CN104158085A - 无时延、频谱平坦、宽带光子集成混沌半导体激光器 - Google Patents

无时延、频谱平坦、宽带光子集成混沌半导体激光器 Download PDF

Info

Publication number
CN104158085A
CN104158085A CN201410435033.9A CN201410435033A CN104158085A CN 104158085 A CN104158085 A CN 104158085A CN 201410435033 A CN201410435033 A CN 201410435033A CN 104158085 A CN104158085 A CN 104158085A
Authority
CN
China
Prior art keywords
semiconductor laser
chip
distributed feedback
chaos
feedback semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410435033.9A
Other languages
English (en)
Other versions
CN104158085B (zh
Inventor
王云才
张明江
王安帮
张建忠
刘慧�
赵彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201410435033.9A priority Critical patent/CN104158085B/zh
Publication of CN104158085A publication Critical patent/CN104158085A/zh
Application granted granted Critical
Publication of CN104158085B publication Critical patent/CN104158085B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明涉及半导体激光器,具体是一种无时延、频谱平坦、宽带光子集成混沌半导体激光器。本发明解决了现有半导体激光器所产生的混沌激光带有时延特征、信号带宽窄、频谱不平坦的问题。无时延、频谱平坦、宽带光子集成混沌半导体激光器,包括芯片衬底、光波导、掺铒的无源光波导、左分布式反馈半导体激光芯片、无隔离双向放大的半导体光放大芯片、右分布式反馈半导体激光芯片、高速光电探测芯片。本发明适用于混沌同步与保密光通信、高速随机数密钥生成、激光雷达、光纤网络故障检测、超宽带技术以及分布式光纤传感等领域。

Description

无时延、频谱平坦、宽带光子集成混沌半导体激光器
技术领域
本发明涉及半导体激光器,具体是一种无时延、频谱平坦、宽带光子集成混沌半导体激光器。
背景技术
混沌激光作为激光器的一种特殊输出形式,具有随机、宽频谱等特性。近十年的研究表明,混沌激光已在混沌同步与保密光通信、高速随机数密钥生成、激光雷达、光纤网络故障检测、超宽带技术以及分布式光纤传感等领域显示出重要价值。由于半导体激光器具有重量轻、体积小、转换效率高、寿命长、集成性强等特点而成为研究者产生混沌激光的最主要器件。
用半导体激光器产生混沌激光的方法有光反馈方式、光注入方式、光电反馈方式和混合式扰动方式。由于光反馈方式结构简单,且更易于产生宽带高维混沌振荡,故而利用光反馈半导体激光器产生混沌激光成为研究者关注的热点。但是,光反馈半导体激光器输出的混沌激光会携带与反馈腔长有关的信息,在时域上呈现出弱周期性,即有时延特征。
针对上述问题,2011年太原理工大学提出了选择合适的散射体作为半导体激光器的连续反馈腔,单一提供连续后向散射、或提供连续后向散射并放大,对半导体激光器随机扰动,以此消除混沌激光器所产生的时延特征,提高混沌通信的保密性、混沌激光测距的精准性以及随机数的随机性,其目的是提供一种光反馈混沌激光器(见专利:一种光反馈混沌激光器,专利号:ZL201110198943.6)。 
然而,上述混沌光源都是在利用半导体激光器加上各种外部分立光学元件搭建而成的,体积庞大,易受环境影响、输出不稳定。要真正实现混沌光源的实用化和产业化,必须研制体积小、性能稳定、低成本的光子集成混沌半导体激光器,对推动混沌激光在科学研究、基础应用、工程技术等领域的应用具有重要的意义和价值。
光子集成混沌半导体激光器的研制集中在希腊、西班牙、意、德、英、法、爱尔兰7国共9个研究机构和光子器件公司联合实施的PICASSO计划、日本NTT公司与琦玉大学。
(1)2008年希腊雅典大学Argyris等人研制了单片集成混沌半导体激光器芯片(A. Argyris et al., “Photonic integrated device for chaos applications in communications,” Physical Review Letters, 100(19):194101, 2008.),2009年Syvridis和Argyris等人将此单片集成混沌激光器用于了混沌同步的研究,表明此集成混沌激光器芯片可用于混沌通信(D. Syvridis et al., “Integrated devices for optical chaos generation and communication applications,” IEEE Journal of Quantum Electronics, 45(11):1421-1428, 2009),2010年3月Argyris等人和德国海因里希-赫兹研究院弗劳恩霍夫电信研究所的Hamacher公布了此单片集成混沌激光器芯片封装后的模块化器件,利用此混沌激光器产生了稳定的混沌激光(A. Argyris et al., “Chaos-on-a-chip secures data transmission in optical fiber links,” Optics Express, 18(5):5188-5189, 2010.)。
(2)2010年12月,意大利帕维亚大学Annovazzi-Lodi等人、西班牙巴利阿里群岛大学Mirasso等人和德国海因里希-赫兹研究院弗劳恩霍夫电信研究所Hamacher研制了带有空气隙的双反馈光子集成混沌半导体激光器(V. Tronciu et al., “Chaos generation and synchronization using an integrated source with an air gap,” IEEE Journal of Quantum Electronics, 46(12):1840-1846, 2010.)。
(3)2011 年日本NTT 公司Harayama 等人和日本琦玉大学Uchida联合研制了单片集成混沌半导体激光器芯片(T. Harayama et al., “Fast nondeterministic random-bit generation using on-chip chaos lasers,” Physical Review A, 83(3):031803, 2011),此芯片包含一个DFB激光器、两个SOA、一条无源光波导作为直腔反馈装置以及一个快速光电探测器,然后将此混沌半导体激光器芯片两片封装在一个模块中,并行输出两路不相关的混沌电信号。
