CN104157882A - 导电陶瓷/Cr复合改性的聚合物电解质膜燃料电池金属双极板 - Google Patents
导电陶瓷/Cr复合改性的聚合物电解质膜燃料电池金属双极板 Download PDFInfo
- Publication number
- CN104157882A CN104157882A CN201410389449.1A CN201410389449A CN104157882A CN 104157882 A CN104157882 A CN 104157882A CN 201410389449 A CN201410389449 A CN 201410389449A CN 104157882 A CN104157882 A CN 104157882A
- Authority
- CN
- China
- Prior art keywords
- layer
- pure
- powder
- sio
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 50
- 239000000446 fuel Substances 0.000 title claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 14
- 239000002184 metal Substances 0.000 title claims abstract description 14
- 239000005518 polymer electrolyte Substances 0.000 title claims abstract description 7
- 239000012528 membrane Substances 0.000 title abstract 3
- 150000001875 compounds Chemical class 0.000 title abstract 2
- 238000012986 modification Methods 0.000 claims abstract description 29
- 230000004048 modification Effects 0.000 claims abstract description 29
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 13
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 11
- 239000000956 alloy Substances 0.000 claims abstract description 11
- 238000005516 engineering process Methods 0.000 claims abstract description 9
- 238000002360 preparation method Methods 0.000 claims abstract description 8
- 239000000843 powder Substances 0.000 claims description 54
- 239000011159 matrix material Substances 0.000 claims description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- 229910002804 graphite Inorganic materials 0.000 claims description 11
- 239000010439 graphite Substances 0.000 claims description 11
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 10
- 239000002131 composite material Substances 0.000 claims description 8
- 229910052786 argon Inorganic materials 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 6
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 6
- 238000005498 polishing Methods 0.000 claims description 6
- 239000010935 stainless steel Substances 0.000 claims description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims description 5
- 229910000831 Steel Inorganic materials 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 239000010959 steel Substances 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 230000007797 corrosion Effects 0.000 abstract description 7
- 238000005260 corrosion Methods 0.000 abstract description 7
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 230000007547 defect Effects 0.000 abstract description 3
- 238000010923 batch production Methods 0.000 abstract description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract 2
- 229910052742 iron Inorganic materials 0.000 abstract 1
- 239000011148 porous material Substances 0.000 abstract 1
- 239000000758 substrate Substances 0.000 abstract 1
- 239000011651 chromium Substances 0.000 description 35
- 229920000642 polymer Polymers 0.000 description 13
- 238000000034 method Methods 0.000 description 6
- 238000000498 ball milling Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 238000005303 weighing Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 208000037656 Respiratory Sounds Diseases 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M2004/8678—Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
- H01M2004/8694—Bipolar electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
Abstract
本发明公开了一种以导电陶瓷/Cr复合改性的聚合物电解质膜燃料电池金属双极板,是以铁基合金为基体,采用激光表面改性技术在其表面依次制备纯Cr层和Al2O3-SiO2-石墨系列导电陶瓷层改性。改性后的双极板表面无孔隙和裂纹等缺陷,具有良好的耐腐蚀、导电和导热性能,可以大幅度提高聚合物电解质膜燃料电池的使用寿命和能量转化效率。该制备方法具有加工工艺简单、生产成本低、可大规模批量生产等优点。
Description
技术领域
本发明涉及一种改性聚合物电解质膜燃料电池双极板及其制备方法方法,在双极板表面制备导电陶瓷/Cr改性层,属于燃料电池领域。
背景技术
聚合物电解质膜燃料电池具有无污染、产能高、工作温度低、启动速度快、使用寿命长等优点,特别是不使用具有腐蚀性的电解质,电池可以以任何角度、任何方位运行,适用于汽车及其他可移动设施的电源。尤其是在当前环境污染日益严重及能源紧缺的情况下,用聚合物电解质膜燃料电池代替传统的能源系统完全可以满足零排放、低噪音的需求。因此,聚合物电解质膜燃料电池的发展对于目前急待解决的环境污染问题具有重要的意义。
双极板是聚合物电解质膜燃料电池的关键部件之一,传统的石墨双极板不仅占据整个电池重量的70%~80%,高成本、难以加工、多孔结构和低强度也在很大程度上限制了其规模化商业应用。成本相对低廉的金属材料作为燃料电池的双极板具有良好的导电性、导热性和强韧性等优点,且可采用机加工和冲压等方法加工流场。但金属材料在酸性的聚合物电解质膜燃料电池工作环境下易发生电化学腐蚀,表面氧化物虽然能够抑制其进一步腐蚀,但同时也会导致接触电阻升高,降低了燃料电池的输出效率。金属双极板的发展主要面临着其在燃料电池工作环境下表现出低的耐腐蚀性和高的表面接触电阻等问题。有些研究者直接选用具有高耐蚀性和低接触电阻的材料(如贵金属)制成双极板,但这些材料制成的双极板往往价格高昂,难以实现商业化应用。因此,通过表面改性满足其在耐蚀性和导电性方面的使用要求不失为一条有效的解决途径。CN102629690A公开了一种采用等离子氮化和热反应沉积与扩散复合表面改性技术对铁基合金金属板进行表面改性的方法。CN103199279A采用闭合场非平衡磁控溅射技术制备Ti、Al或/和Mo掺杂的C/CrN多层梯度膜提高不锈钢双极板的性能。
在CN101393990A中则通过离子注入把镍、铬、铜中的任意两种元素或者全部三种元素注入不锈钢表面。还有些研究者通过电镀、化学镀和渗氮等方法对金属双极板进行表面改性,以达到降低原材料和生产成本的目的。虽然这些表面改性方法都在一定程度上提高了金属双极板的耐腐蚀性和导电性,但仍存在这样或那样的问题,如加工工序较复杂、生产成本较高、不适于批量生产等。
发明内容
本发明的目的在于提供一种导电陶瓷/Cr改性的聚合物电解质膜燃料电池双极板。采用激光表面改性技术对铁基合金双极板进行表面改性,改性层无孔隙和裂纹等缺陷,且与基体之间紧密结合。该方法加工制备工序简单、生产效率高。改性后的铁基合金双极板不仅具有优良的导电、导热性和耐蚀性,而且还可以大幅度提高聚合物电解质膜燃料电池的使用寿命和能量转化效率。
为达到上述目的,本申请采用如下技术方案:
导电陶瓷/Cr复合改性的聚合物电解质膜燃料电池金属双极板,以铁基合金为基体,采用激光表面改性技术在基体表面依次制备纯Cr层和Al2O3-SiO2-石墨系列导电陶瓷层改性;具体按照以下步骤:
⑴预处理:对铁基合金双极板表面进行除油、除锈、打磨;
⑵制备纯Cr层:将颗粒度为20~120μm的纯Cr粉末装入CO2激光器送粉器中,调整激光表面改性工艺参数,在基体表面制备纯Cr层;
⑶制备导电陶瓷层:将石墨、Al2O3、SiO2充分混合制备导电陶瓷粉末,将颗粒度为20~120μm的干燥导电陶瓷粉末装入送粉器,调整激光表面改性工艺参数,在纯Cr层表面制备Al2O3-SiO2-石墨系列导电陶瓷层;
其中,步骤⑵和⑶中所述激光表面改性工艺参数为:激光器功率为500~1000W,扫描速度为3~5mm/s,光斑直径为3mm,送粉速率为15~20g/cm3,并侧吹氩气保护,流量为8~16L/min。
进一步的,本发明所述纯Cr层厚度为0.1~0.5mm;所述Al2O3-SiO2-石墨系列导电陶瓷层厚度为0.2~0.6mm。
更进一步的,本发明所述导电陶瓷粉末按重量百分比由18~35%石墨、30~45%Al2O3、30~50%SiO2组成。
采用本发明所涉及的制备方法,在金属双极板表面形成导电陶瓷/Cr改性层,纯Cr层可以实现Al2O3-SiO2-石墨系列导电陶瓷改性层与基体的紧密结合,石墨颗粒则为电子定向运动而形成导电网络。以铁基合金作为基体,选用廉价材料Al2O3、SiO2和石墨在纯Cr表面制备Al2O3-SiO2-石墨系列导电陶瓷层。具有导电陶瓷/Cr复合改性层的金属双极板表面无孔隙和裂纹等制备缺陷,导热率高于20W/m K。在聚合物电解质膜燃料电池的工作环境中的腐蚀速率低于0.01mA/cm2、接触电阻低于9mΩcm2。改性后的铁基合金双极板可以大幅度提高聚合物电解质膜燃料电池的使用寿命和能量转化效率。该制备方法具有加工工艺简单、生产成本低、可大规模批量生产等优点。
具体实例方式
实施例1
⑴预处理:以AISI316L不锈钢双极板为基体,表面进行除油、除锈、打磨等预处理。
⑵制备纯Cr层:将颗粒度为20μm的纯Cr粉末装入送粉器中,采用CO2固体激光器以同步送粉方式在AISI316L双极板表面制备厚度为0.1mm的纯Cr层。其中,激光表面改性工艺参数为:激光器的功率为500W,扫描速度5mm/s,光斑直径3mm,送粉速率20g/cm3,并侧吹氩气保护,流量为16L/min。
⑶制备导电陶瓷层:导电陶瓷粉末按重量百分比由20wt%石墨、34wt%Al2O3和46wt%SiO2组成,按此百分比称重后在球磨机中进行球磨获得颗粒度为120μm的导电陶瓷粉末,将干燥后的导电陶瓷粉末装入送粉器中,激光表面改性工艺参数同步骤⑵,仅调整送粉器的送粉速率为15g/cm3,在纯Cr层表面制备厚度为0.4mm的Al2O3-SiO2-石墨系列导电陶瓷层,即得到导电陶瓷/Cr复合改性的聚合物电解质膜燃料电池双极板。
实施例2
⑴预处理:以AISI446不锈钢双极板为基体,表面进行除油、除锈、打磨等预处理。
⑵制备纯Cr层:将颗粒度为120μm的纯Cr粉末装入送粉器中,采用CO2固体激光器以同步送粉方式在AISI446双极板表面制备厚度为0.3mm的纯Cr层。其中,激光表面改性工艺参数为:激光器的功率为800W,扫描速度4mm/s,光斑直径3mm,送粉速率15g/cm3,并侧吹氩气保护,流量为16L/min。
⑶制备导电陶瓷层:导电陶瓷粉末按重量百分比由25wt%石墨、38wt%Al2O3和37wt%SiO2组成,按此百分比称重后在球磨机中进行球磨获得颗粒度为60μm的导电陶瓷粉末,将干燥后的导电陶瓷粉末装入送粉器中,激光表面改性工艺参数同步骤⑵,仅调整送粉器的送粉速率为20g/cm3,在纯Cr层表面制备厚度为0.2mm的Al2O3-SiO2-石墨系列导电陶瓷层,即得到导电陶瓷/Cr复合改性的聚合物电解质膜燃料电池双极板。
实施例3
⑴预处理:以AISI1020低碳钢双极板为基体,表面进行除油、除锈、打磨等预处理。
⑵制备纯Cr层:将颗粒度为40μm的纯Cr粉末装入送粉器中,采用CO2固体激光器以同步送粉方式在AISI446双极板表面制备厚度为0.5mm的纯Cr层。其中,激光表面改性工艺参数为:激光器的功率为1000W,扫描速度3mm/s,光斑直径3mm,送粉速率18g/cm3,并侧吹氩气保护,流量为16L/min。
⑶制备导电陶瓷层:导电陶瓷粉末按重量百分比由18wt%石墨、32wt%Al2O3和50wt%SiO2组成,按此百分比称重后在球磨机中进行球磨获得颗粒度为20μm的导电陶瓷粉末,将干燥后的导电陶瓷粉末装入送粉器中,激光表面改性工艺参数同步骤⑵,仅调整送粉器的送粉速率为20g/cm3,在纯Cr层表面制备厚度为0.6mm的Al2O3-SiO2-石墨系列导电陶瓷层,即得到导电陶瓷/Cr复合改性的聚合物电解质膜燃料电池双极板。
实施例4
⑴预处理:以AISI1010低碳钢双极板为基体,表面进行除油、除锈、打磨等预处理。
⑵制备纯Cr层:将颗粒度为80μm的纯Cr粉末装入送粉器中,采用CO2固体激光器以同步送粉方式在AISI446双极板表面制备厚度为0.2mm的纯Cr层。其中,激光表面改性工艺参数为:激光器的功率为700W,扫描速度4mm/s,光斑直径3mm,送粉速率15g/cm3,并侧吹氩气保护,流量为16L/min。
⑶制备导电陶瓷层:导电陶瓷粉末按重量百分比由35wt%石墨、35wt%Al2O3和30wt%SiO2组成,按此百分比称重后在球磨机中进行球磨获得颗粒度为80μm的导电陶瓷粉末,将干燥后的导电陶瓷粉末装入送粉器中,激光表面改性工艺参数同步骤⑵,仅调整送粉器的送粉速率为17g/cm3,在纯Cr层表面制备厚度为0.5mm的Al2O3-SiO2-石墨系列导电陶瓷层,即得到导电陶瓷/Cr复合改性的聚合物电解质膜燃料电池双极板。
Claims (5)
1.导电陶瓷/Cr复合改性的聚合物电解质膜燃料电池金属双极板,其特征在于:以铁基合金为基体,采用激光表面改性技术在基体表面依次制备纯Cr层和Al2O3-SiO2-石墨系列导电陶瓷层改性;具体按照以下步骤:
⑴预处理:对铁基合金双极板表面进行除油、除锈、打磨;
⑵制备纯Cr层:将颗粒度为20~120μm的纯Cr粉末装入CO2激光器送粉器中,调整激光表面改性工艺参数,在基体表面制备纯Cr层;
⑶制备导电陶瓷层:将石墨、Al2O3、SiO2充分混合制备导电陶瓷粉末,将颗粒度为20~120μm的干燥导电陶瓷粉末装入送粉器,调整激光表面改性工艺参数,在纯Cr层表面制备Al2O3-SiO2-石墨系列导电陶瓷层;
其中,步骤⑵和⑶中所述激光表面改性工艺参数为:激光器功率为500~1000W,扫描速度为3~5mm/s,光斑直径为3mm,送粉速率为15~20g/cm3,并侧吹氩气保护,流量为8~16L/min。
2.根据权利要求1所述的金属双极板,其特征在于:所述纯Cr层厚度为0.1~0.5mm。
3.根据权利要求1所述的金属双极板,其特征在于:所述Al2O3-SiO2-石墨系列导电陶瓷层厚度为0.2~0.6mm。
4.根据权利要求1所述金属双极板,其特征在于:所述导电陶瓷粉末按重量百分比为18~35%石墨、30~45%Al2O3、30~50%SiO2。
5.根据权利要求1所述的金属双极板,其特征在于:所述铁基合金为低碳钢或不锈钢。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410389449.1A CN104157882B (zh) | 2014-08-08 | 2014-08-08 | 导电陶瓷/Cr复合改性的聚合物电解质膜燃料电池金属双极板 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410389449.1A CN104157882B (zh) | 2014-08-08 | 2014-08-08 | 导电陶瓷/Cr复合改性的聚合物电解质膜燃料电池金属双极板 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104157882A true CN104157882A (zh) | 2014-11-19 |
CN104157882B CN104157882B (zh) | 2016-04-06 |
Family
ID=51883334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410389449.1A Active CN104157882B (zh) | 2014-08-08 | 2014-08-08 | 导电陶瓷/Cr复合改性的聚合物电解质膜燃料电池金属双极板 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104157882B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100654242B1 (ko) * | 2005-12-30 | 2006-12-05 | 제일모직주식회사 | 연료전지용 바이폴라 플레이트의 제조방법 |
CN101573820A (zh) * | 2006-12-20 | 2009-11-04 | 第一毛织株式会社 | 亲水性无机聚集体、制备其的方法、包含其的亲水性组合材料及用于燃料电池的双极板 |
CN102800871A (zh) * | 2012-08-14 | 2012-11-28 | 上海交通大学 | 一种燃料电池金属双极板碳铬阶梯镀层及其制备方法 |
CN103290406A (zh) * | 2013-06-04 | 2013-09-11 | 北京工业大学 | 激光熔覆原位合成陶瓷相增强Fe基熔覆层及其制备方法 |
-
2014
- 2014-08-08 CN CN201410389449.1A patent/CN104157882B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100654242B1 (ko) * | 2005-12-30 | 2006-12-05 | 제일모직주식회사 | 연료전지용 바이폴라 플레이트의 제조방법 |
CN101573820A (zh) * | 2006-12-20 | 2009-11-04 | 第一毛织株式会社 | 亲水性无机聚集体、制备其的方法、包含其的亲水性组合材料及用于燃料电池的双极板 |
CN102800871A (zh) * | 2012-08-14 | 2012-11-28 | 上海交通大学 | 一种燃料电池金属双极板碳铬阶梯镀层及其制备方法 |
CN103290406A (zh) * | 2013-06-04 | 2013-09-11 | 北京工业大学 | 激光熔覆原位合成陶瓷相增强Fe基熔覆层及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104157882B (zh) | 2016-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101800318B (zh) | 一种质子交换膜燃料电池用金属双极板及其制备方法 | |
CN100595951C (zh) | 一种燃料电池用双极板及其表面碳铬薄膜制备方法 | |
CN108914060B (zh) | 一种燃料电池双极板表面防护涂层的制备方法 | |
CN102130341A (zh) | 一种燃料电池双极板及其表面碳钛纳米复合薄膜制备方法 | |
CN104157880A (zh) | 一种导电金属陶瓷修饰锂离子电池集流体的方法 | |
CN107955961A (zh) | 一种镁合金表面导电防腐涂层的制备方法 | |
CN102181821A (zh) | 金属钛表面熔盐电解渗硼用渗硼剂及渗硼工艺 | |
CN108018529A (zh) | 一种铝基燃料电池双极板表面复合涂层及其制备方法 | |
CN103972528B (zh) | 质子交换膜燃料电池金属双极板防护涂层的制备方法 | |
CN106498386A (zh) | 一种激光熔覆铜表面复合涂层及其制备方法 | |
Mi et al. | Effect of N doping on Cr-doped amorphous carbon/CrN/Ti multilayer coatings on 316L stainless steel bipolar plate for PEMFC: First principles calculation, structure and performance | |
CN116103625A (zh) | 一种Cr掺杂的MAX相涂层的其制备方法及双极板和燃料电池 | |
CN103046073A (zh) | 一种铁基、铜过渡层和表面氮化物涂层的新型复合电极材料及制备方法 | |
CN106920977A (zh) | ITO/Nb复合改性的聚合物电解质膜燃料电池金属双极板及其制备方法 | |
CN102629690B (zh) | 燃料电池用铬氮化物改性金属双极板及其制备方法 | |
Wen et al. | Corrosion Behavior of Au Coating on 316L Bipolar Plate in Accelerated PEMFC Environment | |
CN201717318U (zh) | 一种质子交换膜燃料电池用金属双极板 | |
CN100495779C (zh) | 轻金属表面改性燃料电池双极板的制备方法 | |
CN102002743A (zh) | 在纯铜或铜合金基体上熔盐电镀厚钨涂层的制备方法 | |
CN109037708A (zh) | 一种表面改性的20Cr钢双极板材料及其制备方法 | |
CN105047975A (zh) | 一种燃料电池用金属双极板及其制备方法 | |
CN102409306B (zh) | 一种Ti-Mo-N多元薄膜的制备方法 | |
CN103628060A (zh) | 一种表面渗钼+沉积氮化钛的新型电极材料及其制备方法 | |
CN104157882A (zh) | 导电陶瓷/Cr复合改性的聚合物电解质膜燃料电池金属双极板 | |
CN102936725A (zh) | 不锈钢1Cr18Ni9Ti表面微纳米金属陶瓷涂层的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |