CN104218590A - Unbalance voltage compensation and control method based on virtual synchronous machine - Google Patents

Unbalance voltage compensation and control method based on virtual synchronous machine Download PDF

Info

Publication number
CN104218590A
CN104218590A CN201410458076.9A CN201410458076A CN104218590A CN 104218590 A CN104218590 A CN 104218590A CN 201410458076 A CN201410458076 A CN 201410458076A CN 104218590 A CN104218590 A CN 104218590A
Authority
CN
China
Prior art keywords
msub
mrow
msup
omega
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410458076.9A
Other languages
Chinese (zh)
Other versions
CN104218590B (en
Inventor
张兴
刘芳
徐海珍
石荣亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201410458076.9A priority Critical patent/CN104218590B/en
Publication of CN104218590A publication Critical patent/CN104218590A/en
Application granted granted Critical
Publication of CN104218590B publication Critical patent/CN104218590B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/14District level solutions, i.e. local energy networks

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

The invention discloses an unbalance voltage compensation and control method based on a virtual synchronous machine. According to the method, the power calculating method on the basis of notch filter is adopted, the problems that a first order low pass filter is low in responding speed and stability and cannot eliminate secondary harmonic caused by unbalance load can be eliminated, the calculated total active power and reactive power serves as the feedback input of droop control, and part of produced unbalance voltage is suppressed by the proportional integral and the resonance control method; meanwhile, an unbalance voltage compensation controller is adopted to eliminate the unbalance quantity. The unbalance voltage can be compensated, the fine equalizing current balance of parallelly-connected multiple machines can be maintained, the method can be widely applied to micro grid inverter control on the unbalance loaded condition so as to maintain the output voltage balance during off-grid operation, and parallelly-connected operation of multiple machines is allowed.

