CN104143581A - 钯硅纳米线室温红外探测器及其制作方法 - Google Patents

钯硅纳米线室温红外探测器及其制作方法 Download PDF

Info

Publication number
CN104143581A
CN104143581A CN201410393284.5A CN201410393284A CN104143581A CN 104143581 A CN104143581 A CN 104143581A CN 201410393284 A CN201410393284 A CN 201410393284A CN 104143581 A CN104143581 A CN 104143581A
Authority
CN
China
Prior art keywords
layer
type epitaxial
palladium
substrate layer
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410393284.5A
Other languages
English (en)
Inventor
李华高
李仁豪
龙飞
钟四成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 44 Research Institute
Original Assignee
CETC 44 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 44 Research Institute filed Critical CETC 44 Research Institute
Priority to CN201410393284.5A priority Critical patent/CN104143581A/zh
Publication of CN104143581A publication Critical patent/CN104143581A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种钯硅纳米线室温红外探测器,包括抗反射膜层、P型外延硅衬底层、光敏层、SiO2光腔介质层和铝镜反射膜层;所述抗反射膜层、P型外延硅衬底层、光敏层、SiO2光腔介质层和铝镜反射膜层依次层叠在一起形成红外探测器;其改进在于:所述光敏层由钯硅纳米线阵列形成;所述红外探测器的工作模式采用背照方式;所述红外探测器工作于室温环境下。本发明的有益技术效果是:采用钯硅纳米线制作技术,在提高红外探测器性能的同时,大幅度提高Pd2Si/P-Si红外探测器的信噪比,探测器可在室温环境下工作。

