CN104156649B - 用于移动终端安全认证的静脉识别成像装置及方法 - Google Patents

用于移动终端安全认证的静脉识别成像装置及方法 Download PDF

Info

Publication number
CN104156649B
CN104156649B CN201410385354.2A CN201410385354A CN104156649B CN 104156649 B CN104156649 B CN 104156649B CN 201410385354 A CN201410385354 A CN 201410385354A CN 104156649 B CN104156649 B CN 104156649B
Authority
CN
China
Prior art keywords
optical
vein recognition
mobile terminal
infrared led
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410385354.2A
Other languages
English (en)
Other versions
CN104156649A (zh
Inventor
沈洪泉
金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU SIYUAN KEAN INFORMATION TECHNOLOGY Co.,Ltd.
Original Assignee
苏州思源科安信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州思源科安信息技术有限公司 filed Critical 苏州思源科安信息技术有限公司
Priority to CN201410385354.2A priority Critical patent/CN104156649B/zh
Publication of CN104156649A publication Critical patent/CN104156649A/zh
Priority to PCT/CN2015/086222 priority patent/WO2016019882A1/zh
Application granted granted Critical
Publication of CN104156649B publication Critical patent/CN104156649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Input (AREA)

Abstract

本发明公开了一种用于移动终端安全认证的静脉识别成像装置,包括设置在移动终端上的静脉识别成像装置;该移动终端包括处理器芯片等;静脉识别成像装置由近红外LED照明光源和静脉识别成像模组光学部件;近红外LED照明光源通过近红外LED电流驱动器驱动;静脉识别成像模组光学部件包括对近红外LED照明光源照射光源散射、反射后的光线进行过滤的近红外光学滤光器,对近红外光学滤光器过滤后的光线进行聚焦的光学成像透镜、对通过光学成像透镜聚焦的光线成像的图像成像传感器,以及将图像成像传感器的图像进行信号传输的静脉识别成像模组基板;处理器芯片分别与近红外LED电流驱动器和静脉识别成像模组基板信号连接。