Description

Virtual synchronous machine-based unbalanced voltage compensation control method
Technical Field
The invention relates to an unbalanced voltage compensation control method, in particular to an unbalanced voltage compensation control method based on a virtual synchronous machine.
Background
In recent years, virtual synchronous generator technology has received much attention from scholars as a new power generation mode of the microgrid inverter. The microgrid inverter adopting the virtual synchronous generator technology is called a virtual synchronous generator. Virtual Synchronous Generators (VSGs) need to operate in two modes, grid-connected and island-connected parallel operation.
A large number of unbalanced loads exist in the microgrid, and the unbalanced loads can seriously affect the output voltage power supply quality of the VSG, so that the output voltage is unbalanced, and the overvoltage of electric equipment is caused. In order to achieve good output voltage supply quality, the unbalance degree of the output voltage is required to be controlled within a certain range, and meanwhile, good power sharing performance of the parallel connection of multiple units is kept.
For this reason, various efforts have been made, such as an article entitled "a grid-interfacing power quality compensator for a three-phase three-wire microgrid," Li YW, vilthgamawa D M, Loh pc, "IEEE Transactions on power electronics, 2006, 21(4), 1021" (grid-connected power quality compensator for a three-phase three-wire microgrid, "IEEE stk — electric power electronics, volume 21, pages 4 1021-1031, 2006); the paper provides a solution for controlling the voltage unbalance, which is to add an electric energy quality compensation device (APF) (active Power Filter) or UPQC (unified Power quality controller) at the Power supply end, and the control scheme adds an additional device and has higher cost.
An article entitled "Autonomous voltage unbalancing in an island deddroop-controlled micro computer", Savaghebi M, Jalian A, Vasquez J C, et al, IEEE Transactions on Industrial Electronics ", 2013, 60(4), 1390-; this article proposes a resonant voltage controller to compensate for the unbalanced voltage, but the compensation effect is poor because the influence of unbalanced voltage drop on the virtual impedance is not considered.
An article entitled "Voltage unbalances and harmonics compensation for island electronic inverter", Liu Q, Tao Y, Liu X, et al, Power electronics IET ", 2014, 7(5), 1055-; the paper proposes that a multi-resonance controller is adopted to suppress voltage imbalance, but the control bandwidth is narrow, and the compensation effect is poor when the frequency of the microgrid system changes.
An article entitled "A method of three-phase balance in micro-grid by photovoltaic generation system", Hojo M, Iwase Y, Funabashi T, et al, Power electronics and Motion Control Conference2008.EPE-PEMC ", 2008, 13th. IEEE, 2008, 2487-; the paper proposes to compensate for the unbalanced voltage by injecting negative sequence current, however, under severe conditions, the injection of negative sequence current may cause the microgrid inverter to overcurrent, resulting in shutdown.
In summary, the prior art fails to solve the problem of parallel connection and current sharing of inverters during isolated island operation while ensuring good balance of output voltage when unbalanced load is applied in a microgrid inverter parallel operation system.
Disclosure of Invention
The technical problem to be solved by the invention is to overcome the limitations of the various technical schemes, and to solve the problem of unbalanced output voltage with unbalanced load when the virtual synchronous generators are operated in an off-grid parallel mode, the invention provides the unbalanced voltage compensation control method based on the virtual synchronous generators, which can compensate the unbalanced voltage and maintain good current-sharing degree of multi-machine parallel connection.
In order to solve the technical problem of the invention, the adopted technical scheme is as follows: the unbalanced voltage compensation control method based on the virtual synchronous machine comprises the following steps of collecting the voltage of a capacitor output by a microgrid inverter, and particularly comprises the following main steps:
step 1, firstly, acquiring output capacitor voltage U of the microgrid inverterca,Ucb,UccBridge arm side induction current Ila,Ilb,IlcAnd an output current IoxThrough single synchronous rotation coordinate transformationObtaining a component U of the output capacitor voltage dqcd,UcqComponent I of bridge arm side inductor current dqld,IlqAnd a component I of the output current dqod,IoqReuse of output capacitor voltage Uca,Ucb,UccAnd bridge arm side inductor current Ila,Ilb,IlcObtaining the negative sequence component U of the capacitor voltage through double synchronous rotation coordinate transformationCN-d,UCN-qAnd the negative sequence component I of the inductor currentLN-d,ILN-q
Step 2, according to the component U of the output capacitor voltage dq obtained in the step 1cd,UcqAnd a component I of the output current dqod,IoqObtaining the average active power through an active power calculation equation and a reactive power calculation equationAnd average reactive power
Step 3, obtaining the average active power according to the step 2And active power instruction P given by microgrid inverterrefGiven angular frequency command omega of micro-grid inverterrefObtaining angular frequency omega of the virtual synchronous generator through a power angle control equation, and integrating the angular frequency omega to obtain a vector angle theta of the virtual synchronous generator;
step 4, according to the average reactive power obtained in the step 2Given reactive power instruction Q of microgrid inverterrefVoltage command UrefObtaining the terminal voltage U of the virtual synchronous machine through a reactive power control equation*
Step 5, firstly obtaining the compound according to step 4Terminal voltage U to*And U obtained in step 1cd,UcqObtaining a capacitance current command signal by a voltage control equationThen according to the capacitor current command signalAnd component I of bridge arm side inductor current dq in step 1ld,IlqAnd a component I of the output current dqod,IoqObtaining the control signal U by a current control equationd1,Uq1
Step 6, according to the negative sequence component U of the capacitor voltage obtained in the step 1CN-d,UCN-qAnd the negative sequence component I of the inductor currentLN-d,ILN-qObtaining a control signal U through a negative sequence voltage compensation control equationd2,Uq2
Step 7, the control signal U obtained in the step 5 and the step 6 is processedd1,Uq1And Ud2,Uq2Respectively added to obtain control signals Ud,Uq
Step 8, firstly according to the control signal U in the step 7d,UqAnd step 3, obtaining a three-phase bridge arm voltage control signal U through single synchronous rotation coordinate inverse transformation of the vector angle theta obtained in the stepa,Ub,UcThen according to Ua,Ub,UcAnd generating PWM control signals of the switching tubes of the inverter bridge of the microgrid inverter.
The unbalance voltage compensation control method based on the virtual synchronous machine is further improved as follows:
preferably, the active power calculation equation in step 2 is
<math> <mrow> <mover> <mi>P</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <munder> <mi>&Pi;</mi> <mi>h</mi> </munder> <mfrac> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&omega;</mi> <mi>h</mi> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>Q</mi> <msub> <mi>&omega;</mi> <mi>h</mi> </msub> <mi>s</mi> <mo>+</mo> <msup> <msub> <mi>&omega;</mi> <mi>h</mi> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <mn>1.5</mn> <mrow> <mi>&tau;s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mi>cq</mi> </msub> <msub> <mi>I</mi> <mi>oq</mi> </msub> <mo>+</mo> <msub> <mi>U</mi> <mi>cd</mi> </msub> <msub> <mi>I</mi> <mi>od</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
Wherein Q is the quality factor of the resonance controller, omegahThe harmonic angular frequency to be filtered by the trap, s is the laplacian operator, and τ is the time constant of the first-order low-pass filter.
Preferably, the reactive power calculation equation in step 2 is
<math> <mrow> <mover> <mi>Q</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <munder> <mi>&Pi;</mi> <mi>h</mi> </munder> <mfrac> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&omega;</mi> <mi>h</mi> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>Q</mi> <msub> <mi>&omega;</mi> <mi>h</mi> </msub> <mi>s</mi> <mo>+</mo> <msup> <msub> <mi>&omega;</mi> <mi>h</mi> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <mn>1.5</mn> <mrow> <mi>&tau;s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mi>cd</mi> </msub> <msub> <mi>I</mi> <mi>oq</mi> </msub> <mo>-</mo> <msub> <mi>U</mi> <mi>cq</mi> </msub> <msub> <mi>I</mi> <mi>od</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
Wherein Q is the quality factor of the resonance controller, omegahThe harmonic angular frequency to be filtered by the trap, s is the laplacian operator, and τ is the time constant of the first-order low-pass filter.
Preferably, the power angle control equation in step 3 is
<math> <mrow> <mi>&omega;</mi> <mo>=</mo> <msub> <mi>&omega;</mi> <mi>ref</mi> </msub> <mo>+</mo> <mfrac> <mi>m</mi> <mrow> <mi>J</mi> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mi>s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>ref</mi> </msub> <mo>-</mo> <mover> <mi>P</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
Wherein, ω isrefGiving an active power instruction P for the microgrid inverterrefThe nominal angular frequency of the time, m is a power angle control droop coefficient, J is a virtual moment of inertia time constant, omega of the simulation synchronous generator set0The angular frequency is fixed for the grid.
Preferably, the reactive power control equation in step 4 is
<math> <mrow> <msup> <mi>U</mi> <mo>*</mo> </msup> <mo>=</mo> <msub> <mi>U</mi> <mi>ref</mi> </msub> <mo>+</mo> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mi>ref</mi> </msub> <mo>-</mo> <mover> <mi>Q</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
Wherein, UrefGiving a reactive power instruction Q for a microgrid inverterrefAnd the voltage of the rated output capacitor and n are power angle control droop coefficients.
Preferably, the voltage control equation in step 5 is
<math> <mrow> <msubsup> <mi>I</mi> <mi>cd</mi> <mo>*</mo> </msubsup> <mo>=</mo> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <mo>/</mo> <mi>s</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mi>r</mi> </msub> <mi>s</mi> </mrow> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>Q</mi> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mi>s</mi> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mrow> <mo>(</mo> <msup> <mi>U</mi> <mo>*</mo> </msup> <mo>-</mo> <msub> <mi>U</mi> <mi>cd</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>I</mi> <mi>cq</mi> <mo>*</mo> </msubsup> <mo>=</mo> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <mo>/</mo> <mi>s</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mi>r</mi> </msub> <mi>s</mi> </mrow> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>Q</mi> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mi>s</mi> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mrow> <mo>(</mo> <mn>0</mn> <mo>-</mo> <msub> <mi>U</mi> <mi>cq</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
Wherein, KpIs a proportional control coefficient, KiFor integral control coefficient, KrIs the resonant controller scaling factor.
Preferably, the current control equation in step 5 is
U d 1 = K ( I cd * - I ld + I od )
U q 1 = K ( I cq * - I lq + I oq ) ,
Wherein K is a proportional control coefficient.
Preferably, the negative sequence voltage compensation control equation in step 6 is
<math> <mrow> <msub> <mi>U</mi> <mrow> <mi>d</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>C</mi> <mo>_</mo> <mi>N</mi> <mo>-</mo> <mi>d</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <msub> <mi>LI</mi> <mrow> <mi>L</mi> <mo>_</mo> <mi>N</mi> <mo>-</mo> <mi>q</mi> </mrow> </msub> </mrow> <mrow> <mi>&tau;s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <msub> <mi>U</mi> <mrow> <mi>q</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>C</mi> <mo>_</mo> <mi>N</mi> <mo>-</mo> <mi>q</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <msub> <mi>LI</mi> <mrow> <mi>L</mi> <mo>_</mo> <mi>N</mi> <mo>-</mo> <mi>d</mi> </mrow> </msub> </mrow> <mrow> <mi>&tau;s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </math>
Wherein, K1For compensating the coefficient, K, for the voltage2The current compensation coefficient is, L is a bridge side inductance value of the microgrid inverter, and tau is a filtering time constant.
Compared with the prior art, the beneficial effects are that:
after the invention is adopted, the virtual synchronous generator has the following advantages on the basis of not only compensating unbalanced voltage but also keeping good current-sharing degree of multi-machine parallel connection when in operation:
1. no additional device is needed, and the manufacturing and operating cost is reduced.
2. The problem of unbalanced voltage drop on impedance is solved.
3. The problem of narrow control bandwidth is solved by only adding one compensation control algorithm.
4. Negative sequence current does not need to be injected, and the generation of overcurrent is avoided.
Drawings
Fig. 1 is a basic control block diagram of the present invention.
Fig. 2 is an overall control block diagram of the present invention.
Fig. 3 is a topological structure diagram of a virtual synchronous generator employed in the present invention.
Fig. 4 is a block diagram of a method for calculating the average active power and the average reactive power in the present invention.
Detailed Description
Preferred embodiments of the present invention will be described in further detail below with reference to the accompanying drawings.
The relevant electrical parameters when the invention is implemented are set as follows:
the direct current bus voltage Udc of the virtual synchronous generator is 550V, the effective value of the output alternating current voltage is 380V/50Hz, the rated capacity is 100KW, the alternating current voltage filter inductance is 0.5mH, and the filter capacitance is 200 muF. The transformer is a Dyn11 type transformer with 100KVA of 270/400V.
Referring to fig. 1, 2,3 and 4, the implementation of the present invention is as follows:
step 1, firstly, acquiring output capacitor voltage U of the microgrid inverterca,Ucb,UccBridge arm side induction current Ila,Ilb,IlcAnd an output current IoxObtaining the component U of the output capacitor voltage dq through the transformation of the single synchronous rotation coordinatecd,UcqComponent I of bridge arm side inductor current dqld,IlqAnd a component I of the output current dqod,Ioq. Reuse of output capacitor voltage Uca,Ucb,UccAnd bridge arm side inductor current Ila,Ilb,IlcObtaining the negative sequence component U of the capacitor voltage through double synchronous rotation coordinate transformationCN-d,UCN-qAnd the negative sequence component I of the inductor currentLN-d,ILN-q
Step 2, according to the component U of the output capacitor voltage dq obtained in the step 1cd,UcqAnd a component I of the output current dqod,IoqObtaining the average active power through an active power calculation equation and a reactive power calculation equationAnd average reactive powerWherein,
the active power calculation equation is
<math> <mrow> <mover> <mi>P</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <munder> <mi>&Pi;</mi> <mi>h</mi> </munder> <mfrac> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&omega;</mi> <mi>h</mi> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>Q</mi> <msub> <mi>&omega;</mi> <mi>h</mi> </msub> <mi>s</mi> <mo>+</mo> <msup> <msub> <mi>&omega;</mi> <mi>h</mi> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <mn>1.5</mn> <mrow> <mi>&tau;s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mi>cq</mi> </msub> <msub> <mi>I</mi> <mi>oq</mi> </msub> <mo>+</mo> <msub> <mi>U</mi> <mi>cd</mi> </msub> <msub> <mi>I</mi> <mi>od</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
Wherein Q is the quality factor of the resonant controller, omegahThe harmonic angular frequency to be filtered by the wave trap, s is a Laplace operator, and tau is a time constant of a first-order low-pass filter;
reactive power calculation equation of
<math> <mrow> <mover> <mi>Q</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <munder> <mi>&Pi;</mi> <mi>h</mi> </munder> <mfrac> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&omega;</mi> <mi>h</mi> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>Q</mi> <msub> <mi>&omega;</mi> <mi>h</mi> </msub> <mi>s</mi> <mo>+</mo> <msup> <msub> <mi>&omega;</mi> <mi>h</mi> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <mn>1.5</mn> <mrow> <mi>&tau;s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mi>cd</mi> </msub> <msub> <mi>I</mi> <mi>oq</mi> </msub> <mo>-</mo> <msub> <mi>U</mi> <mi>cq</mi> </msub> <msub> <mi>I</mi> <mi>od</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
Wherein Q is the quality factor of the resonant controller, omegahThe harmonic angular frequency to be filtered by the trap, s is the laplacian operator, and τ is the time constant of the first-order low-pass filter.
In this embodiment, the number of harmonics to be mainly filtered is considered to be 2 and 3, so h is 2,3, where ω ish628.3186rad/s and 942.4779rad/s first-order low-pass filter mainly considers filtering out higher harmonics and does not influence dynamic response, and tau is generally less than or equal to 2e-3s, the value τ in this case is 1.5e-4s; the quality factor Q mainly considers the filtering effect of the trap, and in this case, Q is 0.5.
A block diagram of the calculation of the average active power and the average reactive power is shown in fig. 4.
Step 3, obtaining the average active power according to the step 2And active power instruction P given by microgrid inverterrefGiven angular frequency command omega of micro-grid inverterrefObtaining angular frequency omega of the virtual synchronous generator through a power angle control equation, and integrating the angular frequency omega to obtain a vector angle theta of the virtual synchronous generator; wherein,
the equation for power angle control is
<math> <mrow> <mi>&omega;</mi> <mo>=</mo> <msub> <mi>&omega;</mi> <mi>ref</mi> </msub> <mo>+</mo> <mfrac> <mi>m</mi> <mrow> <mi>J</mi> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mi>s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>ref</mi> </msub> <mo>-</mo> <mover> <mi>P</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
In which ω isrefGiving an active power instruction P for the microgrid inverterrefThe nominal angular frequency of the time, m is a power angle control droop coefficient, J is a virtual moment of inertia time constant, omega of the simulation synchronous generator set0The angular frequency is fixed for the grid.
The power angle control equation shows the active power droop curve relation and the virtual inertia of the microgrid inverter. The virtual inertia indicates the change rate of the system frequency, and a larger virtual inertia is needed to ensure the stable change of the system frequency; however, the virtual inertia is equivalent to adding a first-order inertia element in the system, and too large virtual inertia may cause instability of the system. Thus, the parameter selection requires a compromise process. To ensure system stability, in this embodiment, the inertia time constant is in the range of τvirtual=Jω0m≤2e-3s; the active power droop curve relation in the power angle control equation comprises three coefficients, the power angle control droop coefficient m represents the slope of the droop curve, and the value principle is that when the active power changes by 100%, the frequency changes within 0.5 Hz; given active power command PrefAnd corresponding nominal angular frequency omegarefThe position relation of the droop curve is represented, and the active power output by the microgrid inverter is mainly considered to be PrefThe output frequency is larger or smaller;
