源微电网协同创新有限公司 | Control method and device for current-predicated photovoltaic grid-connected inverter |
CN104810859A (en) * | 2015-05-27 | 2015-07-29 | 哈尔滨工业大学 | Self-adaption quasi-PRD control method for photovoltaic grid-connected inverter |
GB2545235A (en) * | 2015-12-10 | 2017-06-14 | Zhong Qingchang | Current-limiting droop controller for power converters |
CN107800151B (en) * | 2017-04-10 | 2020-10-16 | 中南大学 | Island microgrid inverter control method with virtual passive filter |
CN107800151A (en) * | 2017-04-10 | 2018-03-13 | 中南大学 | A kind of isolated island microgrid inverter control method of the virtual passive filter of band |
CN109698517A (en) * | 2017-10-23 | 2019-04-30 | 台达电子企业管理(上海)有限公司 | A kind of method and apparatus controlling electric system |
CN109698517B (en) * | 2017-10-23 | 2023-03-28 | 台达电子企业管理(上海)有限公司 | Method and device for controlling power system |
CN108306329A (en) * | 2018-02-28 | 2018-07-20 | 湖南大学 | The positive damping of HVDC transmission system reconstructs impedance stabilization control method |
CN109904880A (en) * | 2019-03-25 | 2019-06-18 | 爱士惟新能源技术(江苏)有限公司 | A kind of recognition methods of photovoltaic DC-to-AC converter output high impedance |
CN109904880B (en) * | 2019-03-25 | 2020-08-07 | 爱士惟新能源技术(江苏)有限公司 | Identification method for high output impedance of photovoltaic inverter |
CN110112900A (en) * | 2019-06-25 | 2019-08-09 | 国网湖南省电力有限公司 | The quick suppressing method of electric current based on virtual impedance |
CN113794222A (en) * | 2021-07-30 | 2021-12-14 | 广东电网有限责任公司广州供电局 | Grid-connected inverter current prediction method and device, computer equipment and storage medium |
CN113794222B (en) * | 2021-07-30 | 2022-08-12 | 广东电网有限责任公司广州供电局 | Grid-connected inverter current prediction method and device, computer equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN104158220B (en) | 2016-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104158220B (en) | The virtual reactance control method of photovoltaic combining inverter | |
CN104716668B (en) | Improve feed forward control method of the LCL type combining inverter to grid adaptability | |
CN103560690B (en) | Harmonic wave damping control method for one-phase LCL type grid-connected inverter | |
CN111245004B (en) | Composite robust control method of high-frequency SiC photovoltaic grid-connected inverter under weak current network | |
CN103354359B (en) | A kind of grid-connected inverter system impedance Active Control Method compensated based on Phase margin | |
CN103248259B (en) | Single-current feedback control method of three-phase LCL (lower control limit) filtering type PWM (pulse-width modulation) rectifier | |
CN103326386B (en) | Capacitor-voltage-based grid-connected inverter active damping method | |
CN110323780B (en) | A cluster damping enhanced resonance suppression method for island UPS multi-machine parallel system | |
CN107612449B (en) | Subway traction converter direct current side oscillation suppression method based on feedforward voltage compensation | |
CN102857133B (en) | Current control method and current control system of single-phase single-stage photovoltaic inverter | |
CN104218590A (en) | Unbalance voltage compensation and control method based on virtual synchronous machine | |
CN102290820A (en) | LCL (Lower Control Unit) filtering controlled rectifying active damping control method of electric currents on feedback variable current side | |
CN103475029A (en) | Three-phase LCL type grid-connected inverter control system and method based on pole assignment | |
CN104600748B (en) | A kind of isolated island micro-capacitance sensor multi-inverter control system possessing active power filtering function and method of work thereof | |
CN103346585A (en) | Grid-connected inverter control method based on state observer | |
CN103595065B (en) | Method for designing grid-connected stability of large-scale photovoltaic power station based on power grid impedance | |
CN108879781A (en) | A kind of grid-connected current control method based on virtual impedance correction method | |
CN104882886B (en) | LLCL filtering-based active power filter compound control method | |
CN109038581B (en) | Impedance remodeling type harmonic current suppression method for VSG | |
CN105119322B (en) | A kind of control method for improving grid-connected voltage source type inverter system stability | |
CN106655274A (en) | Control method for grid-connected current of three-phase grid-connected inverter | |
KR102485699B1 (en) | Apparatus and method for damping of converter system | |
CN108390413B (en) | A method for improving the adaptability of distributed photovoltaics to AC-DC hybrid microgrid | |
CN115995813B (en) | Grid-connected inverter oscillation suppression strategy based on hybrid damping | |
CN110086171A (en) | A kind of gird-connected inverter resonance suppressing method and device enhancing system rejection to disturbance ability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: DELTA ELECTRONICS ENTERPRISE MANAGEMENT (SHANGHAI) Effective date: 20150217 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20150217 Address after: 150001 Harbin, Nangang, West District, large straight street, No. 92 Applicant after: Harbin Institute of Technology Applicant after: Delta Electronic Enterprise Management (Shanghai) Co., Ltd. Address before: 150001 Harbin, Nangang, West District, large straight street, No. 92 Applicant before: Harbin Institute of Technology |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160406 Termination date: 20160828 |
|
CF01 | Termination of patent right due to non-payment of annual fee |