Description

用于移动终端安全认证的静脉识别成像装置及方法
技术领域
本发明涉及光机电领域,尤其是一种用于移动终端安全认证的静脉识别成像装置及其控制方法。
背景技术
移动终端包括智能手机、平板、可穿戴设备等,案子现在的信息技术移动化发展趋势来看,移动终端设备必然是未来适用最广泛的设备。
目前,现实应用中的移动终端在移动安全支付、账户安全登陆、网上银行方面运用已经极其的广泛了,如余额宝(APP)、微信(APP)、信用卡管理(APP)等方面的运用,虽然在其使用过程中,为生活带来了极大的便利,但是一种新型的通过移动终端安全性能薄弱等特点进行的经济犯罪逐渐的兴起。
而移动终端中,现有技术进行身份确认的惯用手段就是密码输入,但是这种身份确认的手段安全性能十分的低,只需要在移动终端上植入简单的病毒程序,就能将该密码泄露,造成相应的损失。为了解决这个问题,国际上还是用生物识别的方式进行移动终端安全身份认证;如苹果公司提出的基于AuthenTec公司开发的指纹识别技术,该技术运用在手机终端上,极大的提高了移动终端的身份确认安全性;但是,指纹技术识别的过程中,由于指纹是静态的,虽然具有单一性,但是也极其容易被获取指纹信息,甚至被仿制等,所以,随着指纹技术在移动终端上的运用越来越广泛,其安全性也会相应的呈下降趋势,所以,在安全性方面更加具有优势的生物识别(静脉识别)是解决移动终端安全身份认证过程中非常有效的方法,而静脉识别系统是现有的生物识别中安全活体防伪特征最为安全的。
目前所有静脉识别系统技术和产品中,最典型的如日本日立手指静脉识别,采用固定接触式结构座的透射成像方式决定其体积和结构无法被用于移动终端中8mm*8mm*6mm的通用标准尺寸;再如日本富士通手掌静脉识别,其也存在远大于移动终端中的通用标准尺寸的缺陷,且工作距离仅4-6cm,在如此短工作范围根本无法使用,使用实际上也需要依靠附加的固定接触式结构座才能使用。
并且,目前所有静脉识别系统技术和产品中,都在室内,并且通过采用的固定接触式结构座限制工作距离,严格控制了使用场景环境光照度和用户手指或手掌手背运动模糊, 基本上都不能满足移动终端上的使用标准。
更进一步的,应用于移动终端还存在以下更严重的问题:
1、移动终端使用过程中,用户通常是手持的,而且需要在移动行进中识别,存在使用时非常大不可预测的手指或手掌手背运动模糊,其严重影响图像质量。
2、用户识别时使用场景是无法预测的,其使用环境光照度从室内完全黑暗0Lux到室外太阳直射100,000Lux都有可能,其环境杂光同样严重影响图像质量。
3、移动终端的使用场景决定其结构无法采用固定接触式,不可能通过附加固定接触式结构来使用,既只能通过非接触式实现。
4、移动终端是电池供电的,其对静脉识别成像模组的光源功耗要求非常高。
5、静脉识别光学成像模组的小型化,体积符合移动终端中8mm*8mm*6mm的通用标准尺寸。
6、需要一套安全的身份认证流程实现。
解决以上问题是目前技术面临的最大挑战。
发明内容
本发明要解决的技术问题是提供一种用于移动终端安全身份认证的静脉识别成像模组及其控制方法。
为了解决上述技术问题,本发明提供一种用于移动终端安全认证的静脉识别成像装置,包括设置在移动终端上的静脉识别成像装置;该移动终端包括移动终端主板、处理器芯片、内存、存储器、电源管理模块以及无线基带模块;所述静脉识别成像装置由近红外LED照明光源和静脉识别成像模组光学部件构成;所述近红外LED照明光源通过近红外LED电流驱动器驱动;所述静脉识别成像模组光学部件包括对近红外LED照明光源照射光源散射、反射后的光线进行过滤的近红外光学滤光器,对近红外光学滤光器过滤后的光线进行聚焦的光学成像透镜、对通过光学成像透镜聚焦的光线成像的图像成像传感器,以及将图像成像传感器的图像进行信号传输的静脉识别成像模组基板;所述处理器芯片分别与近红外LED电流驱动器和静脉识别成像模组基板信号连接。
作为对本发明所述的用于移动终端安全认证的静脉识别成像装置的改进:所述近红外LED照明光源为表面贴片封装;所述近红外LED电流驱动器驱动近红外LED照明光源输出最高辐射强度I短时间T脉冲周期时序发射光;所述近红外LED照明光源输出最高辐射强度I短时间T脉冲周期时序同步图像成像传感器帧像素全局触发曝光的周期时序;所述近红外LED照明光源的发射光的半峰值辐射或发散角度大于等于光学成像透镜的成像 视场角FOV;所述光学成像透镜固定聚焦透镜、液体驱动透镜、液晶驱动透镜、VCM音圈驱动透镜、MEMS驱动透镜、EDOF相位波前编码透镜、WLA晶圆级透镜阵列中的任意一种;所述近红外光学滤光器的半峰值透射波长带宽FWHM有效匹配或覆盖近红外LED照明光源发射光的半峰值辐射波长带宽FWHM;所述近红外光学滤光器包括前焦近红外光学滤光器和/或后焦近红外光学滤光器;所述处理器芯片为配置安全模式的处理器芯片。
作为对本发明所述的用于移动终端安全认证的静脉识别成像装置的进一步改进:所述的近红外LED照明光源中心峰值波长范围750-880nm,FWHM为30-60nm;所述近红外光学滤光器中心峰值波长范围750-880nm,FWHM为10-60nm;所述近红外光学滤光器为窄带近红外光学滤光器或者带通近红外光学滤光器中的任意一种;所述光学成像透镜的视场角FOV具有如下的取值范围:FOV≥2*arctan((DOI*SOP)/(2*EFL));所述DOI为图像成像传感器的对角线像素数量;SOP为图像成像传感器单位像素的物理尺度;EFL为光学成像透镜的等效焦距值。
作为对本发明所述的用于移动终端安全认证的静脉识别成像装置的进一步改进:所述近红外LED照明光源上设置有用于提供均匀的发射或辐射照明光场的光学漫射散射器。
作为对本发明所述的用于移动终端安全认证的静脉识别成像装置的进一步改进:所述光学漫射散射器为光学发散镜。
作为对本发明所述的用于移动终端安全认证的静脉识别成像装置的进一步改进:所述近红外LED照明光源设置光学线偏振器;对应于该光学线偏振器,在成像光路中设置对应的正交态90度光学线偏振器。
作为对本发明所述的用于移动终端安全认证的静脉识别成像装置的进一步改进:所述移动终端上设置有使用状态引导提示装置;所述使用状态引导提示装置包括语音装置、指示灯和液晶屏;所述语音装置、指示灯和液晶屏与处理器芯片信号连接。
利用移动终端的静脉识别成像模组进行安全认证的方法:包括如下的步骤:1)、处理器芯片获取图像成像传感器输出的数字化静脉图像;2)、处理器芯片进行静脉识别算法执行提取静脉特征信息;3)、处理器芯片通过静脉特征信息生成静脉特征模板;4)、通过循环步骤1)至3)获得至少2个或以上的静脉特征模板,进行静脉特征模板间交叉认证比对,以交叉认证比对后最佳结果的特定静脉特征模板为标准静脉特征模板;5)、该标准静脉特征模板采用密码学体系加密后存储在配置处理器芯片内做为密钥,并保证从不被导出和访问;6)、静脉特征模板的身份认证比对都在处理器芯片内部进行,确保移动终端在身份认证整个过程安全不被外部攻击。
作为对本发明所述的利用移动终端的静脉识别成像模组进行安全认证的方法的改进:所述图像成像传感器输出的数字化静脉图像通过如下步骤获取:1.1)、定义静脉识别成像模组原始的单位像素亮度值Yraw的光电信号;1.2)、定义静脉区域像素亮度统计评估值Ysp;1.3)、实现静脉区域像素亮度统计评估值Ysp在预设的[Yll,Yhl]亮度范围。
作为对本发明所述的利用移动终端的静脉识别成像模组进行安全认证的方法的进一步改进:步骤1.1)中,通过周期时序同步于近红外LED照明光源短时间T脉冲周期时序的图像成像传感器的帧像素全局触发曝光时间或积分时间T、近红外照明光源最高辐射强度I、图像成像传感器的模拟增益GAIN、光学成像透镜固定光圈或相对孔径倒数的常数F以及固定光电信号转化率常数C确定Yraw;Yraw=C*T*GAIN*I*(1/F)2;所述T≤3.33ms;所述I≥10mW/sr;所述GAIN的最大值产生的图像成像传感器信噪比SNR≥38db;所述F的取值范围为:F=EFL/D或者0.5*SOP/(1.22*λ)≤F≤2.0*SOP/(1.22*λ),所述D为光学成像透镜的光瞳或通光孔径的直径,FEL为光学成像透镜的等效焦距值,SOP为图像成像传感器单位像素的物理尺度,λ为近红外LED照明光源等效峰值波长;步骤1.2)中,所述Ysp=S(Yraw);所述的S(Yraw)为静脉区域像素亮度统计评估函数,所述像素亮度统计评估函数采用的方法包括像素亮度直方图统计、像素亮度频谱统计、像素亮度平均值、像素亮度加权平均值或者像素亮度中值等;步骤1.3)中,所述通过T、I和GAIN的光电信号处理控制,静脉区域像素亮度统计评估值Ysp预设的[Yll,Yhl]亮度范围为:Yll≤Ysp≤Yhl;所述Yll为静脉区域像素亮度下限,Yhl为静脉区域像素亮度上限;所述的光电信号处理控制为根据步骤1中的公式线性乘积控制关系,改变光电信号,实现原始的单位像素亮度值Yraw改变,使相应的静脉区域像素亮度统计评估值Ysp满足Yll≤Ysp≤Yhl的预设条件。
总结上述描述,本发明的实现了以下的移动终端使用场景要求达到的效果:
1、能够在用户以自主每秒0-1米(m/s)的移动速度中识别。
2、用户识别时使用环境光照度要求满足从室内完全黑暗0Lux到室外太阳直射100,000Lux。
3、静脉识别成像模组实现非接触式的采集使用,无需附加固定接触式结构来使用。
4、静脉识别成像模组的光源功耗消耗低。
5、静脉识别成像模组的体积小型化。
6、安全的身份认证流程。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细说明。
图1为本发明具体实施例1静脉识别成像模组总体结构图;
图2为本发明具体实施例1静脉识别成像模组光学部件结构图;
图3为本发明具体实施例1静脉识别成像模组安装在移动智能手机背面示意图;
图4为本发明具体实施例1红外LED照明光源产生的最高辐射强度短时间脉冲周期时序同步成像传感器帧像素全局触发曝光(积分)的周期时序原理图。
具体实施方式
实施例1、图1给出了一种用于移动终端安全认证的静脉识别成像装置,包括设置在移动终端上的静脉识别成像模组光学部件1、近红外LED电流驱动器2、近红外LED照明光源3和静脉识别成像模组连接线4;移动终端包括移动终端主板10、处理器芯片5、内存6、存储器7、电源管理8以及无线基带模块9。处理器芯片5为配置TrustZone的安全隔离模式的ARM CORTEX—A处理器芯片;内存6为DDR内存;存储器7为NAND FLASH存储器;电源管理8为PMIC电源管理模块。以上的移动终端主板10、处理器芯片5、内存6、存储器7、电源管理8以及无线基带模块9均可以通过市场购置并组装。
近红外LED照明光源3连接近红外LED电流驱动器2,通过近红外LED电流驱动器2驱动近红外LED照明光源3产生输出最高辐射强度I短时间T的脉冲周期时序发射光;此处,在选择近红外LED照明光源3的时候,采用表面贴片封装(SMD)形式以减小体积【采用的是表面贴片封装(SMD)近红外LED照明光源】。
移动终端主板10与静脉识别成像模组光学部件1和近红外LED电流驱动器2之间通过静脉识别成像模组连接线4相互信号连接;实现包括像素时钟、像素数据、像素数据同步信号、I2C通讯、近红外LED电流驱动器2驱动近红外LED照明光源3的控制信号传输等。
移动终端主板10集成配置TrustZone的安全隔离模式ARM CORTEX—A处理器芯片5(用于执行所有控制、识别、应用的数据处理计算)、DDR内存6(用于提供处理器芯片5处理计算所需的内存)、NAND FLASH存储器7(用于存储所有必需的断电可保存数据)、PMIC电源管理8(提供对移动终端主板10的各级电源供电)以及无线基带模块9(用于无线通讯应用);通过如上的设置,移动终端主板10实现对本发明所述静脉识别成像模组的控制和安全身份认证。
静脉识别成像模组光学部件1用于非接触式的物理成像以采集手指手掌手背静脉图像。如图2所示,静脉识别成像模组光学部件1的具体结构包括以下部分组成:前焦近红外光学滤光器11、固定焦距的光学成像透镜12、光学成像透镜的固定安装座13、后焦近 红外光学滤光器14、图像成像传感器15和静脉识别成像模组基板16。静脉识别成像模组基板16上从下至上依次设置图像成像传感器15、后焦近红外光学滤光器14、光学成像透镜的固定安装座13、固定焦距的光学成像透镜12以及前焦近红外光学滤光器11。
静脉识别成像模组基板16为印刷线路板、柔性线路板或软硬结合板构成,用于提供静脉识别成像模组光学部件1整体安装的固定结构载体。光学成像透镜的固定安装座13用于安装固定焦距的光学成像透镜12。
目前高度成熟的移动终端部件设计生产制造工艺已经能实现静脉识别成像模组光学部件1中的各个光学部件微型化,采用成熟的本专业技术领域设计生产制造工艺静脉识别成像模组完全能满足移动终端8mm*8mm*6mm的通用标准尺寸。
近红外LED照明光源3辐射的近红外光在物方静脉进行吸收、散射、反射的光学生物效应后,进入前焦近红外光学滤光器11和/或后焦近红外光学滤光器14(此处,包括前焦近红外光学滤光器11和/或后焦近红外光学滤光器14同时存在、前焦近红外光学滤光器11单独存在或者后焦近红外光学滤光器14单独存在的三种可能,这三种近红外光学滤光器的设置方式均可以为本发明的最佳案例)进行非成像干扰光过滤,然后进入固定焦距的光学成像透镜12;固定焦距的光学成像透镜12为自动聚焦AF光学成像透镜或固定聚焦光学成像透镜,用于实现非接触式的光学物理聚焦到位于像方的图像成像传感器15,使图像光信号转换图像电信号输出,最后通过静脉识别成像模组连接线4连接移动终端主板10,实现通过处理器芯片5控制本发明所述的静脉识别成像模组。
本发明的静脉识别成像模组还设置有使用状态引导提示装置。使用状态引导提示装置包括语音提示装置(扬声器)、指示灯以及液晶屏,用于指示用户使用时状态引导,如手指手掌手背放置位置和距离、识别结果反馈等。
以上所述的近红外LED照明光源3的中心峰值波长范围为750-880nm,FWHM为30-60nm;前焦近红外光学滤光器11和/或后焦近红外光学滤光器14的中心峰值波长范围750-880nm,FWHM为10-60nm;包括窄带近红外光学滤光器,带通近红外光学滤光器(即,前焦近红外光学滤光器11和/或后焦近红外光学滤光器14可以为窄带近红外光学滤光器或者带通近红外光学滤光器)。前焦近红外光学滤光器11和/或后焦近红外光学滤光器14采用光学透明玻璃,如BK7或有色玻璃或光学树脂等光学材料进行表面镀膜,目前的镀膜工艺和技术能实现背景深度截止率或信噪比SNR(SNR:signal-to-noise ratio)≥60dB(1000:1)。前焦近红外光学滤光器11和/或后焦近红外光学滤光器14过滤用于成像的波长,使成像波长与非成像的背景干扰杂散光的信噪比SNR(SNR:signal-to-noise ratio)满 足:≥60dB(1000:1)。
在使用的过程中,环境非成像干扰光和运动干扰是现有技术中的静脉识别技术无法运用到移动终端的上的一个技术难题。环境非成像干扰光(即是非成像的背景干扰杂散光)是指:用户识别时使用环境光照度要求满足从室内完全黑暗(0Lux)到室外太阳直射(100,000Lux)所说的自然光。使用环境中不同光照度的非成像的干扰杂散光严重影响静脉图像质量;光照度越大静脉图像质量影响越大。使用者操作使用时不同移动速度会引起运动模糊,会严重影响静脉图像质量;移动速度越大静脉图像质量影响越大。
为克服以上的技术难题,本发明采用以下的设计:
近红外LED照明光源3与图像成像传感器15被组合配置如下:
近红外LED照明光源3产生的最高辐射强度I短时间T脉冲周期时序同步图像成像传感器15帧像素全局触发曝光(积分)的周期时序;
其中:
T≤3.33ms(毫秒);
I≥10mW/sr(毫瓦每球面度)。
通过图4进一步解释了本发明中,具体实施例1近红外LED照明光源3产生的最高辐射强度短时间脉冲周期时序同步图像成像传感器15帧像素全局触发曝光(积分)的周期时序原理。
本发明的图像成像传感器15的同步周期时序帧像素全局触发曝光(积分)的方法,采用了仅在成像波长范围内和最高辐射强度短时间周期时序内对图像成像传感器15所有帧像素同步进行触发曝光(积分)。
即使如电子滚动快门(ERS),其不同行的曝光周期时序是不一致的,但满足在成像波长范围内和最高辐射强度短时间周期时序内所有帧像素同步进行全局触发曝光(积分)的条件下,最高辐射强度短时间周期时序内与最高辐射强度短时间周期时序外的曝光(积分)光子信号累积量之比远大于1000:1,这样对于一般成像传感器ADC最有效分辨率仅为8位或10位,可以忽略。因此本方法适用于各类型成像传感器,如全局快门(globalshutter),电子滚动快门(ERS)或全局释放快门GRS等,各种各类型成像传感器。
采用近红外LED照明光源3产生的最高辐射强度I短时间T脉冲周期时序与图像成像传感器15帧像素全局触发曝光(积分)的周期时序同步的方法,这种同步脉冲周期时序的辐射和曝光方法是本发明重要优点特性。
由于是采用同步脉冲周期时序的辐射和曝光方法,按照其在1秒内产生(10次)每次3.33ms时间周期时序的辐射也只有不到10*(3.33ms/1s)=1/30的等效辐射量,所以如此设计的静脉识别光学成像模组其光源功耗消耗低,与传统连续辐射光源相比只有1/30的等效辐射量。
特别强调传统连续周期时序的辐射和曝光方法只是本发明同步脉冲周期时序的辐射和曝光方法的特例,当其脉冲周期时序为100%占空比周期时序时的辐射和曝光等于连续周期时序辐射和曝光。如此设计能提高至少10倍的成像波长与非成像的干扰杂散光的信噪比SNR(SNR:signal-to-noise ratio)满足:≥80dB(10000:1)。使得本发明的静脉识别光学成像模组的使用环境光照度要求满足从室内完全黑暗(0Lux)到室外太阳直射(100,000Lux)。最高辐射强度短时间周期时序的帧像素同步全局触发曝光(积分)能完全消除最高1m/s的运动模糊,使静脉图像成像的移动速度要求满足从移动速度1m/s到完全静止的移动速度0cm/s。
为实现获取亮度均衡的高质量静脉成像图像,除来自手指手掌手背表面的全反射光,近红外LED照明光源3与光学成像透镜12被组合配置如下:
近红外LED照明光源3的半峰值辐射或发散角度大于等于光学成像透镜12的成像视场角FOV。其中:光学成像透镜的视场角FOV具有如下的取值:
FOV≥2*arctan((DOI*SOP)/(2*EFL))
以上公式内所述的DOI为图像成像传感器的对角线像素数量;SOP为图像成像传感器单位像素的物理尺度;FEL为光学成像透镜的等效焦距值。
近红外LED照明光源3配置光学漫射散射器,用于提供均匀的发射或辐射照明光场,形成亮度分布均衡的静脉图像,有效减少来自手指手掌手背表面的全反射光。为了更进一步为减小体积,光学漫射散射器可配置为光学发散镜。
近红外LED照明光3源配置光学线偏振器,和成像光路中(光学成像透镜12前或后)配置对应的正交态90度光学线偏振器,通过发射和接收端形成正交态的线偏振器,能完全去除来自手指手掌手背表面的全反射光。
近红外LED照明光源3与前焦近红外光学滤光器11和/或后焦近红外光学滤光器14被配置如下:
前焦近红外光学滤光器11和/或后焦近红外光学滤光器14的半峰值透射波长带宽FWHM有效匹配或覆盖近红外LED照明光源3的半峰值辐射波长带宽FWHM。如此设计可以获得最大限度的成像波长利用率,成像高质量的静脉图像。近红外LED照明光源中心峰值波长范围750-880nm,FWHM为30-60nm;近红外光学滤光器中心峰值波长范围 750-880nm,FWHM为10-60nm。
所述固定焦距的光学成像透镜12选用固定聚焦透镜、液体驱动透镜、液晶驱动透镜、VCM音圈电机驱动透镜、MEMS微电机械系统驱动透镜、EDOF波前编码透镜或者WLA晶圆级透镜阵列中任意一种。液体驱动透镜、液晶驱动透镜、VCM音圈驱动透镜、MEMS驱动透镜、EDOF相位波前编码透镜、WLA晶圆级透镜阵列被配置用于实现光学成像透镜的自动聚焦AF,自动聚焦能更进一步增加非接触式采集的工作距离和范围,使更易于使用操作。
以上所述的具体实施列1的静脉识别成像模组安装在移动智能手机上,用户在使用时的状态如图3:移动智能手机背面100设置静脉识别成像模组光学部件1和表面贴片封装(SMD)近红外LED照明光源3。
用户使用时,非接触方式放置其手指手掌手背在静脉识别成像模组光学部件1前方,近红外LED照明光源3提供对前方手指手掌手背的照明,近红外LED照明光源3辐射的近红外光在物方静脉进行吸收、散射,反射的光学生物效应后,进入静脉识别成像模组光学部件1实现非接触的光学物理聚焦到位于像方的图像成像传感器15使图像光信号转换图像电信号输出,过程如下:
一、定义静脉识别成像模组原始的单位像素亮度值Yraw的光电信号产生Yraw=C*T*GAIN*I*(1/F)2
以上所述的T为图像成像传感器的帧像素全局触发曝光时间exposure time或积分时间integrationtime,其周期时序同步于近红外照明光源短时间T脉冲周期时序;T≤3.33ms(毫秒);
以上所述的I为近红外照明光源最高辐射强度;I≥10mW/sr(毫瓦每球面度);
以上所述的GAIN为图像成像传感器的模拟增益;最大GAIN值产生的图像成像传感器信噪比SNR≥38db;
以上所述的F为光学成像透镜固定光圈或相对孔径倒数的常数;F=EFL/D0.5*SOP/(1.22*λ)≤F≤2.0*SOP/(1.22*λ)
其中D为光学成像透镜的光瞳或通光孔径的直径,FEL为光学成像透镜的等效焦距值,SOP为图像成像传感器单位像素的物理尺度,λ为近红外LED照明光源等效峰值波长;
以上所述的C为静脉识别成像模组的固定光电信号转化率常数;
二、定义静脉区域像素亮度统计评估值Ysp,Ysp=S(Yraw);
以上所述的S为静脉区域像素亮度统计评估函数,所述像素亮度统计评估函数采用的 方法包括:像素亮度直方图统计、像素亮度频谱统计、像素亮度平均值、像素亮度加权平均值或者像素亮度中值等;
三、通过T,I,GAIN光电信号处理控制,实现静脉区域像素亮度统计评估值Ysp在预设的[Yll,Yhl]亮度范围:Yll≤Ysp≤Yhl;
以上所述的Yll为静脉区域像素亮度下限,Yhl为静脉区域像素亮度上限;
以上所述的光电信号处理控制为根据步骤一中定义的公式线性乘积控制关系,改变光电信号实现原始的单位像素亮度值Yraw改变,使相应的静脉区域像素亮度统计评估值Ysp满足Yll≤Ysp≤Yhl的预设条件。
本发明还同时提供了一种利用上述用于移动终端的静脉识别成像模组进行安全认证的方法,包括以下步骤:
1)、配置安全模式的处理器芯片5连接获取图像成像传感器15输出的数字化静脉图像(通过以上的步骤一、二、三获取该静脉图像,并转换成数字化静脉图像);
2)、配置安全模式的处理器芯片5进行静脉识别算法,并提取静脉特征信息;
3)、配置安全模式的处理器芯片5通过静脉特征信息生成静脉特征模板;
4)、通过循环步骤1)至3)获得至少2个或以上的静脉特征模板,进行静脉特征模板间交叉认证比对,以交叉认证比对后最佳结果的特定静脉特征模板为标准静脉特征模板;
举例获得3个静脉特征模板进行交叉认证比对分别为1-2,1-3,2-3;如2-3认证比对结果最差,则1为最佳结果的特定静脉特征模板,为标准静脉特征模板;
如1-3认证比对结果最差,则2为最佳结果的特定静脉特征模板,为标准静脉特征模板;
如1-2认证比对结果最差,则3为最佳结果的特定静脉特征模板,为标准静脉特征模板;
5)、该标准静脉特征模板采用密码学体系加密后存储在配置安全模式的处理器芯片内做为密钥,并保证从不被导出和访问;
6)、静脉特征模板的身份认证比对都在配置安全模式的处理器芯片5内部进行,确保移动终端在身份认证整个过程安全不被外部攻击。
以上所述的静脉识别算法,密码学体系属于已知技术。作为移动终端的安全认证整体目的,上述方法不可或缺。
本发明描述的具体实施例内容和技术特征,可以在相同或等同理解的范围内被实施,如图像成像传感器类型,光学成像透镜类型,光路变换也应被等同理解的。
最后,还需要注意的是,以上列举的仅是本发明的一个具体实施例。显然,本发明不 限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (9)

1.一种用于移动终端安全认证的静脉识别成像装置,包括设置在移动终端上的静脉识别成像装置;该移动终端包括移动终端主板(10)、处理器芯片(5)、内存(6)、存储器(7)、电源管理模块(8)以及无线基带模块(9)构成;其特征是:所述静脉识别成像装置由近红外LED照明光源(3)和静脉识别成像模组光学部件(1);
所述近红外LED照明光源(3)通过近红外LED电流驱动器(2)驱动;
所述静脉识别成像模组光学部件(1)包括对近红外LED照明光源(3)照射光源散射、反射后的光线进行过滤的近红外光学滤光器,对近红外光学滤光器过滤后的光线进行聚焦的光学成像透镜(12)、对通过光学成像透镜(12)聚焦的光线成像的图像成像传感器(15),以及将图像成像传感器(15)的图像进行信号传输的静脉识别成像模组基板(16);
所述处理器芯片(5)分别与近红外LED电流驱动器(2)和静脉识别成像模组基板(16)电连接;
所述近红外LED照明光源(3)输出的脉冲周期时序同步图像成像传感器(15)帧像素全局触发曝光的周期时序;采用同步脉冲周期时序的辐射和曝光,在1秒内产生每次时间周期时序的等效辐射量;
所述近红外LED照明光源(3)的发射光的半峰值辐射或发散角度大于等于光学成像透镜(12)的成像视场角FOV;
所述近红外光学滤光器的半峰值透射波长带宽FWHM有效匹配或覆盖近红外LED照明光源(3)发射光的半峰值辐射波长带宽FWHM;
所述处理器芯片(5)为配置安全模式的处理器芯片。
2.根据权利要求1所述的用于移动终端安全认证的静脉识别成像装置,其特征是:所述近红外LED照明光源(3)为表面贴片封装;
所述近红外LED电流驱动器(2)驱动近红外LED照明光源(3)输出最高辐射强度I短时间T脉冲周期时序发射光;
所述近红外LED照明光源(3)输出最高辐射强度I短时间T脉冲周期时序同步图像成像传感器(15)帧像素全局触发曝光的周期时序;
所述光学成像透镜(12)固定聚焦透镜、液体驱动透镜、液晶驱动透镜、VCM音圈驱动透镜、MEMS驱动透镜、EDOF相位波前编码透镜、WLA晶圆级透镜阵列中的任意一种;
所述近红外光学滤光器包括前焦近红外光学滤光器(11)和/或后焦近红外光学滤光器(14)。
3.根据权利要求2所述的用于移动终端安全认证的静脉识别成像装置,其特征是:所述的近红外LED照明光源中心峰值波长范围750-880nm,FWHM为30-60nm;
所述近红外光学滤光器中心峰值波长范围750-880nm,FWHM为10-60nm;
所述近红外光学滤光器为窄带近红外光学滤光器或者带通近红外光学滤光器中的任意一种;
所述光学成像透镜(12)的视场角FOV具有如下的取值范围:
FOV≥2*arctan((DOI*SOP)/(2*EFL))
所述DOI为图像成像传感器的对角线像素数量;SOP为图像成像传感器单位像素的物理尺度;EFL为光学成像透镜的等效焦距值。
4.根据权利要求3所述的用于移动终端安全认证的静脉识别成像装置,其特征是:所述近红外LED照明光源(3)上设置有用于提供均匀的发射或辐射照明光场的光学漫射散射器。
5.根据权利要求4所述的用于移动终端安全认证的静脉识别成像装置,其特征是:所述光学漫射散射器为光学发散镜。
6.根据权利要求5所述的用于移动终端安全认证的静脉识别成像装置,其特征是:所述近红外LED照明光源(3)设置光学线偏振器;
对应于该光学线偏振器,在成像光路中设置对应的正交态90度光学线偏振器。
7.根据权利要求6所述的用于移动终端安全认证的静脉识别成像装置,其特征是:所述移动终端上设置有使用状态引导提示装置;
所述使用状态引导提示装置包括语音装置、指示灯和液晶屏;
所述语音装置、指示灯和液晶屏与处理器芯片(5)电连接。
8.利用移动终端的静脉识别成像模组进行安全认证的方法,其特征是:包括如下的步骤:
1)、处理器芯片(5)获取图像成像传感器(15)输出的数字化静脉图像;
通过如下步骤获取:
1.1)、定义静脉识别成像模组原始的单位像素亮度值Yraw的光电信号;
1.2)、定义静脉区域像素亮度统计评估值Ysp;
1.3)、实现静脉区域像素亮度统计评估值Ysp在预设的[Yll,Yhl]亮度范围;
2)、处理器芯片(5)进行静脉识别算法执行提取静脉特征信息;
3)、处理器芯片(5)通过静脉特征信息生成静脉特征模板;
4)、通过循环步骤1)至3)获得至少2个或以上的静脉特征模板,进行静脉特征模板间交叉认证比对,以交叉认证比对后最佳结果的特定静脉特征模板为标准静脉特征模板;
5)、该标准静脉特征模板采用密码学体系加密后存储在配置处理器芯片(5)内做为密钥,并保证从不被导出和访问;
6)、静脉特征模板的身份认证比对都在处理器芯片(5)内部进行,确保移动终端在身份认证整个过程安全不被外部攻击。
9.根据权利要求8所述的利用移动终端的静脉识别成像模组进行安全认证的方法,其特征是:
步骤1.1)中,通过周期时序同步于近红外LED照明光源短时间T脉冲周期时序的图像成像传感器(15)的帧像素全局触发曝光时间或积分时间T、近红外照明光源(3)最高辐射强度I、图像成像传感器(15)的模拟增益GAIN、光学成像透镜(12)固定光圈或相对孔径倒数的常数F以及固定光电信号转化率常数C确定Yraw;
Yraw=C*T*GAIN*I*(1/F)2
所述T≤3.33ms;
所述I≥10mW/sr;
所述GAIN的最大值产生的图像成像传感器信噪比SNR≥38db;
所述F的取值范围为:F=EFL/D或者0.5*SOP/(1.22*λ)≤F≤2.0*SOP/(1.22*λ),所述D为光学成像透镜(12)的光瞳或通光孔径的直径,FEL为光学成像透镜(12)的等效焦距值,SOP为图像成像传感器(15)单位像素的物理尺度,λ为近红外LED照明光源等效峰值波长;
步骤1.2)中,所述Ysp=S(Yraw);
所述的S(Yraw)为静脉区域像素亮度统计评估函数,所述像素亮度统计评估函数采用的方法包括像素亮度直方图统计、像素亮度频谱统计、像素亮度平均值、像素亮度加权平均值或者像素亮度中值;
步骤1.3)中,所述通过T、I和GAIN的光电信号处理控制,静脉区域像素亮度统计评估值Ysp预设的[Yll,Yhl]亮度范围为:Yll≤Ysp≤Yhl;所述Yll为静脉区域像素亮度下限,Yhl为静脉区域像素亮度上限;
所述的光电信号处理控制为根据步骤1.1)中的公式线性乘积控制关系,改变光电信号,实现原始的单位像素亮度值Yraw改变,使相应的静脉区域像素亮度统计评估值Ysp满足Yll≤Ysp≤Yhl的预设条件。
CN201410385354.2A 2014-08-07 2014-08-07 用于移动终端安全认证的静脉识别成像装置及方法 Active CN104156649B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410385354.2A CN104156649B (zh) 2014-08-07 2014-08-07 用于移动终端安全认证的静脉识别成像装置及方法
PCT/CN2015/086222 WO2016019882A1 (zh) 2014-08-07 2015-08-06 用于移动终端安全认证的静脉识别成像装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410385354.2A CN104156649B (zh) 2014-08-07 2014-08-07 用于移动终端安全认证的静脉识别成像装置及方法

Publications (2)

Publication Number Publication Date
CN104156649A CN104156649A (zh) 2014-11-19
CN104156649B true CN104156649B (zh) 2017-04-19

Family

ID=51882147

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410385354.2A Active CN104156649B (zh) 2014-08-07 2014-08-07 用于移动终端安全认证的静脉识别成像装置及方法

Country Status (2)

Country Link
CN (1) CN104156649B (zh)
WO (1) WO2016019882A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104156649B (zh) * 2014-08-07 2017-04-19 苏州思源科安信息技术有限公司 用于移动终端安全认证的静脉识别成像装置及方法
CN104615975B (zh) * 2015-01-16 2019-03-29 深圳市维亿魄科技有限公司 移动终端及其静脉识别装置
CN104866751B (zh) * 2015-04-11 2017-01-18 贵阳科安科技有限公司 用于移动智能设备的安全生物特征识别和图像采集系统
CN111242092A (zh) * 2015-07-29 2020-06-05 财团法人工业技术研究院 生物辨识装置与穿戴式载体
CN106548115A (zh) * 2015-09-18 2017-03-29 比亚迪股份有限公司 摄像头组件及具有其的移动设备
CN106339685A (zh) * 2016-08-29 2017-01-18 广州御银自动柜员机科技有限公司 一种用于vtm机的指静脉掌静脉检测装置
CN107343132B (zh) * 2017-08-28 2023-06-09 熵基科技股份有限公司 一种基于近红外led补光灯的手掌识别装置及方法
US10893211B2 (en) * 2018-06-25 2021-01-12 Semiconductor Components Industries, Llc Methods and systems of limiting exposure to infrared light
EP3815549A4 (en) 2018-06-29 2022-03-23 Ajinomoto Co., Inc. FROZEN GYOZA AND PROCESS FOR ITS PRODUCTION
US11573498B2 (en) * 2019-08-30 2023-02-07 Mitutoyo Corporation Fast high power pulsed light source system for high speed metrology imaging

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1933509A (zh) * 2005-09-14 2007-03-21 日本电气株式会社 便携通信终端装置、认证方法以及认证程序
CN102609694A (zh) * 2012-02-13 2012-07-25 深圳市中控生物识别技术有限公司 一种指纹与静脉采集装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141589A (ja) * 2004-11-18 2006-06-08 Shigematsu:Kk 個人認証装置及び個人認証方法
CN201465139U (zh) * 2009-04-24 2010-05-12 北京飞天诚信科技有限公司 基于静脉识别技术的智能密钥信息保护装置
CN102542263A (zh) * 2012-02-06 2012-07-04 北京鑫光智信软件技术有限公司 一种基于指部生物特征的多模态身份认证方法及装置
CN103258199A (zh) * 2013-06-07 2013-08-21 浙江大学 一种获取完整的手掌静脉图像的系统及其方法
CN104156649B (zh) * 2014-08-07 2017-04-19 苏州思源科安信息技术有限公司 用于移动终端安全认证的静脉识别成像装置及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1933509A (zh) * 2005-09-14 2007-03-21 日本电气株式会社 便携通信终端装置、认证方法以及认证程序
CN102609694A (zh) * 2012-02-13 2012-07-25 深圳市中控生物识别技术有限公司 一种指纹与静脉采集装置

Also Published As

Publication number Publication date
CN104156649A (zh) 2014-11-19
WO2016019882A1 (zh) 2016-02-11

Similar Documents

Publication Publication Date Title
CN104156649B (zh) 用于移动终端安全认证的静脉识别成像装置及方法
CN104394311B (zh) 用于移动终端的虹膜识别成像模组及图像获取方法
CN105574483B (zh) 一种移动终端前置和人脸/虹膜识别一体化光电成像系统
CN104301633B (zh) 移动终端可见光和生物识别组合光电成像系统及移动终端
CN109544618B (zh) 一种获取深度信息的方法及电子设备
CN103870819B (zh) 移动终端安全身份认证的虹膜识别光学成像模组及使用法
CN104869320B (zh) 电子设备和控制电子设备操作方法
CN109635539B (zh) 一种人脸识别方法及电子设备
US10721420B2 (en) Method and system of adaptable exposure control and light projection for cameras
CN204129751U (zh) 一种双眼虹膜图像数据采集模块
CN207530934U (zh) 一种具有红外成像功能的双摄像头模组
WO2017049922A1 (zh) 一种图像信息采集装置、图像采集方法及其用途
CN106686283A (zh) 摄像装置及其应用
CN104113702B (zh) 闪光控制方法及控制装置、图像采集方法及采集装置
CN103945136B (zh) 高用户使用体验度的虹膜图像光电成像系统
CN107018298A (zh) 成像设备、电子设备以及用于通过其获得图像的方法
CN106250839A (zh) 一种虹膜图像透视校正方法、装置和移动终端
CN107220631A (zh) 掌静脉采集装置及掌静脉识别系统
CN105678228B (zh) 用于安全身份认证的虹膜识别光学成像模组及使用方法
CN104917938B (zh) 用于移动通信设备的深度摄像装置
CN108900772A (zh) 一种移动终端及图像拍摄方法
CN110868526A (zh) 一种拍摄模组、拍摄方法及电子设备
CN213987860U (zh) 学习机
CN106341610A (zh) 拍照方法及移动终端
CN105991901A (zh) 影像撷取装置与影像处理的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: GUIYANG KE'AN TECHNOLOGY CO., LTD.

Free format text: FORMER OWNER: SHEN HONGQUAN

Effective date: 20150327

COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 310027 HANGZHOU, ZHEJIANG PROVINCE TO: 550081 GUIYANG, GUIZHOU PROVINCE

TA01 Transfer of patent application right

Effective date of registration: 20150327

Address after: 550081, Guiyang high tech Development Zone, Guizhou Province, West research and development base, building 3, 14 floor

Applicant after: Kweiyang Ke An Science and Technology Ltd.

Address before: 310027 Institute of optical engineering, Zhejiang University, 38 Hangzhou Road, Xihu District, Zhejiang, China

Applicant before: Shen Hongquan

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20150925

Address after: Room A, building 413A, emerging industry incubation center, Zhangjiagang Free Trade Zone, Suzhou, Jiangsu 215634, China

Applicant after: SUZHOU SIYUAN KEAN INFORMATION TECHNOLOGY Co.,Ltd.

Address before: 550081, Guiyang high tech Development Zone, Guizhou Province, West research and development base, building 3, 14 floor

Applicant before: Kweiyang Ke An Science and Technology Ltd.

GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Chen Ping

Inventor after: Ren Jinghui

Inventor before: Shen Hongquan

Inventor before: Jin Cheng