in the embodiment, the angular frequency of the power grid adopts the angular frequency corresponding to the rated frequency of 50Hz, namely omega0314.1593rad/s, the power angle control droop coefficient takes the value ofTaking tau according to the principle of inertia time constant valuevirtual=Jω0m=1.5e-3s, can obtain J as 0.2 Kg.m2In order to ensure that the energy does not flow to the direct current side during the control operation, the value of the active power instruction is given as PrefWhen the rated angular frequency is 1KW, the corresponding rated angular frequency is omegaref=314.1593rad/s。
Step 4, according to the average reactive power obtained in the step 2Given reactive power instruction Q of microgrid inverterrefVoltage command UrefObtaining the terminal voltage U of the virtual synchronous machine through a reactive power control equation*(ii) a Wherein,
the reactive power control equation is
<math> <mrow> <msup> <mi>U</mi> <mo>*</mo> </msup> <mo>=</mo> <msub> <mi>U</mi> <mi>ref</mi> </msub> <mo>+</mo> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mi>ref</mi> </msub> <mo>-</mo> <mover> <mi>Q</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
Wherein UrefGiving a reactive power instruction Q for a microgrid inverterrefAnd the voltage of the rated output capacitor and n are power angle control droop coefficients.
When the reactive power change with the reactive control droop coefficient n value principle of 100%, the voltage amplitude value is changed within 2%; given reactive power command QrefAnd corresponding rated output capacitor voltage UrefThe position relation of the droop curve is represented, and the output reactive power of the microgrid inverter is mainly considered to be QrefWhen the voltage is high, the output voltage is large.
In this embodiment, the droop coefficient of reactive power control takes the value ofGiven reactive power command QrefConsidering the system output reactive power as QrefWhen it is 0, the corresponding rated output capacitor voltage Uref=380V。
Step 5, firstly obtaining the terminal voltage U obtained in the step 4 and the terminal voltage U obtained in the step 1cd,UcqObtaining a capacitance current command signal by a voltage control equationWherein,
the voltage control equation is
<math> <mrow> <msubsup> <mi>I</mi> <mi>cd</mi> <mo>*</mo> </msubsup> <mo>=</mo> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <mo>/</mo> <mi>s</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mi>r</mi> </msub> <mi>s</mi> </mrow> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>Q</mi> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mi>s</mi> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mrow> <mo>(</mo> <msup> <mi>U</mi> <mo>*</mo> </msup> <mo>-</mo> <msub> <mi>U</mi> <mi>cd</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>I</mi> <mi>cq</mi> <mo>*</mo> </msubsup> <mo>=</mo> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <mo>/</mo> <mi>s</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mi>r</mi> </msub> <mi>s</mi> </mrow> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>Q</mi> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mi>s</mi> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mrow> <mo>(</mo> <mn>0</mn> <mo>-</mo> <msub> <mi>U</mi> <mi>cq</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
Wherein K ispIs a proportional control coefficient, KiFor integral control coefficient, KrIs the resonant controller scaling factor.
Then according to the capacitor current command signalAnd component I of bridge arm side inductor current dq in step 1ld,IlqAnd a component I of the output current dqod,IoqObtaining the control signal U by a current control equationd1,Uq1(ii) a Wherein,
the current control equation is
U d 1 = K ( I cd * - I ld + I od )
U q 1 = K ( I cq * - I lq + I oq ) ,
Wherein K is a proportional control coefficient.
Parameters in the voltage and current control equation mainly consider the stability and the dynamic and steady-state performance of the control system; in this example, take Kp=0.03,Ki=0.8,Kr=120,Q=16,K=0.05。
The control process of steps 1-5 can be seen in FIG. 1.
Step 6, according to the negative sequence component U of the capacitor voltage obtained in the step 1CN-d,UCN-qAnd the negative sequence component I of the inductor currentLN-d,ILN-qObtaining a control signal U through a negative sequence voltage compensation control equationd2,Uq2(ii) a Wherein,
the negative sequence voltage compensation control equation is
<math> <mrow> <msub> <mi>U</mi> <mrow> <mi>d</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>C</mi> <mo>_</mo> <mi>N</mi> <mo>-</mo> <mi>d</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <msub> <mi>LI</mi> <mrow> <mi>L</mi> <mo>_</mo> <mi>N</mi> <mo>-</mo> <mi>q</mi> </mrow> </msub> </mrow> <mrow> <mi>&tau;s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <msub> <mi>U</mi> <mrow> <mi>q</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>C</mi> <mo>_</mo> <mi>N</mi> <mo>-</mo> <mi>q</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <msub> <mi>LI</mi> <mrow> <mi>L</mi> <mo>_</mo> <mi>N</mi> <mo>-</mo> <mi>d</mi> </mrow> </msub> </mrow> <mrow> <mi>&tau;s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </math>
Wherein K is1For compensating the coefficient, K, for the voltage2The current compensation coefficient is, L is a bridge side inductance value of the microgrid inverter, and tau is a filtering time constant.
The compensation coefficient mainly considers the effectiveness of dynamic output impedance compensation, and generally takes a value of K being more than or equal to 0.51=K2Less than or equal to 1. For filtering out negative sequence component U of capacitor voltageCN-d,UCN-qAnd the negative sequence component I of the inductor currentLN-d,ILN-qConsidering the time constant tau of the first-order low-pass filter is less than or equal to 2e-3And s. In this example, take K1=1、K2=1、τ=0.00115。
Step 7, the control signal U obtained in the step 5 and the step 6 is processedd1,Uq1And Ud2,Uq2Respectively added to obtain control signals Ud,Uq
Step 8, firstly according to the control signal U in the step 7d,UqAnd step 3, obtaining a three-phase bridge arm voltage control signal U through single synchronous rotation coordinate inverse transformation of the vector angle theta obtained in the stepa,Ub,UcThen according to Ua,Ub,UcAnd generating PWM control signals of the switching tubes of the inverter bridge of the microgrid inverter.
It is apparent that those skilled in the art can make various changes and modifications to the virtual synchronous machine-based unbalance voltage compensation control method of the present invention without departing from the spirit and scope of the present invention. Thus, if such modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is intended to include such modifications and variations.

Claims (8)

1. The unbalanced voltage compensation control method based on the virtual synchronous machine comprises the acquisition of the output capacitor voltage of the microgrid inverter, and is characterized by mainly comprising the following steps of:
step 1, firstly, acquiring output capacitor voltage U of the microgrid inverterca,Ucb,UccBridge arm side induction current Ila,Ilb,IlcAnd an output current IoxObtaining the component U of the output capacitor voltage dq through the transformation of the single synchronous rotation coordinatecd,UcqComponent I of bridge arm side inductor current dqld,IlqAnd a component I of the output current dqod,IoqReuse of output capacitor voltage Uca,Ucb,UccAnd bridge arm side inductor current Ila,Ilb,IlcObtaining the negative sequence component U of the capacitor voltage through double synchronous rotation coordinate transformationC_N-d,UC_N-qAnd the negative sequence component I of the inductor currentL_N-d,IL_N-q
Step 2, according to the component U of the output capacitor voltage dq obtained in the step 1cd,UcqAnd a component I of the output current dqod,IoqObtaining the average active power through an active power calculation equation and a reactive power calculation equationAnd average reactive power
Step 3, obtaining the average active power according to the step 2And active power instruction P given by microgrid inverterrefGiven angular frequency command omega of micro-grid inverterrefObtaining angular frequency omega of the virtual synchronous generator through a power angle control equation, and integrating the angular frequency omega to obtain a vector angle theta of the virtual synchronous generator;
step 4, according to the average reactive power obtained in the step 2Given reactive power instruction Q of microgrid inverterrefVoltage command UrefObtaining the terminal voltage U of the virtual synchronous machine through a reactive power control equation*
Step 5, firstly, according to the terminal voltage U obtained in the step 4*And U obtained in step 1cd,UcqObtaining a capacitance current command signal by a voltage control equationThen according to the capacitor current command signalAnd component I of bridge arm side inductor current dq in step 1ld,IlqAnd a component I of the output current dqod,IoqObtaining the control signal U by a current control equationd1,Uq1
Step 6, according to the negative sequence component U of the capacitor voltage obtained in the step 1CN-d,UCN-qAnd the negative sequence component I of the inductor currentLN-d,ILN-qObtaining a control signal U through a negative sequence voltage compensation control equationd2,Uq2
Step 7, the control signal U obtained in the step 5 and the step 6 is processedd1,Uq1And Ud2,Uq2Respectively added to obtain control signals Ud,Uq
Step 8, firstly according to the control signal U in the step 7d,UqAnd step 3, obtaining a three-phase bridge arm voltage control signal U through single synchronous rotation coordinate inverse transformation of the vector angle theta obtained in the stepa,Ub,UcThen according to Ua,Ub,UcAnd generating PWM control signals of the switching tubes of the inverter bridge of the microgrid inverter.
2. The virtual synchronous machine-based unbalance voltage compensation control method according to claim 1, wherein the active power calculation equation in the step 2 is
<math> <mrow> <mover> <mi>P</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <munder> <mi>&Pi;</mi> <mi>h</mi> </munder> <mfrac> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&omega;</mi> <mi>h</mi> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>Q</mi> <msub> <mi>&omega;</mi> <mi>h</mi> </msub> <mi>s</mi> <mo>+</mo> <msup> <msub> <mi>&omega;</mi> <mi>h</mi> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <mn>1.5</mn> <mrow> <mi>&tau;s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mi>cq</mi> </msub> <msub> <mi>I</mi> <mi>oq</mi> </msub> <mo>+</mo> <msub> <mi>U</mi> <mi>cd</mi> </msub> <msub> <mi>I</mi> <mi>od</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
Wherein Q is the quality factor of the resonance controller, omegahThe harmonic angular frequency to be filtered by the trap, s is the laplacian operator, and τ is the time constant of the first-order low-pass filter.
3. The virtual synchronous machine-based unbalance voltage compensation control method according to claim 1, wherein the reactive power calculation equation in the step 2 is as follows
<math> <mrow> <mover> <mi>Q</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <munder> <mi>&Pi;</mi> <mi>h</mi> </munder> <mfrac> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <msub> <mi>&omega;</mi> <mi>h</mi> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>Q</mi> <msub> <mi>&omega;</mi> <mi>h</mi> </msub> <mi>s</mi> <mo>+</mo> <msup> <msub> <mi>&omega;</mi> <mi>h</mi> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <mn>1.5</mn> <mrow> <mi>&tau;s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mi>cd</mi> </msub> <msub> <mi>I</mi> <mi>oq</mi> </msub> <mo>-</mo> <msub> <mi>U</mi> <mi>cq</mi> </msub> <msub> <mi>I</mi> <mi>od</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
Wherein Q is the quality factor of the resonance controller, omegahThe harmonic angular frequency to be filtered by the trap, s is the laplacian operator, and τ is the time constant of the first-order low-pass filter.
4. The virtual synchronous machine-based unbalanced voltage compensation control method of claim 1, wherein the power angle control equation in step 3 is
<math> <mrow> <mi>&omega;</mi> <mo>=</mo> <msub> <mi>&omega;</mi> <mi>ref</mi> </msub> <mo>+</mo> <mfrac> <mi>m</mi> <mrow> <mi>J</mi> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mi>ms</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>ref</mi> </msub> <mo>-</mo> <mover> <mi>P</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
Wherein, ω isrefGiving an active power instruction P for the microgrid inverterrefThe nominal angular frequency of the time, m is a power angle control droop coefficient, J is a virtual moment of inertia time constant, omega of the simulation synchronous generator set0The angular frequency is fixed for the grid.
5. The virtual synchronous machine-based unbalanced voltage compensation control method of claim 1, wherein the reactive power control equation in the step 4 is
<math> <mrow> <msup> <mi>U</mi> <mo>*</mo> </msup> <mo>=</mo> <msub> <mi>U</mi> <mi>ref</mi> </msub> <mo>+</mo> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mi>ref</mi> </msub> <mo>-</mo> <mover> <mi>Q</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
Wherein, UrefGiving a reactive power instruction Q for a microgrid inverterrefAnd the voltage of the rated output capacitor and n are power angle control droop coefficients.
6. The virtual synchronous machine-based unbalance voltage compensation control method according to claim 1, wherein the voltage control equation in the step 5 is
<math> <mrow> <msubsup> <mi>I</mi> <mi>cd</mi> <mo>*</mo> </msubsup> <mo>=</mo> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <mo>/</mo> <mi>s</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mi>r</mi> </msub> <mi>s</mi> </mrow> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>Q</mi> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mi>s</mi> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mrow> <mo>(</mo> <msup> <mi>U</mi> <mo>*</mo> </msup> <mo>-</mo> <msub> <mi>U</mi> <mi>cd</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>I</mi> <mi>cq</mi> <mo>*</mo> </msubsup> <mo>=</mo> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>i</mi> </msub> <mo>/</mo> <mi>s</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mi>r</mi> </msub> <mi>s</mi> </mrow> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>Q</mi> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mi>s</mi> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mrow> <mo>(</mo> <mn>0</mn> <mo>-</mo> <msub> <mi>U</mi> <mi>cq</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
Wherein, KpIs a proportional control coefficient, KiFor integral control coefficient, KrIs the resonant controller scaling factor.
7. The virtual synchronous machine-based unbalance voltage compensation control method according to claim 1, wherein the current control equation in the step 5 is
U d 1 = K ( I cd * - I ld + I od )
U q 1 = K ( I cq * - I lq + I oq ) ,
Wherein K is a proportional control coefficient.
8. The virtual synchronous machine-based unbalance voltage compensation control method according to claim 1, wherein the negative sequence voltage compensation control equation in step 6 is
<math> <mrow> <msub> <mi>U</mi> <mrow> <mi>d</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>C</mi> <mo>_</mo> <mi>N</mi> <mo>-</mo> <mi>d</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <msub> <mi>LI</mi> <mrow> <mi>L</mi> <mo>_</mo> <mi>N</mi> <mo>-</mo> <mi>q</mi> </mrow> </msub> </mrow> <mrow> <mi>&tau;s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <msub> <mi>U</mi> <mrow> <mi>q</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>C</mi> <mo>_</mo> <mi>N</mi> <mo>-</mo> <mi>q</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <msub> <mi>LI</mi> <mrow> <mi>L</mi> <mo>_</mo> <mi>N</mi> <mo>-</mo> <mi>d</mi> </mrow> </msub> </mrow> <mrow> <mi>&tau;s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </math>
Wherein, K1For compensating the coefficient, K, for the voltage2The current compensation coefficient is, L is a bridge side inductance value of the microgrid inverter, and tau is a filtering time constant.
CN201410458076.9A 2014-09-10 2014-09-10 Unbalance voltage compensating control method based on virtual synchronous machine Active CN104218590B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410458076.9A CN104218590B (en) 2014-09-10 2014-09-10 Unbalance voltage compensating control method based on virtual synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410458076.9A CN104218590B (en) 2014-09-10 2014-09-10 Unbalance voltage compensating control method based on virtual synchronous machine