(4)NTT 公司Sunada 等人和琦玉大学Uchida 联合研制了基于无源环形波导光反馈结构的新型混沌半导体激光器芯片(S. Sunada et al., “Chaos laser chips with delayed optical feedback using a passive ring waveguide,” Optics Express, 19(7):5713-5724, 2011),产生了频谱平坦度±6.5 dB带宽10 GHz 的混沌激光,该芯片包含一个DFB激光器、两个SOA、一个高速光电探测器、一个无源环形波导腔。这种环形腔无需精确控制反射面的切割及镀膜。利用该混沌半导体激光器作为物理熵源,在无任何后续处理环节的情况下,直接产生了速率1.56Gb/s的实时随机数。
(5)国内,光子集成混沌半导体激光器刚刚起步,2013年西南大学夏光琼课题组与中科院半导体材料科学重点实验室合作研制了单片集成半导体激光器芯片用于产生混沌激光(J. G. Wu et al., (夏光琼课题组) “Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip,” Optics Express, 21(20): 23358-23364, 2013.)。该芯片包含一个DFB区、相位控制区、放大区,并在一端端面镀高反射膜以形成光反馈腔,通过控制反馈光强实现混沌光输出。
上述各单位所研制的光子集成混沌半导体激光器均采用了延时光反馈结构。但是,对于这种具有固定反馈面和反馈腔长结构的光反馈半导体激光器,其所产生的混沌激光带有明显的时延特征信息,亦即混沌信号具有一定的周期性。这会降低利用混沌激光作为物理熵源产生的高速物理随机数的随机特性;而对于混沌保密光通信,混沌激光具有时延特征信息会导致安全漏洞;会对混沌雷达和光时域反射仪引入虚警和误判。此外,受半导体激光器驰豫振荡的影响,光反馈半导体激光器产生的混沌信号的能量在频域上主要集中在驰豫振荡频率附近,造成频谱不平坦、低频抑制严重、带宽窄,这会严重影响混沌光时域反射仪和混沌激光雷达的分辨率、限制混沌光通信的传输速率以及产生随机数的码率。
值得注意的是,光注入型混沌光子集成器件及其制备方法(见专利:一种光注入型混沌光子集成器件,专利号:ZL201210349951.0),其特点是主分布反馈半导体激光器产生连续波状态的激光,经过半导体光放大器放大后进入无源光波导,然后注入到从分布反馈半导体激光器。但其存在一定的缺点:我们的研究表明【2009.Anbang Wang(OL).Route to broadband chaos in a chaotic laser diode subject to optical injection】,单注入型结构极易产生注入锁定,且单注入产生的混沌激光带宽窄、频谱不平坦、输出不稳定,而且往往包含两个激光器的拍频信息,会使混沌激光的频谱出现典型的拍频振荡成份,同样会影响混沌光时域反射仪和混沌激光雷达的分辨率、限制混沌光通信的传输速率以及产生随机数的码率。
综上所述,研制无时延特征、频谱平坦、宽带的光子集成混沌半导体激光器至关重要,对推动混沌激光在科学研究、基础应用、工程技术等领域的应用具有重要的意义和价值。
发明内容
本发明为了解决现有半导体激光器所产生的混沌激光带有时延特征、信号带宽窄、频谱不平坦的问题,提供了一种无时延、频谱平坦、宽带光子集成混沌半导体激光器。
本发明是采用如下技术方案实现的:无时延、频谱平坦、宽带光子集成混沌半导体激光器,包括芯片衬底、光波导、掺铒的无源光波导、左分布式反馈半导体激光芯片、无隔离双向放大的半导体光放大芯片、右分布式反馈半导体激光芯片、高速光电探测芯片;其中,左分布式反馈半导体激光芯片、无隔离双向放大的半导体光放大芯片、高速光电探测芯片均固定于芯片衬底的上表面左部;右分布式反馈半导体激光芯片固定于芯片衬底的上表面右部;左分布式反馈半导体激光芯片的右端通过光波导与无隔离双向放大的半导体光放大芯片的左端连接;无隔离双向放大的半导体光放大芯片的右端通过掺铒的无源光波导与右分布式反馈半导体激光芯片的左端连接;左分布式反馈半导体激光芯片的左端分为两路,一路通过光波导与高速光电探测芯片的输入端连接,另一路通过光波导直接输出。
具体工作过程如下:左分布式反馈半导体激光芯片发出连续光。所发出的连续光经由光波导传输至无隔离双向放大的半导体光放大芯片,并经由无隔离双向放大的半导体光放大芯片进行放大。放大后的连续光经由掺铒的无源光波导传输至右分布式反馈半导体激光芯片,并对右分布式反馈半导体激光芯片进行扰动。此时,右分布式反馈半导体激光芯片发出连续光。所发出的连续光经由掺铒的无源光波导传输至无隔离双向放大的半导体光放大芯片,并经由无隔离双向放大的半导体光放大芯片进行放大。放大后的连续光经由光波导传输至左分布式反馈半导体激光芯片,并对左分布式反馈半导体激光芯片进行扰动。左分布式反馈半导体激光芯片和右分布式反馈半导体激光芯片由此实现互注入扰动。在此过程中,相比普通无源光波导,掺铒的无源光波导中的增益介质铒粒子较大,散射系数高,单位长度产生的后向散射强,因此光在掺铒的无源光波导中传输时可产生较强的后向散射。具体而言,左分布式反馈半导体激光芯片发出的连续光在掺铒的无源光波导中传输时产生的后向散射光进入左分布式反馈半导体激光芯片,从而实现对左分布式反馈半导体激光芯片的随机扰动。右分布式反馈半导体激光芯片发出的连续光在掺铒的无源光波导中传输时产生的后向散射光进入右分布式反馈半导体激光芯片,从而实现对右分布式反馈半导体激光芯片的随机扰动。在互注入扰动和随机扰动的共同作用下,左分布式反馈半导体激光芯片产生输出稳定、无时延特征、信号带宽宽、频谱平坦的混沌激光。所产生的混沌激光一路经由光波导传输至高速光电探测芯片,并经由高速光电探测芯片转换为混沌电信号,另一路经由光波导耦合至光纤,使混沌激光经由光纤输出。在上述过程中,无隔离双向放大的半导体光放大芯片用来控制左、右分布式反馈半导体激光芯片相互注入的光功率大小(左、右分布式反馈半导体激光芯片相互注入的光功率大小也可以通过调节左、右分布式反馈半导体激光芯片所加载的泵浦电流来控制)和掺铒的无源光波导对左分布式反馈半导体激光芯片的反馈强度,从而控制所产生的混沌激光的信号带宽、频谱平坦度。
与现有混沌半导体激光器相比,本发明所述的无时延、频谱平坦、宽带光子集成混沌半导体激光器采用掺铒的无源光波导作为连续散射体构成连续分布式反馈腔,并采用无隔离双向放大的半导体光放大芯片控制左、右分布式反馈半导体激光芯片相互注入的光功率大小和掺铒的无源光波导对左分布式反馈半导体激光芯片的反馈强度(左、右分布式反馈半导体激光芯片相互注入的光功率大小也可以通过调节左、右分布式反馈半导体激光芯片所加载的泵浦电流来控制),由此使得所产生的混沌激光输出更稳定、无时延特征、信号带宽更宽、频谱更平坦,从而有效提高了混沌光通信的保密性、光纤故障检测的精准性、物理熵源产生随机数的随机性等。综上所述,本发明所述的无时延、频谱平坦、宽带光子集成混沌半导体激光器通过采用全新结构,有效解决了现有半导体激光器所产生的混沌激光带有时延特征、信号带宽窄、频谱不平坦的问题,其对推动混沌激光在科学研究、基础应用、工程技术等领域的应用具有重要的意义和价值。
进一步地,左分布式反馈半导体激光芯片与右分布式反馈半导体激光芯片之间存在参数失配,二者输出光波长的频率差为10GHz-15GHz,输出功率偏差低于70%。工作时,参数失配能够有效抑制左分布式反馈半导体激光芯片和右分布式反馈半导体激光芯片进行互注入扰动时发生的锁定同步效应,由此进一步保证左分布式反馈半导体激光芯片产生无时延特征的混沌激光。
本发明有效解决了现有半导体激光器所产生的混沌激光带有时延特征、信号带宽窄、频谱不平坦的问题,适用于混沌同步与保密光通信、高速随机数密钥生成、激光雷达、光纤网络故障检测、超宽带技术以及分布式光纤传感等领域。
附图说明
图1是本发明的结构示意图。
图中:1-芯片衬底,2-光波导,3-掺铒的无源光波导,4-左分布式反馈半导体激光芯片,5-无隔离双向放大的半导体光放大芯片,6-右分布式反馈半导体激光芯片,7-高速光电探测芯片。
具体实施方式
无时延、频谱平坦、宽带光子集成混沌半导体激光器,包括芯片衬底1、光波导2、掺铒的无源光波导3、左分布式反馈半导体激光芯片4、无隔离双向放大的半导体光放大芯片5、右分布式反馈半导体激光芯片6、高速光电探测芯片7;
其中,左分布式反馈半导体激光芯片4、无隔离双向放大的半导体光放大芯片5、高速光电探测芯片7均固定于芯片衬底1的上表面左部;
右分布式反馈半导体激光芯片6固定于芯片衬底1的上表面右部;
左分布式反馈半导体激光芯片4的右端通过光波导2与无隔离双向放大的半导体光放大芯片5的左端连接;
无隔离双向放大的半导体光放大芯片5的右端通过掺铒的无源光波导3与右分布式反馈半导体激光芯片6的左端连接;
左分布式反馈半导体激光芯片4的左端分为两路,一路通过光波导2与高速光电探测芯片7的输入端连接,另一路通过光波导2直接输出。
左分布式反馈半导体激光芯片4与右分布式反馈半导体激光芯片6之间存在参数失配,二者输出光波长的频率差为10GHz-15GHz,输出功率偏差低于70%。
具体实施时,芯片衬底1为Si基SiO2衬底;光波导2、掺铒的无源光波导3均为Si基SiO2光波导。左分布式反馈半导体激光芯片4、无隔离双向放大的半导体光放大芯片5、高速光电探测芯片7均采用倒装贴片工艺固定于芯片衬底1的上表面左部;右分布式反馈半导体激光芯片6采用倒装贴片工艺固定于芯片衬底1的上表面右部。掺铒的无源光波导3的长度为10毫米;左分布式反馈半导体激光芯片4的长度、右分布式反馈半导体激光芯片6的长度均为500微米;无隔离双向放大的半导体光放大芯片5的长度为200微米,且无隔离双向放大的半导体光放大芯片5采用InGaAs/InGaAsP的双异质结多量子阱结构。

Claims (5)

1.一种无时延、频谱平坦、宽带光子集成混沌半导体激光器,其特征在于:包括芯片衬底(1)、光波导(2)、掺铒的无源光波导(3)、左分布式反馈半导体激光芯片(4)、无隔离双向放大的半导体光放大芯片(5)、右分布式反馈半导体激光芯片(6)、高速光电探测芯片(7);
其中,左分布式反馈半导体激光芯片(4)、无隔离双向放大的半导体光放大芯片(5)、高速光电探测芯片(7)均固定于芯片衬底(1)的上表面左部;
右分布式反馈半导体激光芯片(6)固定于芯片衬底(1)的上表面右部;
左分布式反馈半导体激光芯片(4)的右端通过光波导(2)与无隔离双向放大的半导体光放大芯片(5)的左端连接;
无隔离双向放大的半导体光放大芯片(5)的右端通过掺铒的无源光波导(3)与右分布式反馈半导体激光芯片(6)的左端连接;
左分布式反馈半导体激光芯片(4)的左端分为两路,一路通过光波导(2)与高速光电探测芯片(7)的输入端连接,另一路通过光波导(2)直接输出。
2.根据权利要求1所述的无时延、频谱平坦、宽带光子集成混沌半导体激光器,其特征在于:左分布式反馈半导体激光芯片(4)与右分布式反馈半导体激光芯片(6)之间存在参数失配,二者输出光波长的频率差为10GHz-15GHz,输出功率偏差低于70%。
3.根据权利要求1或2所述的无时延、频谱平坦、宽带光子集成混沌半导体激光器,其特征在于:芯片衬底(1)为Si基SiO2衬底;光波导(2)、掺铒的无源光波导(3)均为Si基SiO2光波导。
4.根据权利要求1或2所述的无时延、频谱平坦、宽带光子集成混沌半导体激光器,其特征在于:左分布式反馈半导体激光芯片(4)、无隔离双向放大的半导体光放大芯片(5)、高速光电探测芯片(7)均采用倒装贴片工艺固定于芯片衬底(1)的上表面左部;右分布式反馈半导体激光芯片(6)采用倒装贴片工艺固定于芯片衬底(1)的上表面右部。
5.根据权利要求1或2所述的无时延、频谱平坦、宽带光子集成混沌半导体激光器,其特征在于:掺铒的无源光波导(3)的长度为10毫米;左分布式反馈半导体激光芯片(4)的长度、右分布式反馈半导体激光芯片(6)的长度均为500微米;无隔离双向放大的半导体光放大芯片(5)的长度为200微米,且无隔离双向放大的半导体光放大芯片(5)采用InGaAs/InGaAsP的双异质结多量子阱结构。
CN201410435033.9A 2014-08-30 2014-08-30 无时延、频谱平坦、宽带光子集成混沌半导体激光器 Active CN104158085B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410435033.9A CN104158085B (zh) 2014-08-30 2014-08-30 无时延、频谱平坦、宽带光子集成混沌半导体激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410435033.9A CN104158085B (zh) 2014-08-30 2014-08-30 无时延、频谱平坦、宽带光子集成混沌半导体激光器

Publications (2)

Publication Number Publication Date
CN104158085A true CN104158085A (zh) 2014-11-19
CN104158085B CN104158085B (zh) 2017-04-12

Family

ID=51883529

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410435033.9A Active CN104158085B (zh) 2014-08-30 2014-08-30 无时延、频谱平坦、宽带光子集成混沌半导体激光器

Country Status (1)

Country Link
CN (1) CN104158085B (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104953468A (zh) * 2014-03-25 2015-09-30 中国科学院半导体研究所 四段式放大反馈混沌光发射激光器结构
CN105762646A (zh) * 2016-04-20 2016-07-13 太原理工大学 一种集成双反馈的半导体混沌激光器
CN106785816A (zh) * 2017-01-06 2017-05-31 电子科技大学 一种混沌激光光源
CN107066236A (zh) * 2015-11-10 2017-08-18 Id量子技术公司 基于光学的量子随机数生成的方法和装置
CN107658694A (zh) * 2017-11-16 2018-02-02 太原理工大学 一种随机散射光反馈的InP基单片集成混沌半导体激光器芯片
CN107809059A (zh) * 2017-11-16 2018-03-16 太原理工大学 基于随机分布布拉格反射光栅的InP基单片集成混沌半导体激光器芯片
CN108155559A (zh) * 2017-12-25 2018-06-12 武汉电信器件有限公司 一种基于随机光反馈的混沌半导体激光器及其使用方法
CN108199259A (zh) * 2017-12-25 2018-06-22 武汉光迅科技股份有限公司 一种联合扰动式混沌激光信号发生器及其使用方法
CN108718031A (zh) * 2018-06-04 2018-10-30 太原理工大学 一种双反馈加光注入结构的集成混沌激光器
CN108899759A (zh) * 2018-08-15 2018-11-27 武汉光迅科技股份有限公司 一种混合集成混沌半导体激光器芯片及激光器
CN109921855A (zh) * 2019-04-30 2019-06-21 电子科技大学 一种基于小型蓝绿激光器的水下无线同步系统及方法
CN110265868A (zh) * 2019-05-07 2019-09-20 太原理工大学 波长可调谐的宽带混沌半导体激光器芯片
CN110429471A (zh) * 2019-07-10 2019-11-08 太原理工大学 一种光子集成双区混沌半导体激光器芯片
CN111124362A (zh) * 2019-12-06 2020-05-08 太原理工大学 一种基于单片集成混沌激光器的高速物理随机数发生器
CN111129948A (zh) * 2019-12-06 2020-05-08 太原理工大学 基于弱增益耦合dfb激光器的宽带混沌激光器芯片
CN112327270A (zh) * 2020-11-04 2021-02-05 国科光芯(海宁)科技股份有限公司 一种片上集成混沌雷达芯片及其制备方法
US11081860B2 (en) 2019-04-01 2021-08-03 Taiyuan University Of Technology Integrated broadband chaotic semiconductor laser using optical microcavities
CN114361939A (zh) * 2022-01-07 2022-04-15 太原理工大学 基于微环及y型波导结构的集成混沌信号发生器
CN117199991A (zh) * 2023-06-30 2023-12-08 无锡芯光互连技术研究院有限公司 混沌激光器及其多光程引入组件、集成片
CN117199991B (zh) * 2023-06-30 2024-07-12 无锡芯光互连技术研究院有限公司 混沌激光器及其多光程引入组件、集成片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280815A (zh) * 2011-07-16 2011-12-14 太原理工大学 一种光反馈混沌激光器
US20120190147A1 (en) * 2006-10-10 2012-07-26 Mitsubishi Electric Corporation Method of manufacturing semiconductor optical element
JP5100881B1 (ja) * 2011-11-07 2012-12-19 古河電気工業株式会社 集積型半導体レーザ素子
CN102882127A (zh) * 2012-09-19 2013-01-16 大连理工大学 一种光注入型混沌光子集成器件及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120190147A1 (en) * 2006-10-10 2012-07-26 Mitsubishi Electric Corporation Method of manufacturing semiconductor optical element
CN102280815A (zh) * 2011-07-16 2011-12-14 太原理工大学 一种光反馈混沌激光器
JP5100881B1 (ja) * 2011-11-07 2012-12-19 古河電気工業株式会社 集積型半導体レーザ素子
CN102882127A (zh) * 2012-09-19 2013-01-16 大连理工大学 一种光注入型混沌光子集成器件及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APOSTOLOS ARGYRIS ET AL.: "Chaos-on-a-chip secures data transmission in optical fiber links", 《OPTICS EXPRESS》 *
SATOSHI SUNADA ET AL.: "chaos laser chips with delayed optical feedback using a passive ring waveguide", 《OPTICS EXPRESS》 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104953468A (zh) * 2014-03-25 2015-09-30 中国科学院半导体研究所 四段式放大反馈混沌光发射激光器结构
CN107066236A (zh) * 2015-11-10 2017-08-18 Id量子技术公司 基于光学的量子随机数生成的方法和装置
CN105762646A (zh) * 2016-04-20 2016-07-13 太原理工大学 一种集成双反馈的半导体混沌激光器
CN105762646B (zh) * 2016-04-20 2018-07-24 太原理工大学 一种集成双反馈的半导体混沌激光器
CN106785816A (zh) * 2017-01-06 2017-05-31 电子科技大学 一种混沌激光光源
CN106785816B (zh) * 2017-01-06 2019-01-25 电子科技大学 一种混沌激光光源
US11152763B2 (en) * 2017-11-16 2021-10-19 Taiyuan University Of Technology INP-based monolithic integrated chaotic semiconductor laser chip capable of feeding back randomly diffused light
CN107658694A (zh) * 2017-11-16 2018-02-02 太原理工大学 一种随机散射光反馈的InP基单片集成混沌半导体激光器芯片
CN107809059A (zh) * 2017-11-16 2018-03-16 太原理工大学 基于随机分布布拉格反射光栅的InP基单片集成混沌半导体激光器芯片
WO2019095529A1 (zh) * 2017-11-16 2019-05-23 太原理工大学 一种随机散射光反馈的InP基单片集成混沌半导体激光器芯片
CN108155559A (zh) * 2017-12-25 2018-06-12 武汉电信器件有限公司 一种基于随机光反馈的混沌半导体激光器及其使用方法
CN108199259A (zh) * 2017-12-25 2018-06-22 武汉光迅科技股份有限公司 一种联合扰动式混沌激光信号发生器及其使用方法
CN108155559B (zh) * 2017-12-25 2020-06-30 武汉电信器件有限公司 一种基于随机光反馈的混沌半导体激光器及其使用方法
CN108718031A (zh) * 2018-06-04 2018-10-30 太原理工大学 一种双反馈加光注入结构的集成混沌激光器
CN108899759B (zh) * 2018-08-15 2019-09-17 武汉光迅科技股份有限公司 一种混合集成混沌半导体激光器芯片及激光器
CN108899759A (zh) * 2018-08-15 2018-11-27 武汉光迅科技股份有限公司 一种混合集成混沌半导体激光器芯片及激光器
US11081860B2 (en) 2019-04-01 2021-08-03 Taiyuan University Of Technology Integrated broadband chaotic semiconductor laser using optical microcavities
CN109921855A (zh) * 2019-04-30 2019-06-21 电子科技大学 一种基于小型蓝绿激光器的水下无线同步系统及方法
CN110265868A (zh) * 2019-05-07 2019-09-20 太原理工大学 波长可调谐的宽带混沌半导体激光器芯片
CN110429471A (zh) * 2019-07-10 2019-11-08 太原理工大学 一种光子集成双区混沌半导体激光器芯片
CN111129948A (zh) * 2019-12-06 2020-05-08 太原理工大学 基于弱增益耦合dfb激光器的宽带混沌激光器芯片
CN111129948B (zh) * 2019-12-06 2021-10-08 太原理工大学 基于弱增益耦合dfb激光器的宽带混沌激光器芯片
CN111124362A (zh) * 2019-12-06 2020-05-08 太原理工大学 一种基于单片集成混沌激光器的高速物理随机数发生器
CN111124362B (zh) * 2019-12-06 2022-03-15 太原理工大学 一种基于单片集成混沌激光器的高速物理随机数发生器
CN112327270A (zh) * 2020-11-04 2021-02-05 国科光芯(海宁)科技股份有限公司 一种片上集成混沌雷达芯片及其制备方法
CN114361939A (zh) * 2022-01-07 2022-04-15 太原理工大学 基于微环及y型波导结构的集成混沌信号发生器
CN114361939B (zh) * 2022-01-07 2023-10-13 太原理工大学 基于微环及y型波导结构的集成混沌信号发生器
CN117199991A (zh) * 2023-06-30 2023-12-08 无锡芯光互连技术研究院有限公司 混沌激光器及其多光程引入组件、集成片
CN117199991B (zh) * 2023-06-30 2024-07-12 无锡芯光互连技术研究院有限公司 混沌激光器及其多光程引入组件、集成片

Also Published As

Publication number Publication date
CN104158085B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
CN104158085A (zh) 无时延、频谱平坦、宽带光子集成混沌半导体激光器
US11152763B2 (en) INP-based monolithic integrated chaotic semiconductor laser chip capable of feeding back randomly diffused light
CN107809059B (zh) 基于随机分布布拉格反射光栅的InP基单片集成混沌半导体激光器芯片
CN107658693B (zh) 一种基于随机光栅反馈的单片集成混沌激光器芯片
CN102882127A (zh) 一种光注入型混沌光子集成器件及其制备方法
CN110600973B (zh) 基于非线性光纤有源光反馈产生宽带混沌激光装置及方法
Huang et al. Ultra-broadband flat-top quantum dot comb lasers
Asghar et al. Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback
Agarwal et al. Characterization and optimization of semiconductor optical amplifier for ultra high speed applications: a review
CN108963751A (zh) 注入锁定半导体激光器
Wang et al. Carrier lifetime in erbium-doped GaN waveguide emitting in 1540 nm wavelength
Lin et al. Cavity design and characteristics of monolithic long-wavelength InAs/InP quantum dash passively mode-locked lasers
Asghar et al. Stabilization of self-mode-locked QDash lasers subject to simultaneous continuous-wave optical injection and optical feedback
CN203466821U (zh) 可调谐光混沌信号发生装置
Cheng et al. Passively mode-locked III-V/silicon laser with continuous-wave optical injection
Monroy et al. Performance enhancement of an ultrafast all-fiber laser based on an InN saturable absorber using GRIN coupling
CN103501200B (zh) 可调谐光混沌信号发生装置及产生方法
Weng et al. Sub‐THz wave generation based on a dual wavelength microsquare laser
CN106169690A (zh) 一种高重频锁模光纤激光器及其产生高重频脉冲的方法
O'carroll et al. Dynamic characteristics of InGaAs/InP multiple quantum well discrete mode laser diodes emitting at 2 μm
Akashi et al. Demonstration of All‐Optical Logic Gate Device Using MQW‐SOA and 10 Gbps XNOR Operation
Yakimov et al. Concept of feedback-free high-frequency loss modulation in detuned duo-cavity vertical cavity surface-emitting laser
CN111147144B (zh) 大密钥空间的混沌光保密通信收发模块
Hualong et al. Development of long‐distance power supply system with high power laser over single mode fiber
CN202103310U (zh) 一种基于单壁碳纳米管的被动锁模器件及光纤激光器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190201

Address after: 510060 No. 729 Dongfeng East Road, Guangzhou, Guangdong Province

Patentee after: Guangdong University of Technology

Address before: 030024 No. 79 West Main Street, Taiyuan, Shanxi, Yingze

Patentee before: Taiyuan University of Technology

TR01 Transfer of patent right