Description

钯硅纳米线室温红外探测器及其制作方法
技术领域
    本发明涉及一种红外探测器,尤其涉及一种钯硅纳米线室温红外探测器及其制作方法。
背景技术
    发明人早先提出过一件主题名称为“铂硅纳米线红外探测器及其制作方法”的发明专利申请(申请号:201410081602.4),由该技术获得的红外探测器虽然性能得到了提升,但其工作时,需要用液氮来进行制冷,而液氮制冷结构复杂、体积较大,不利于装置的小型化。
发明内容
针对背景技术中的问题,本发明提出了一种钯硅纳米线室温红外探测器,包括抗反射膜层、P型外延硅衬底层、光敏层、SiO2光腔介质层和铝镜反射膜层;所述抗反射膜层、P型外延硅衬底层、光敏层、SiO2光腔介质层和铝镜反射膜层依次层叠在一起形成红外探测器;
创新在于:所述光敏层由钯硅纳米线阵列形成;所述红外探测器的工作模式采用背照方式;所述红外探测器工作于室温环境下。
前述钯硅纳米线室温红外探测器的工作原理是:红外辐射从探测器背面入射,经抗反射膜层进入P型外延硅衬底层, 光子能量小于Si禁带宽度的红外辐射穿过P型外延硅衬底层后透射进入由钯硅纳米线阵列构成的光敏层中,一部分红外辐射被钯硅纳米线阵列吸收,激发出电子-空穴对,另一部分红外辐射从光敏区透射出去并进入光学谐振腔,经铝镜反射膜层反射后,重新折回光敏层并被钯硅纳米线吸收,激发出电子-空穴对;由钯硅纳米线光敏层产生的电子-空穴对中,能量超过势垒高度的热空穴越过Pd2Si/P-Si势垒,进入P型外延硅衬底层,从而在钯硅纳米线光敏层内形成电子积累,同时P型外延硅衬底层内也形成空穴积累,光敏层内积累的电子被输出二极管收集,完成对红外辐射的探测。由于红外辐射在钯硅纳米线之间多次反射,增加了光敏层对红外辐射的吸收,此外,钯硅纳米线阵列与P型外延硅衬底层形成肖特基势垒接触,存在较大的边缘场效应,产生很大的边缘电场,导致光生电子发生雪崩倍增效应,提高了红外探测器的量子效率Pd2Si/P-Si肖特基势垒高度为0.33eV,PtSi/P-Si肖特基势垒高度为0.21eV,故在相同制冷温度下,Pd2Si/P-Si红外探测器的暗电流比PtSi/P-Si红外探测器的暗电流小几十倍,PtSi/P-Si红外探测器需要在液氮制冷温度(80K)下工作。而本发明的Pd2Si/P-Si红外探测器可在无制冷器条件下工作于室温环境。
与现有技术相同地,所述钯硅纳米线室温红外探测器上还设置有输出二极管、P+沟阻、电极引线、P+扩散地和N保护环。
优选地,所述抗反射膜层由硅纳米线阵列形成。
一种钯硅纳米线室温红外探测器制作方法,按如下步骤制作钯硅纳米线室温红外探测器:
1)提供双面抛光的P型外延硅衬底层;
2)在P型外延硅衬底层上双面生长二氧化硅介质层,在P型外延硅衬底层正面的二氧化硅介质层上淀积氮化硅介质层;
3)采用硼扩散工艺在P型外延硅衬底层上分别形成P+沟阻和P+扩散地;
4)采用磷离子注入工艺在P型外延硅衬底层上分别形成输出二极管和N保护环;
5)采用光刻工艺在P型外延硅衬底层正面形成光敏区;采用等离子刻蚀工艺将光敏区内的氮化硅介质层刻蚀干净;采用湿法工艺腐蚀光敏区和P型外延硅衬底层背面,将光敏区和P型外延硅衬底层背面的二氧化硅介质层去掉;获得工艺片;
6)采用超高真空溅射工艺,在工艺片双面淀积铂膜并原位退火;采用铂辅助刻蚀工艺在光敏区和P型外延硅衬底层背面制作硅纳米线,然后用王水去除铂膜;P型外延硅衬底层背面的铂膜被去除后,P型外延硅衬底层背面的硅纳米线阵列即形成抗反射膜层;
7)用稀氢氟酸溶液去除光敏区内硅纳米线上的自然氧化层,采用超高真空溅射工艺在光敏区淀积钯膜并原位退火,形成钯硅纳米线阵列,钯硅纳米线阵列即为光敏层,用王水腐蚀去除光敏区外围未反应的钯膜;
8)利用PECVD工艺在光敏区及外围淀积低温二氧化硅光腔介质薄膜,形成SiO2光腔介质层;
9)采用光刻工艺,刻蚀出引线孔;
10)采用磁控溅射工艺在SiO2光腔介质层上淀积铝膜,然后采用光刻工艺形成铝镜反射膜层和电极引线压点。
本发明的有益技术效果是:采用钯硅纳米线制作技术,在提高红外探测器性能的同时,大幅度提高Pd2Si/P-Si红外探测器的信噪比,探测器可在室温环境下工作。
附图说明
图1、本发明的结构示意图;
图中各个标记所对应的名称分别为:抗反射膜层1、P型外延硅衬底层2、光敏层3、SiO2光腔介质层4、铝镜反射膜层5、输出二极管6、P+沟阻7、电极引线8、P+扩散地9、N保护环10、二氧化硅介质层11、氮化硅介质层12。
具体实施方式
一种钯硅纳米线室温红外探测器,包括抗反射膜层1、P型外延硅衬底层2、光敏层3、SiO2光腔介质层4和铝镜反射膜层5;所述抗反射膜层1、P型外延硅衬底层2、光敏层3、SiO2光腔介质层4和铝镜反射膜层5依次层叠在一起形成红外探测器;
其创新在于:所述光敏层3由钯硅纳米线阵列形成;所述红外探测器的工作模式采用背照方式;所述红外探测器工作于室温环境下。
进一步地,所述钯硅纳米线室温红外探测器上还设置有输出二极管6、P+沟阻7、电极引线8、P+扩散地9和N保护环10。
进一步地,所述抗反射膜层1由硅纳米线阵列形成。
一种钯硅纳米线室温红外探测器制作方法,按如下步骤制作钯硅纳米线室温红外探测器:
1)提供双面抛光的P型外延硅衬底层2;
2)在P型外延硅衬底层2上双面生长二氧化硅介质层11,在P型外延硅衬底层2正面的二氧化硅介质层11上淀积氮化硅介质层12;
3)采用硼扩散工艺在P型外延硅衬底层2上分别形成P+沟阻7和P+扩散地9;
4)采用磷离子注入工艺在P型外延硅衬底层2上分别形成输出二极管6和N保护环10;
5)采用光刻工艺在P型外延硅衬底层2正面形成光敏区;采用等离子刻蚀工艺将光敏区内的氮化硅介质层12刻蚀干净;采用湿法工艺腐蚀光敏区和P型外延硅衬底层2背面,将光敏区和P型外延硅衬底层2背面的二氧化硅介质层11去掉;获得工艺片;
6)采用超高真空溅射工艺,在工艺片双面淀积铂膜并原位退火;采用铂辅助刻蚀工艺在光敏区和P型外延硅衬底层2背面制作硅纳米线,然后用王水去除铂膜;P型外延硅衬底层2背面的铂膜被去除后,P型外延硅衬底层2背面的硅纳米线阵列即形成抗反射膜层1;
7)用稀氢氟酸溶液去除光敏区内硅纳米线上的自然氧化层,采用超高真空溅射工艺在光敏区淀积钯膜并原位退火,形成钯硅纳米线阵列,钯硅纳米线阵列即为光敏层3,用王水腐蚀去除光敏区外围未反应的钯膜;
8)利用PECVD工艺在光敏区及外围淀积低温二氧化硅光腔介质薄膜,形成SiO2光腔介质层4;
9)采用光刻工艺,刻蚀出引线孔;
10)采用磁控溅射工艺在SiO2光腔介质层4上淀积铝膜,然后采用光刻工艺形成铝镜反射膜层5和电极引线压点。

Claims (4)

1.一种钯硅纳米线室温红外探测器,包括抗反射膜层(1)、P型外延硅衬底层(2)、光敏层(3)、SiO2光腔介质层(4)和铝镜反射膜层(5);所述抗反射膜层(1)、P型外延硅衬底层(2)、光敏层(3)、SiO2光腔介质层(4)和铝镜反射膜层(5)依次层叠在一起形成红外探测器;
其特征在于:所述光敏层(3)由钯硅纳米线阵列形成;所述红外探测器的工作模式采用背照方式;所述红外探测器工作于室温环境下。
2.根据权利要求1所述的钯硅纳米线室温红外探测器,其特征在于:所述钯硅纳米线室温红外探测器上还设置有输出二极管(6)、P+沟阻(7)、电极引线(8)、P+扩散地(9)和N保护环(10)。
3.根据权利要求1所述的钯硅纳米线室温红外探测器,其特征在于:所述抗反射膜层(1)由硅纳米线阵列形成。
4.一种钯硅纳米线室温红外探测器制作方法,其特征在于:按如下步骤制作钯硅纳米线室温红外探测器:
1)提供双面抛光的P型外延硅衬底层(2);
2)在P型外延硅衬底层(2)上双面生长二氧化硅介质层(11),在P型外延硅衬底层(2)正面的二氧化硅介质层(11)上淀积氮化硅介质层(12);
3)采用硼扩散工艺在P型外延硅衬底层(2)上分别形成P+沟阻(7)和P+扩散地(9);
4)采用磷离子注入工艺在P型外延硅衬底层(2)上分别形成输出二极管(6)和N保护环(10);
5)采用光刻工艺在P型外延硅衬底层(2)正面形成光敏区;采用等离子刻蚀工艺将光敏区内的氮化硅介质层(12)刻蚀干净;采用湿法工艺腐蚀光敏区和P型外延硅衬底层(2)背面,将光敏区和P型外延硅衬底层(2)背面的二氧化硅介质层(11)去掉;获得工艺片;
6)采用超高真空溅射工艺,在工艺片双面淀积铂膜并原位退火;采用铂辅助刻蚀工艺在光敏区和P型外延硅衬底层(2)背面制作硅纳米线,然后用王水去除铂膜;P型外延硅衬底层(2)背面的铂膜被去除后,P型外延硅衬底层(2)背面的硅纳米线阵列即形成抗反射膜层(1);
7)用稀氢氟酸溶液去除光敏区内硅纳米线上的自然氧化层,采用超高真空溅射工艺在光敏区淀积钯膜并原位退火,形成钯硅纳米线阵列,钯硅纳米线阵列即为光敏层(3),用王水腐蚀去除光敏区外围未反应的钯膜;
8)利用PECVD工艺在光敏区及外围淀积低温二氧化硅光腔介质薄膜,形成SiO2光腔介质层(4);
9)采用光刻工艺,刻蚀出引线孔;
10)采用磁控溅射工艺在SiO2光腔介质层(4)上淀积铝膜,然后采用光刻工艺形成铝镜反射膜层(5)和电极引线压点。
CN201410393284.5A 2014-08-12 2014-08-12 钯硅纳米线室温红外探测器及其制作方法 Pending CN104143581A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410393284.5A CN104143581A (zh) 2014-08-12 2014-08-12 钯硅纳米线室温红外探测器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410393284.5A CN104143581A (zh) 2014-08-12 2014-08-12 钯硅纳米线室温红外探测器及其制作方法

Publications (1)

Publication Number Publication Date
CN104143581A true CN104143581A (zh) 2014-11-12

Family

ID=51852715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410393284.5A Pending CN104143581A (zh) 2014-08-12 2014-08-12 钯硅纳米线室温红外探测器及其制作方法

Country Status (1)

Country Link
CN (1) CN104143581A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105841823A (zh) * 2016-04-14 2016-08-10 董友强 一种锰硅纳米线红外探测器及其制作方法
CN110164992A (zh) * 2019-05-30 2019-08-23 中国电子科技集团公司第四十四研究所 一种改进凹透镜模块的apd光电器件及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3968272A (en) * 1974-01-25 1976-07-06 Microwave Associates, Inc. Zero-bias Schottky barrier detector diodes
US4875082A (en) * 1986-06-20 1989-10-17 Ford Aerospace Corporation Schottky barrier photodiode structure
CN103794673A (zh) * 2014-03-07 2014-05-14 中国电子科技集团公司第四十四研究所 铂硅纳米线红外探测器及其制作方法
CN103915517A (zh) * 2012-12-28 2014-07-09 首尔伟傲世有限公司 光检测元件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3968272A (en) * 1974-01-25 1976-07-06 Microwave Associates, Inc. Zero-bias Schottky barrier detector diodes
US4875082A (en) * 1986-06-20 1989-10-17 Ford Aerospace Corporation Schottky barrier photodiode structure
CN103915517A (zh) * 2012-12-28 2014-07-09 首尔伟傲世有限公司 光检测元件
CN103794673A (zh) * 2014-03-07 2014-05-14 中国电子科技集团公司第四十四研究所 铂硅纳米线红外探测器及其制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105841823A (zh) * 2016-04-14 2016-08-10 董友强 一种锰硅纳米线红外探测器及其制作方法
CN110164992A (zh) * 2019-05-30 2019-08-23 中国电子科技集团公司第四十四研究所 一种改进凹透镜模块的apd光电器件及其制作方法

Similar Documents

Publication Publication Date Title
US11011655B2 (en) Three-dimensional conductive electrode for solar cell
US10741706B2 (en) Transparent conductive electrode for three dimensional photovoltaic device
JP2011523226A (ja) ソーラ体積構造
CN104157721A (zh) 基于石墨烯/硅/石墨烯的雪崩光电探测器及其制备方法
CN103794673B (zh) 铂硅纳米线红外探测器及其制作方法
CN104300027B (zh) 基于石墨烯/二氧化硅/硅的雪崩光电探测器及制备方法
CN113097335B (zh) 波导耦合等离增强型Ge基红外光电探测器及其制备方法
CN104157720A (zh) 一种混合结构的石墨烯硅基雪崩光电探测器及制备方法
CN105841823A (zh) 一种锰硅纳米线红外探测器及其制作方法
US20140238483A1 (en) Three-dimensional solar cell having increased efficiency
CN103956403B (zh) 光电探测器制备方法及制备的广角光电探测器
JP2010520631A (ja) 太陽電池の製造方法及びそれによって得られた太陽電池
CN104143581A (zh) 钯硅纳米线室温红外探测器及其制作方法
CN103346200A (zh) 玻璃基板及其制造方法和薄膜太阳能电池的制造方法
CN103137786A (zh) 光伏装置及其制造方法
CN108231923B (zh) 一种红外探测器及其制备方法
CN103956404B (zh) 一种光电探测器制备方法及制备的广角光电探测器
FR3037721A1 (fr) Procede de realisation d’une cellule photovoltaique a heterojonction et cellule photovoltaique ainsi obtenue.
JP2015177175A (ja) 光電変換素子および光電変換素子の製造方法
TW201409733A (zh) 太陽能電池及其製作方法
KR101145472B1 (ko) 태양전지의 제조방법
CN115172507A (zh) 一种位置敏感探测器及其制备方法
JP2010219089A (ja) 光発電素子
CN102544222A (zh) 一种平面型子像元结构铟镓砷红外探测器芯片制备方法
TWI431793B (zh) 利用雙重蝕刻來形成平坦之晶圓背面之太陽能電池之製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20141112

RJ01 Rejection of invention patent application after publication