Publications (2)

Publication Number Publication Date
CN104218590A true CN104218590A (en) 2014-12-17
CN104218590B CN104218590B (en) 2016-06-22

Family

ID=52099832

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410458076.9A Active CN104218590B (en) 2014-09-10 2014-09-10 Unbalance voltage compensating control method based on virtual synchronous machine

Country Status (1)

Country Link
CN (1) CN104218590B (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578173A (en) * 2015-01-26 2015-04-29 西安交通大学 Inverter grid-connected control method based on virtual synchronous generator technology
CN104578857A (en) * 2015-01-12 2015-04-29 阳光电源股份有限公司 Control method and device of photovoltaic power generation system and photovoltaic power generation system
CN105098804A (en) * 2015-07-08 2015-11-25 国家电网公司 Method and device for controlling three-phase unbalanced current of virtual synchronous generator
CN105743130A (en) * 2016-03-22 2016-07-06 西安交通大学 Method for improving reactive power dynamic response performance of virtual synchronous power generator
CN105896570A (en) * 2016-04-19 2016-08-24 西安交通大学 Virtual synchronous generator damping winding simulation method based on steady-state frequency difference value compensation
CN106130077A (en) * 2016-08-17 2016-11-16 西安交通大学 Electric automobile compensation of power network voltage method based on virtual synchronous electromotor algorithm
CN106208158A (en) * 2016-07-22 2016-12-07 华北电力大学(保定) The Inertia Matching method of the most micro-source paired running in microgrid
CN107134792A (en) * 2017-06-12 2017-09-05 合肥工业大学 Non Power Compensation Process when virtual synchronous Generator Network imbalance is fallen
CN107171346A (en) * 2017-06-14 2017-09-15 上海电力学院 Unbalance voltage control method based on virtual synchronous generator
CN105006834B (en) * 2015-06-10 2017-09-19 合肥工业大学 Optimum virtual inertia control method based on virtual synchronous generator
CN107317347A (en) * 2017-08-24 2017-11-03 泰州学院 Shore electric power system stable control method based on virtual synchronous generator
CN107508298A (en) * 2017-09-28 2017-12-22 合肥工业大学 A kind of micro-capacitance sensor unbalance voltage hierarchy optimization control method
CN107919681A (en) * 2017-11-20 2018-04-17 北京科诺伟业科技股份有限公司 A kind of quasi- virtual synchronous machine control method
CN108270238A (en) * 2018-01-29 2018-07-10 合肥工业大学 Virtual synchronous generator control method based on dynamic virtual resistance
CN108390396A (en) * 2018-01-29 2018-08-10 合肥工业大学 Virtual synchronous generator control method based on dynamic virtual reactance
CN108539755A (en) * 2018-04-19 2018-09-14 国网湖北省电力有限公司电力科学研究院 A kind of large synchronous compensator startup method based on VVSG technologies
CN108964117A (en) * 2018-06-13 2018-12-07 西安理工大学 A kind of control method of the virtual synchronous generator with unbalanced load and its parallel connection
CN108964040A (en) * 2018-07-23 2018-12-07 河南理工大学 Virtual synchronous generator power-electric current control method for coordinating under unbalanced power supply
CN109274125A (en) * 2018-11-27 2019-01-25 南方电网科学研究院有限责任公司 Grid-connected control method and device for multi-machine parallel virtual synchronous inverter
CN109742758A (en) * 2019-01-04 2019-05-10 南京亚派科技股份有限公司 A kind of APF compensation method based on Dyn11 transformer
CN110838718A (en) * 2019-11-13 2020-02-25 国网山西省电力公司电力科学研究院 Power system frequency stability adjusting method and system
CN111193291A (en) * 2018-11-15 2020-05-22 哈尔滨工业大学 Composite virtual synchronous machine control method suitable for unbalanced condition
US10903654B2 (en) 2015-12-03 2021-01-26 Enphase Energy, Inc. Method and apparatus for minimizing circulating currents in microgrids
CN114221376A (en) * 2021-11-16 2022-03-22 云南电网有限责任公司迪庆供电局 Regional grid-connected and off-grid response control method and system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232187A (en) * 2008-01-30 2008-07-30 湖南大学 Positive and negative order double ring stacking control method of electric power distribution static state synchronous compensator based on instantaneous power balance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232187A (en) * 2008-01-30 2008-07-30 湖南大学 Positive and negative order double ring stacking control method of electric power distribution static state synchronous compensator based on instantaneous power balance

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
QING-CHANG ZHONG等: "Synchronverters: Inverters That Mimic Synchronous Generators", 《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS》, vol. 58, no. 4, 30 April 2011 (2011-04-30), pages 1259 - 1267, XP011350328, DOI: doi:10.1109/TIE.2010.2048839 *
SALVATORE D’ARCO 等: "Equivalence of Virtual Synchronous Machines and Frequency-Droops for Converter-Based MicroGrids", 《IEEE TRANSACTIONS ON SMART GRID》, vol. 5, no. 1, 31 January 2014 (2014-01-31), pages 394 - 395, XP011536204, DOI: doi:10.1109/TSG.2013.2288000 *
吕志鹏等: "虚拟同步发电机及其在微电网中的应用", 《中国电机工程学报》, vol. 34, no. 16, 5 June 2014 (2014-06-05), pages 2591 - 2603 *
张兴等: "分布式发电中的虚拟同步发电机技术", 《电源学报》, no. 3, 31 May 2012 (2012-05-31) *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578857A (en) * 2015-01-12 2015-04-29 阳光电源股份有限公司 Control method and device of photovoltaic power generation system and photovoltaic power generation system
CN104578173A (en) * 2015-01-26 2015-04-29 西安交通大学 Inverter grid-connected control method based on virtual synchronous generator technology
CN105006834B (en) * 2015-06-10 2017-09-19 合肥工业大学 Optimum virtual inertia control method based on virtual synchronous generator
CN105098804A (en) * 2015-07-08 2015-11-25 国家电网公司 Method and device for controlling three-phase unbalanced current of virtual synchronous generator
CN105098804B (en) * 2015-07-08 2018-02-02 国家电网公司 The control method and device of the three phase unbalance current of virtual synchronous generator
US11146068B2 (en) 2015-12-03 2021-10-12 Enphase Energy, Inc. Method and apparatus for minimizing circulating currents in microgrids
US10903654B2 (en) 2015-12-03 2021-01-26 Enphase Energy, Inc. Method and apparatus for minimizing circulating currents in microgrids
CN105743130A (en) * 2016-03-22 2016-07-06 西安交通大学 Method for improving reactive power dynamic response performance of virtual synchronous power generator
CN105743130B (en) * 2016-03-22 2018-03-02 西安交通大学 The method for improving virtual synchronous generator reactive power dynamic response performance
CN105896570B (en) * 2016-04-19 2018-06-26 西安交通大学 Virtual synchronous Generator Damping winding analogy method based on the compensation of steady frequency difference
CN105896570A (en) * 2016-04-19 2016-08-24 西安交通大学 Virtual synchronous generator damping winding simulation method based on steady-state frequency difference value compensation
CN106208158A (en) * 2016-07-22 2016-12-07 华北电力大学(保定) The Inertia Matching method of the most micro-source paired running in microgrid
CN106208158B (en) * 2016-07-22 2019-05-07 华北电力大学(保定) The Inertia Matching method of mostly micro- source paired running in microgrid
CN106130077A (en) * 2016-08-17 2016-11-16 西安交通大学 Electric automobile compensation of power network voltage method based on virtual synchronous electromotor algorithm
CN106130077B (en) * 2016-08-17 2018-12-07 西安交通大学 Electric car compensation of power network voltage method based on virtual synchronous generator algorithm
CN107134792A (en) * 2017-06-12 2017-09-05 合肥工业大学 Non Power Compensation Process when virtual synchronous Generator Network imbalance is fallen
CN107134792B (en) * 2017-06-12 2019-06-25 合肥工业大学 Non Power Compensation Process when virtual synchronous Generator Network imbalance is fallen
CN107171346A (en) * 2017-06-14 2017-09-15 上海电力学院 Unbalance voltage control method based on virtual synchronous generator
CN107171346B (en) * 2017-06-14 2019-10-01 上海电力学院 Unbalance voltage control method based on virtual synchronous generator
CN107317347A (en) * 2017-08-24 2017-11-03 泰州学院 Shore electric power system stable control method based on virtual synchronous generator
CN107508298B (en) * 2017-09-28 2020-03-17 合肥工业大学 Hierarchical optimization control method for unbalanced voltage of micro-grid
CN107508298A (en) * 2017-09-28 2017-12-22 合肥工业大学 A kind of micro-capacitance sensor unbalance voltage hierarchy optimization control method
CN107919681A (en) * 2017-11-20 2018-04-17 北京科诺伟业科技股份有限公司 A kind of quasi- virtual synchronous machine control method
CN108390396B (en) * 2018-01-29 2019-08-27 合肥工业大学 Virtual synchronous generator control method based on dynamic virtual reactance
CN108270238B (en) * 2018-01-29 2019-10-11 合肥工业大学 Virtual synchronous generator control method based on dynamic virtual resistance
CN108270238A (en) * 2018-01-29 2018-07-10 合肥工业大学 Virtual synchronous generator control method based on dynamic virtual resistance
CN108390396A (en) * 2018-01-29 2018-08-10 合肥工业大学 Virtual synchronous generator control method based on dynamic virtual reactance
CN108539755A (en) * 2018-04-19 2018-09-14 国网湖北省电力有限公司电力科学研究院 A kind of large synchronous compensator startup method based on VVSG technologies
CN108964117A (en) * 2018-06-13 2018-12-07 西安理工大学 A kind of control method of the virtual synchronous generator with unbalanced load and its parallel connection
CN108964040A (en) * 2018-07-23 2018-12-07 河南理工大学 Virtual synchronous generator power-electric current control method for coordinating under unbalanced power supply
CN108964040B (en) * 2018-07-23 2021-04-06 河南理工大学 Power-current coordination control method for virtual synchronous generator under power grid imbalance
CN111193291A (en) * 2018-11-15 2020-05-22 哈尔滨工业大学 Composite virtual synchronous machine control method suitable for unbalanced condition
CN111193291B (en) * 2018-11-15 2021-06-22 哈尔滨工业大学 Composite virtual synchronous machine control method suitable for unbalanced condition
CN109274125A (en) * 2018-11-27 2019-01-25 南方电网科学研究院有限责任公司 Grid-connected control method and device for multi-machine parallel virtual synchronous inverter
CN109274125B (en) * 2018-11-27 2022-03-01 南方电网科学研究院有限责任公司 Grid-connected control method and device for multi-machine parallel virtual synchronous inverter
CN109742758A (en) * 2019-01-04 2019-05-10 南京亚派科技股份有限公司 A kind of APF compensation method based on Dyn11 transformer
CN109742758B (en) * 2019-01-04 2023-08-29 南京亚派科技股份有限公司 APF compensation method based on Dyn11 transformer
CN110838718A (en) * 2019-11-13 2020-02-25 国网山西省电力公司电力科学研究院 Power system frequency stability adjusting method and system
CN110838718B (en) * 2019-11-13 2021-02-12 国网山西省电力公司电力科学研究院 Power system frequency stability adjusting method and system
CN114221376A (en) * 2021-11-16 2022-03-22 云南电网有限责任公司迪庆供电局 Regional grid-connected and off-grid response control method and system
CN114221376B (en) * 2021-11-16 2023-07-14 云南电网有限责任公司迪庆供电局 Regional parallel-to-off-network response control method and system

Also Published As

Publication number Publication date
CN104218590B (en) 2016-06-22

Similar Documents

Publication Publication Date Title
CN104218590B (en) Unbalance voltage compensating control method based on virtual synchronous machine
Lee et al. Hybrid active filter with variable conductance for harmonic resonance suppression in industrial power systems
CN106208159B (en) Bavin storage mixing independent micro-grid dynamic power compensation method based on virtual synchronous generator
CN106849186B (en) A kind of energy storage inverter master-slave control method based on virtual synchronous generator
Mohamed et al. Hierarchical control system for robust microgrid operation and seamless mode transfer in active distribution systems
CN103368191B (en) Micro-grid multi-inverter parallel voltage unbalanced compensation method
CN103475029B (en) Three-phase LCL type grid-connected inverter control system and method based on pole assignment
CN106410849A (en) Virtual synchronous generator-based microgrid inverter balance control method
CN104242717B (en) Self adaptation based on virtual synchronous machine output impedance adjustment
CN105098804B (en) The control method and device of the three phase unbalance current of virtual synchronous generator
CN106602916B (en) A kind of mixing level three-phase four-bridge arm converter device and control method
CN109698517A (en) A kind of method and apparatus controlling electric system
JP6043543B2 (en) Control circuit for controlling inverter circuit and inverter device provided with the control circuit
CN107394779B (en) Dynamic performance optimization control method for micro-grid active power filter
CN113224791B (en) Virtual impedance active damping control method for grid-connected inverter
CN104037777B (en) Distribution Static Compensator suppresses the method for voltage pulsation and harmonic distortion
CN113964879B (en) New energy grid-connected inverter self-synchronizing voltage source control method
CN106571643A (en) Optical storage microgrid system control method
CN109921424A (en) The passive control method of point type three-phase four-wire system shunt active power filter in capacitor
CN107579529A (en) A kind of subsynchronous suppressing method of synchronous machine based on the optimization of grid-connection converter phaselocked loop
CN104868762A (en) DES (distributed energy storage) power electronic transformer, and control method therefor
CN110137971A (en) A kind of steady control method of voltage of three-phase ac power spring
CN107134792B (en) Non Power Compensation Process when virtual synchronous Generator Network imbalance is fallen
CN113991755A (en) Self-synchronizing voltage source control method for new energy power generation unit
CN110994617A (en) Current harmonic suppression method for virtual synchronous machine and control system of virtual synchronous machine

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant