CN104136912A - 用于样品光学检查的装置和方法 - Google Patents

用于样品光学检查的装置和方法 Download PDF

Info

Publication number
CN104136912A
CN104136912A CN201380009617.3A CN201380009617A CN104136912A CN 104136912 A CN104136912 A CN 104136912A CN 201380009617 A CN201380009617 A CN 201380009617A CN 104136912 A CN104136912 A CN 104136912A
Authority
CN
China
Prior art keywords
group delay
sample
depends
angular frequency
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380009617.3A
Other languages
English (en)
Inventor
加布里埃尔·弗洛林·滕佩亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Femtolasers Produktions GmbH
Original Assignee
Femtolasers Produktions GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Femtolasers Produktions GmbH filed Critical Femtolasers Produktions GmbH
Publication of CN104136912A publication Critical patent/CN104136912A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H5/00Removing snow or ice from roads or like surfaces; Grading or roughening snow or ice
    • E01H5/04Apparatus propelled by animal or engine power; Apparatus propelled by hand with driven dislodging or conveying levelling elements, conveying pneumatically for the dislodged material
    • E01H5/045Means per se for conveying or discharging the dislodged material, e.g. rotary impellers, discharge chutes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4531Devices without moving parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/005Testing of reflective surfaces, e.g. mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/0825Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/283Investigating the spectrum computer-interfaced
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J2003/451Dispersive interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J2003/4538Special processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N2021/4126Index of thin films
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/126Microprocessor processing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

使用光谱干涉测量进行样品光学检查的方法和装置,其中由辐射源(1)发射的光束(2”)被引导到样品(5)上,而参考光束(2’)被引导到参考样品(4)上,这两个光束在所述样品处反射之后或经过所述样品之后的光谱干涉通过光谱仪(6)记录;关于角频率ω对如此获得的干涉图I(ω)进行数值求导。对于如此获得的函数I'(ω),将零点ωi数值计算为等式I'(ω)=0的解,然后根据等式τ(ωn)=π/(ωi+1i)从零点ωi计算依赖于频率的群延迟τ(ω),其中i=1,2…,并且ωn=(ωi+1i)/2。

Description

用于样品光学检查的装置和方法
技术领域
本发明涉及一种通过光谱干涉测量对样品进行光学检查的方法以及用于执行这种方法的装置。
背景技术
光谱干涉测量法是用于光学和激光技术的非常重要的测量方法。这种方法特别用来确定在光谱学中用于色散测量的光学器件的表面质量(V.N.Kumar和D.N.Rao,"Using interference in the frequency domain for precisedetermination of thickness and refractive indices of normal dispersive materials"美国光学会志B 12,1559-1563<1995>),但是在非线性效应方面也用于表征脉冲时长(C.Iaconis和I.A.Walmsley,"Spectral Phase Interferometry for DirectElectric-field Reconstruction of Ultrashort Optical Pulses,"光学快报23,792-794<1998>)。
相对于彼此在时间上延迟的两个光束在空间上被叠加,并且以光谱分辨的方式测量被叠加的光束。测量到的光谱具有调制(光谱干涉图案)。两个光信号之间的延迟以及两个光信号的光谱相位之间的差能够根据该光谱干涉图案来确定。该信息通过本身已知并基于快速傅立叶变换(FFT)的数值方法从光谱干涉图确定(“干涉图分析”,D.W.Robinson和G.T.Reid,Eds.,物理出版协会,布里斯托尔<1993>,第141-193页)。
然而,对于一些应用(例如色散测量),必须确定的不仅仅是光谱相位,而且还有群延迟色散(GDD,根据角频率的相位的二阶导数)。显然,该GDD可以通过所测量的光谱相位的二次数值求导来确定。然而,已知数值求导是不稳定的数值方法,并且误差传播分析表明,光谱相位中的小的测量误差都会导致GDD中的不可靠的高误差率(A.N.Tikhonov和V.Y.Arsenin,"Solutions of Ill-Posed Problems",Wiley<1977>)。
发明内容
因此,有利的是,从测量值直接确定GDD或至少GD(根据角频率的光谱相位的一阶导数),并且本发明的目的是以简单方式实现这一点。
为了实现该目的,本发明提供了像开头规定的方法,该方法的特征在于,从辐射源发射的光束被引导到样品上,而参考光束被引导到参考样品上,这两个光束在所述样品处反射或经过所述样品之后的光谱干涉通过光谱仪记录,并且其特征还在于,根据角频率ω对如此获得的干涉图I(ω)进行数值求导,由此针对如此获得的函数I'(ω)将零点ωi数值计算为等式I'(ω)=0的解,然后根据等式τ(ωn)=π/(ωi+1i)从零点ωi计算依赖于频率的群延迟τ(ω),其中i=1,2…,并且ωn=(ωi+1i)/2。
这里,此外还可能的是,通过根据所述角频率ω对所述群延迟τ(ω)进行数值求导来计算依赖于频率的群延迟色散。
如果通过在所述角频率上对所述群延迟τ(ω)进行数值积分来确定光谱相位,则也是有益的。在这种情况下,如果通过预定光谱的傅立叶变换并考虑到所确定的光谱相位来确定依赖于时间的相位;或者如果通过预定光谱的傅立叶变换并考虑到所确定的光谱相位来确定光束脉冲的依赖于时间的强度,则是进一步有利的。
例如使用激光(脉冲)源或灯泡否则使用发光二极管作为辐射源或光源。
本发明的一个有利应用的特征在于,作为样品来研究基板上的薄层涂层,通过被参考反射器反射的光束来记录被基板上的薄层反射的光束的光谱干涉。
根据本发明的用于执行本发明的方法的装置的特征相应地在于,干涉仪设备具有辐射源、具有用于产生参考光束和测量光束的部件(例如辐射分束器)、并具有光谱仪,计算单元连接至该光谱仪,该计算单元被配置成根据角频率ω对借助于所述光谱仪获得的干涉图进行数值求导,由此针对如此获得的函数I'(ω)将零点ωi数值计算为等式I'(ω)=0的解,然后根据等式τ(ωn)=π/(ωi+1i)从零点ωi计算依赖于频率的群延迟τ(ω),其中i=1,2…,并且ωn=(ωi+1i)/2(即,ωn是ωi+1和ωi的平均值)。
在这种情况下,如果所述计算单元还被设置成通过根据所述角频率ω对所述群延迟τ(ω)进行数值求导来计算依赖于频率的群延迟色散,则是有利的。
此外,如果所述计算单元被设置成通过在所述角频率上对所述群延迟τ(ω)进行数值积分来确定光谱相位,则是有益的。
如果所述计算单元还具有傅立叶变换模块,以便通过预定光谱的傅立叶变换并考虑到所确定的光谱相位来确定依赖于时间的相位,则也是有利的。此外,所述计算单元可以具有傅立叶变换模块,以便通过预定光谱的傅立叶变换并考虑到所确定的光谱相位来确定光束脉冲的依赖于时间的强度。
在样品的反射研究的情况下,可以设置用于反射所述参考光束的参考镜。
因此,本发明基于直接光谱评估(DSE)技术,相比于传统的基于FFT的方法(参见上面的“Interferogram Analysis",D.W.Robinson和G.T.Reid”),这种直接光谱评估还具有如下优点:
(1)无需使用FFT,并且数学操作数量少得多,因而DSE方法更快。不必使用FFT这一事实还意味着不必为了实现FFT所需的条件而对所测量的干涉图进行插值和外推。结果,必须处理的值的数量少近似4倍。此外,双FFT被替换为数值求导和插值。结果,DSE方法比传统的方法快了至少100倍。由于该计算速度,该方法可以用于在动态处理中准实时地表征色散,例如用于在涂覆过程期间对色散镜的层厚的生长进行检测之目的。
(2)所提供的方法允许对群延迟(GD,光谱相位根据角频率的一阶导数)进行直接求导。因而,为了获得GDD仅需要使用一次数值求导。结果,显著地降低了测量误差通过相位求导而不利地传播。
附图说明
下面参照附图基于优选示例性实施方式更详细地描述本发明。在附图中:
图1示出了在波长λ(单位为nm)上光谱干涉图即强度I(ω)(单位任意)的示例;
图2示出了在角频率ω(单位为rad/fs)上根据角频率的该干涉信号I(ω)的导数I'(ω),即I'(ω)=dI/dω;
图3以曲线图示出了在角频率ω上从图1的干涉信号I(ω)计算的群延迟τ(单位为fs);
图4以曲线图示出了在波长λ(单位为nm)上从干涉信号I(ω)计算的总的群延迟色散GDDt(单位为fs2);
图5以曲线图示出了从I(ω)计算的群延迟GDDS,该群延迟是针对每个反射通过样品镜产生的;以及
图6示意性示出了具有干涉仪的装置。
具体实施方式
图1示出了典型的光谱干涉图,即干涉信号I(ω),具体说,单位任意(“arb.u”)。该光谱干涉信号I(ω)是根据角频率ω导出的。在图1的示例光谱的基础上,在图2图示了作为结果产生的函数I'(ω)。函数I'(ω)的零交点ωi(即,在与测量相关的频率范围内,ωi等于等式I'(ω)=0的所有解)通过本身已知的数值算法(例如通过线性或非线性插值)确定。
群延迟τ作为角频率ω的函数根据角频率值ωi计算如下:
τ(ωn)=π/(ωi+1i),其中ωn=(ωi+1i)/2
在图3中图示了从图1中描绘的干涉图以这种方式计算的群延迟值τ。
如果使用需要,则可以通过数值求导从群延迟τ计算群延迟色散GDD。对于图1中描绘的干涉图来说,该GDD在图4中图示出。
由于用于这里所示的测量的白光干涉仪的设计,总的色散GDDt组成如下:GDDt=16*GDDS+2*GDDFS,GDDS为在样品镜上反射过程中引起的色散,而GDDFS为由厚度为6.35mm的石英玻璃(熔融石英)制成的玻璃板的色散。因而,样品镜的色散GDDS(其是因为反射引起的)可以计算如下:GDDS=(GDDt-2*GDDFS)/16。图5中示出了由此获得的待表征的样品镜的色散GDDS
图6示出了用于产生干涉图I(ω)的迈克耳逊(Michelson)干涉仪的可能实施方式。迈克耳逊干涉仪的该设计和其他实施方式(例如在样品镜上具有多次反射)以及本身已知的其他类型的干涉仪(例如,马赫一曾德尔干涉仪)都可以根据图6例如顺序地使用,以对镜5进行测量。
更详细地说,图6示出了用于光谱干涉测量的迈克耳逊干涉仪的示意性图示,使用光源1产生的光束通过分束器3分割。参考光束2’通过反射镜4(其色散特征是已知的)反射,该参考反射镜4用作后反射器。测量光束2”通过镜5反射以进行测量。镜5也可以被安装成多重折叠镜,以便增加由此产生的GDD并且因而提高测量精度。使参考光束2’和测量光束2”被返回以通过分速器3进行空间重叠,参照光束22。通过光谱仪6从该光束22记录光谱干涉图。
参考光束2’的群延迟和测量光束2”的群延迟之间的差可以从如此获得干涉信号I(ω)计算出,如上所述。为此,将相应地构造的计算单元7连接至光谱仪6。结果,例如,GD、GDD等通过输出单元8输出,例如显示和/或打印。
由于高的测量和评估速度,所描述的技术例如可以用于在基板的薄层涂覆的情况下(例如在生产色散镜时)在涂覆过程期间实时地监测涂覆过程。

Claims (15)

1.一种用于通过光谱干涉测量进行样品光学检查的方法,其特征在于,从辐射源(1)发射的光束(2”)被引导到样品(5)上,而参考光束(2’)被引导到参考样品(4)上,这两个光束在所述样品处反射之后或经过所述样品之后的光谱干涉通过光谱仪(6)记录,并且其特征还在于,根据角频率ω对如此获得的干涉图I(ω)进行数值求导,由此针对如此获得的函数I'(ω)将零点ωi数值计算为等式I'(ω)=0的解,然后根据等式τ(ωn)=π/(ωi+1i)从零点ωi计算依赖于频率的群延迟τ(ω),其中i=1,2…,并且ωn=(ωi+1i)/2。
2.根据权利要求1所述的方法,其特征在于,通过根据所述角频率ω对所述群延迟τ(ω)进行数值求导来计算依赖于频率的群延迟色散(GDD)。
3.根据权利要求1所述的方法,其特征在于,通过在所述角频率上对所述群延迟τ(ω)进行数值积分来确定光谱相位。
4.根据权利要求3所述的方法,其特征在于,通过预定光谱的傅立叶变换并考虑到所确定的光谱相位来确定依赖于时间的相位。
5.根据权利要求3所述的方法,其特征在于,通过预定光谱的傅立叶变换并考虑到所确定的光谱相位来确定光束脉冲的依赖于时间的强度。
6.根据权利要求1至5中任一项所述的方法,其特征在于,使用激光脉冲源或灯泡否则使用发光二极管作为辐射源(1)。
7.根据权利要求1至6中任一项所述的方法,其特征在于,作为样品(5)来研究基板上的薄层涂层,其中通过被参考反射器(4)反射的光束(2’)来记录被基板上的薄层反射的光束(2”)的光谱干涉。
8.一种用于执行根据权利要求1至7中任一项所述的方法的装置,其特征在于,干涉仪设备具有辐射源(1)、具有用于产生参考光束(2’)和测量光束(2”)的部件(3)、并具有光谱仪(6),计算单元(7)连接至该光谱仪(6),该计算单元(7)被配置成根据角频率ω对借助于所述光谱仪(6)获得的干涉图进行数值求导,由此针对如此获得的函数I'(ω)将零点ωi数值计算为等式I'(ω)=0的解,然后根据等式τ(ωn)=π/(ωi+1i)从零点ωi计算依赖于频率的群延迟τ(ω),其中i=1,2…,并且ωn=(ωi+1i)/2。
9.根据权利要求8所述的装置,其特征在于,所述计算单元(7)还被设置成通过根据所述角频率ω对所述群延迟τ(ω)进行数值求导来计算依赖于频率的群延迟色散GDD。
10.根据权利要求8或9所述的装置,其特征在于,所述计算单元(7)被设置成通过在所述角频率上对所述群延迟τ(ω)进行数值积分来确定光谱相位。
11.根据权利要求10所述的装置,其特征在于,所述计算单元(7)还具有傅立叶变换模块,以便通过预定光谱的傅立叶变换并考虑到所确定的光谱相位来确定依赖于时间的相位。
12.根据权利要求10所述的装置,其特征在于,所述计算单元(7)具有傅立叶变换模块,以便通过预定光谱的傅立叶变换并考虑到所确定的光谱相位来确定光束脉冲的依赖于时间的强度。
13.根据权利要求8至12中任一项所述的装置,其特征在于,设置激光脉冲源或灯泡否则设置发光二极管作为辐射源(1)。
14.根据权利要求8至13中任一项所述的装置,其特征在于用于反射所述参考光束(2’)的参考镜(4)。
15.根据权利要求8至14中任一项所述的装置,其特征在于,用于产生参考光束(2’)和测量光束(2”)的部件由辐射分束器形成。
CN201380009617.3A 2012-01-17 2013-01-15 用于样品光学检查的装置和方法 Pending CN104136912A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ATA47/2012A AT512044B1 (de) 2012-01-17 2012-01-17 Vorrichtung und verfahren zur optischen überprüfung einer probe
ATA47/2012 2012-01-17
PCT/AT2013/050009 WO2013106876A1 (de) 2012-01-17 2013-01-15 Vorrichtung und verfahren zur optischen überprüfung einer probe

Publications (1)

Publication Number Publication Date
CN104136912A true CN104136912A (zh) 2014-11-05

Family

ID=47603194

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380009617.3A Pending CN104136912A (zh) 2012-01-17 2013-01-15 用于样品光学检查的装置和方法

Country Status (7)

Country Link
US (1) US20150002848A1 (zh)
EP (1) EP2807467B1 (zh)
JP (1) JP2015504167A (zh)
CN (1) CN104136912A (zh)
AT (1) AT512044B1 (zh)
CA (1) CA2861226A1 (zh)
WO (1) WO2013106876A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113916124A (zh) * 2021-10-09 2022-01-11 中国测试技术研究院机械研究所 具有管状基准照明系统的菲索干涉仪及管状基准照明系统用于移相技术

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3062910B1 (fr) * 2017-02-10 2021-05-28 Fogale Nanotech Ligne a retard optique, interferometre a faible coherence implementant cette ligne, dispositif et procede de mesure mettant en œuvre cet interferometre
CN114279570B (zh) * 2021-12-08 2023-11-28 北京华泰诺安技术有限公司 一种光谱仪的装调系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071042A2 (en) * 2001-01-29 2002-09-12 Izatt Joseph A Frequency-encoded parallel oct and associated systems and methods
US6486961B1 (en) * 2001-05-08 2002-11-26 Agilent Technologies, Inc. System and method for measuring group delay based on zero-crossings
CN1568423A (zh) * 2001-10-12 2005-01-19 株式会社爱德万测试 偏振模式色散测量器件、方法和记录媒介
CN101660998A (zh) * 2008-08-28 2010-03-03 中国计量科学研究院 利用小波变换测量群延迟的方法
CN101777958A (zh) * 2010-01-21 2010-07-14 北京航空航天大学 一种预测接收点附近一定范围内群时延的方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942819B2 (ja) * 1977-10-19 1984-10-17 三洋電機株式会社 干渉計の可視度測定装置
JP2736349B2 (ja) * 1988-07-15 1998-04-02 株式会社アドバンテスト 光ネットワーク・アナライザ
GB9314487D0 (en) * 1993-07-12 1993-08-25 Secr Defence Sensor system
JP2714754B2 (ja) * 1994-03-02 1998-02-16 日本電信電話株式会社 導波路分散測定方法および装置
GB2311600A (en) * 1996-03-29 1997-10-01 Secr Defence Optic Fibre Interferometric sensor
JP3564569B2 (ja) * 1996-11-14 2004-09-15 独立行政法人理化学研究所 実時間表面形状計測方法及び装置
AUPQ641500A0 (en) * 2000-03-23 2000-04-15 Defence Science And Technology Organisation Method and apparatus for estimating chromatic dispersion in fibre bragg gratings
EP1207377A3 (en) * 2000-11-17 2007-03-28 Agilent Technologies, Inc. Method and apparatus for measuring optical properties by means of the Jones matrix
US6501874B1 (en) * 2001-09-25 2002-12-31 Inplane Photonics, Inc. Dispersion compensator using Bragg gratings in transmission
US6813027B2 (en) * 2002-01-14 2004-11-02 Agilent Technologies, Inc Time difference synchronization for determination of a property of an optical device
US6825934B2 (en) * 2002-03-14 2004-11-30 Agilent Technologies, Inc. Vibration noise mitigation in an interferometric system
US7079254B2 (en) * 2003-03-26 2006-07-18 Southwest Sciences Incorporated Method and apparatus for imaging internal structures of transparent and translucent materials
US7130052B1 (en) * 2004-03-24 2006-10-31 Daniel J. Kane Real-time measurement of ultrashort laser pulses
JP2006266797A (ja) * 2005-03-23 2006-10-05 Anritsu Corp 光ヘテロダイン干渉装置
CA2709779A1 (en) * 2007-10-15 2009-04-23 Michael Galle System and method to determine chromatic dispersion in short lengths of waveguides using a 3-wave interference pattern and a single-arm interferometer
JP2011209223A (ja) * 2010-03-30 2011-10-20 Nagoya Univ 厚さ又は温度の干渉測定装置
AT12946U1 (de) * 2012-02-13 2013-02-15 Kahlbacher Toni Gmbh & Co Schneeräumvorrichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071042A2 (en) * 2001-01-29 2002-09-12 Izatt Joseph A Frequency-encoded parallel oct and associated systems and methods
WO2002071042A3 (en) * 2001-01-29 2002-11-07 Joseph A Izatt Frequency-encoded parallel oct and associated systems and methods
US6486961B1 (en) * 2001-05-08 2002-11-26 Agilent Technologies, Inc. System and method for measuring group delay based on zero-crossings
CN1568423A (zh) * 2001-10-12 2005-01-19 株式会社爱德万测试 偏振模式色散测量器件、方法和记录媒介
CN101660998A (zh) * 2008-08-28 2010-03-03 中国计量科学研究院 利用小波变换测量群延迟的方法
CN101777958A (zh) * 2010-01-21 2010-07-14 北京航空航天大学 一种预测接收点附近一定范围内群时延的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邵永红等: "群相可控光学延迟线色散特性分析", 《光学精密工程》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113916124A (zh) * 2021-10-09 2022-01-11 中国测试技术研究院机械研究所 具有管状基准照明系统的菲索干涉仪及管状基准照明系统用于移相技术
CN113916124B (zh) * 2021-10-09 2024-03-15 中国测试技术研究院机械研究所 具有管状基准照明系统的菲索干涉仪及管状基准照明系统用于移相技术的方法

Also Published As

Publication number Publication date
US20150002848A1 (en) 2015-01-01
AT512044A4 (de) 2013-05-15
AT512044B1 (de) 2013-05-15
EP2807467B1 (de) 2015-09-16
EP2807467A1 (de) 2014-12-03
CA2861226A1 (en) 2013-07-25
WO2013106876A1 (de) 2013-07-25
JP2015504167A (ja) 2015-02-05

Similar Documents

Publication Publication Date Title
Withayachumnankul et al. Fundamentals of measurement in terahertz time-domain spectroscopy
US8477314B2 (en) Referencing of the beating spectra of frequency combs
US9025160B2 (en) Spectral phase analysis for precision ranging
CN103197322B (zh) 一种飞秒激光频率梳合成波干涉测距方法及测距系统
JP6157240B2 (ja) 屈折率計測方法、屈折率計測装置および光学素子の製造方法
US10677726B2 (en) Tunable diode laser absorption spectroscopy with corrected laser ramping nonlinearities
EP1256791B1 (en) System and method for measuring group delay based on zero-crossings
CN105180892A (zh) 一种飞秒激光频率梳脉冲啁啾干涉测距方法及测距系统
JP6293762B2 (ja) 雑音を低減した位置監視システム
US8290375B2 (en) Modulation based optical spectrum analyzer
CN104136912A (zh) 用于样品光学检查的装置和方法
CN209590271U (zh) 一种空间长度的测量装置
JP6207383B2 (ja) 屈折率分布計測方法、屈折率分布計測装置、及び光学素子の製造方法
JP6157241B2 (ja) 屈折率計測方法、屈折率計測装置および光学素子の製造方法
CN100507513C (zh) 介质薄膜群延迟的测量方法
JP6539235B2 (ja) 信号処理装置およびリスケーリング方法
US20140014841A1 (en) Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes
CN111366561B (zh) 一种测量液晶器件实际反射率的方法与装置
Zhao et al. Nonlinear correction in the frequency scanning interferometry system by a fiber resonator
Du et al. Fast and Wideband Optical Fiber Dispersion Measurement Using the Pulse Delay Method Based on Super-Continuum Laser
JP2015010920A (ja) 屈折率計測方法、屈折率計測装置および光学素子の製造方法
Chen et al. A spatial phase modulation laser interferometer
Grigor’ev et al. Methods for Calibrating High-Resolution Optical Reflectometers Operating in the Frequency Domain
JP2002296012A (ja) 膜厚測定方法及び膜厚測定装置
Wang et al. Development of Monolithic Michelson Interferometer for RV measurement in IR

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20141105

WD01 Invention patent application deemed withdrawn after publication