CN104134080B - 一种道路路基塌陷和边坡坍塌的自动检测方法及系统 - Google Patents

一种道路路基塌陷和边坡坍塌的自动检测方法及系统 Download PDF

Info

Publication number
CN104134080B
CN104134080B CN201410376693.4A CN201410376693A CN104134080B CN 104134080 B CN104134080 B CN 104134080B CN 201410376693 A CN201410376693 A CN 201410376693A CN 104134080 B CN104134080 B CN 104134080B
Authority
CN
China
Prior art keywords
image
sample
road
pixel
feature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410376693.4A
Other languages
English (en)
Other versions
CN104134080A (zh
Inventor
陈自郁
何中市
王斌
贾媛媛
阎宗岭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201410376693.4A priority Critical patent/CN104134080B/zh
Publication of CN104134080A publication Critical patent/CN104134080A/zh
Application granted granted Critical
Publication of CN104134080B publication Critical patent/CN104134080B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提出了一种道路路基塌陷和边坡坍塌的自动检测方法及系统,该方法包括如下步骤:读取道路图像;对道路图像进行分割,分割出路面图像、边坡图像以及路基图像;进行特征提取,选取基于GLCM的特征,基于Tamura的特征,statxture特征,分形特征,灰度图像的主轴方向特征和图像的空间特征这六种特征作为所述路面图像、边坡图像以及路基图像的特征;对经过特征提取后的图像进行识别分类,将有问题的区域定位出来并计算出包括塌陷面积和坍塌体堆积物方量的参数指标。本发明根据道路的彩色图像能够自动检测路基塌陷和边坡坍塌,效率高,检测准确。

Description

一种道路路基塌陷和边坡坍塌的自动检测方法及系统
技术领域
本发明涉及图像处理技术领域,具体涉及一种道路路基塌陷和边坡坍塌的自动检测方法及系统。
背景技术
随着道路交通运输业的飞速发展,道路运输通道在当今社会经济中发挥着越来越重要的作用。交通建设是国家的基础产业和经济发展的先行行业,道路建设改善了我国道路网结构,促进了区际和区域各地区的经济联系有效拉动内需,刺激高速道路附近地区的经济繁荣和发展,对区域经济发展和空间格局演化具有重要作用,同时为人们的生活也提供了重要的便利条件。
道路交通运输业的飞速发展,不仅促进经济的繁荣昌盛,更为人们的出行带来了便利与快捷,但同时也给道路路面质量养护提出了更高要求。众所周知,道路路面质量对行车的舒适性、经济性、安全性以及道路使用周期都有着重要的影响,路基的病害对路面工作状况有直接影响。如今各种道路路基病害对于交通运输的安全性和及时性产生了重大的负面影响。因此,道路路基病害的检测和养护成为当今交通运输发展中一个亟待解决的问题。
用人工方式对道路路基病害进行监控和检测是一项耗时的工作,且检测人员的主观因素影响了病害检测的精度。除此之外,由于人工检测的不及时和病害处理的延迟为运输带来了安全隐患,并且造成巨大的经济损失。道路路基病害自动检测技术可以有效地提高病害的检测效率,减少人工的参与。因此大量的物理设备引入病害的自动检测系统中,包括雷达、激光和超声波等。但是部分物理设备还是需要人工的操作,且需要大量的物理设备的支持,大大提高了费用。近几年来对于基于图像处理、机器视觉的智能检测方法的研究越来越多,但是只是局限于道路路基、边坡和防护结构裂缝的检测,而对其他的病害检测,则很少关注。而道路路基灾害如路基塌陷和边坡坍塌处理的不及时可以导致交通阻塞并造成重大的经济损失。并且当前很多道路的图像处理技术都是针对灰度图像,且整个检测过程不能实现完整的自动化,同时由于道路特征丰富,当前很多的特征降维方法不能很好地反映道路图像的实际情况。因此,研发基于彩色图像的道路塌陷和边坡坍塌的检测系统,对道路运输的安全和有效性具有重大的现实意义和实用价值。
发明内容
为了克服上述现有技术中存在的缺陷,本发明的目的是提供一种道路路基塌陷和边坡坍塌的自动检测方法及系统。
为了实现本发明的上述目的,根据本发明的第一个方面,本发明提供了一种道路路基塌陷和边坡坍塌的自动检测方法,其包括如下步骤:
S1,读取道路图像;
S2,对所述道路图像进行分割,分割出路面图像、边坡图像以及路基图像;
S3,进行特征提取,选取基于GLCM的特征,基于Tamura的特征,statxture特征,分形特征,灰度图像的主轴方向特征和图像的空间特征这六种特征作为所述路面图像、边坡图像以及路基图像的特征;
S4,对步骤S3中经过特征提取后的图像进行识别分类,将有问题的区域定位出来并计算出包括塌陷面积和坍塌体堆积物方量的参数指标。
本发明的道路路基塌陷和边坡坍塌的自动检测方法根据道路的彩色图像能够自动检测路基塌陷和边坡坍塌,效率高,检测准确。
本发明能够应用与野外环境下,路面环境不规范、路面背景复杂的情况。
本发明提供对公路障碍的定位以及路基塌陷面积或边坡坍塌体积的计算,这样当公路发生障碍时,相关负责人不仅能直观的获知道路障碍状况,还能及时的了解障碍的程度以及严重性,从而有针对性的、有效的进行抢救决策,
在本发明的一种优选实施方式中,在所述步骤S2中,对所述道路图像进行分割的步骤为:
对所述道路图像进行分割的步骤为:
S21,图像分割,分割出道路路面、路基和边坡区域,具体步骤为:
S211,去除图像中的绿色区域,对于绿色的植物,根据绿色的特征,即绿色的G分量大于其R值分量或者是B分量,处理公式如下:
其中,Io(i,j)为原道路图像;R、G、B依次为像素点的红,绿、蓝色度分量;Ig(i,j)为去除绿色区域之后的图像;
S212,将所述Ig(i,j)图像从RGB空间转换到HSI空间:
其中H为HIS的Hue值;I为HIS的Intensity值;S为HIS的Saturation值;
S213,将图片转换到HSI空间之后,利用道路路基和边坡区域S值的统计特征进行道路路基和边坡区域的分割,具体是当S值不大于阈值时,为道路路基和边坡区域,像素点像素值保持原来的像素值;当S值大于阈值时,不为道路路基和边坡区域,像素点像素值为黑色;
S22,进行K-means聚类,将步骤S21产生的图像的黑色部分设置为大于255的值,用K-means将图像聚类为四类,并求每一类的最大连通区域,将其它连通区域去掉;检验每一类的特征,如果此类的像素均值大于255或者此类的面积小于原始图像面积的1/25则将其标签设置为0,否则保持原有的聚类标签。
S23,去掉天空区域,找到步骤S23处理后标签不为0的类,如果其在步骤S22获得的图像所对应的二值图像中的值为1且从图像的第一行开始第一行为1的像素数量大于列宽的λ倍,所述λ为大于0且小于1的正数,则将此区域的标签设置为0,否则保持原有的标签不变;在输出中如果标签不为0则为道路路面、路基和边坡区域。
本发明通的道路图像分割方法能够去除绿色区域和天空区域,只留下道路路面、路基和边坡区域等感兴趣的区域。有利于提高检测速度和准确度。
在本发明的另一种优选实施方式中,在所述步骤S3中,特征提取的步骤为:
S31,将步骤S2处理后的彩色道路图像灰度化,将彩色图像转化为灰度图像,使得R=G=B,并采用加权平均法,对三个颜色分量赋予不同的权值进行加权平均,
Gray=(WRR+WGG+WBB)/(WR+WG+WB)
f(i,j)=0.299R(i,j)+0.587G(i,j)+0.144B(i,j)
其中,Gray为灰度图像,WR、WG和WB依次为红绿蓝颜色分量的权值,f(i,j)为红绿蓝颜色分量的权值依次为0.299、0.587、0.144时的灰度值;
S32,对步骤S31处理后的道路图像进行特征提取,选取基于GLCM的特征,基于Tamura的特征,statxture特征,分形特征,灰度图像的主轴方向特征和图像的空间特征这六种特征中作为所述道路图像的特征。
本发明利用多种特征提取方法进行道路纹理特征的筛选,能够准确检测道路图像塌陷和堆积物表面特性。
GLCM(灰度共生矩阵)的特征提取方法为:对灰度共生矩阵作正规化处理,p(i,j,d,θ)=p(i,j,d,θ)/R,
其中,i,j为像素点的坐标,d为像素间距,θ为方向,R是正规化常数,是灰度共生矩阵中全部元素之和,灰度共生矩阵的大小N2,获得灰度共生矩阵的如下参数作为道路图像的特征:
a.对比度其中|i-j|=n,其中Ng为矩阵的大小,Ng=N2
b.相关
其中:
c.熵
d.逆差距
所述基于Tamura的特征提取方法为:
a.粗糙度,
粗糙度反映了纹理的粒度,对具备不同结构的纹理模式来说,基元尺寸越大或重复次数越少,则越粗糙。其计算方法如下:首先计算图像中2k×2k个像素活动窗口中像素的亮度均值,如下式所示,其中(x,y)为选定区域在图像中的位置,g(i,j)表示选定区域中的第(i,j)点的像素亮度值,像素的范围通过k确定,例如1×1,2×2,3×3…,32×32,
对每个像素点在水平和垂直方向上互不重叠的活动窗口间的平均强度差进行计算,具体公式为:
Ek,h=|Ak(x+2k-1,y)-Ak(x-2k-1,y)|
Ek,v=|Ak(x,y+2k-1)-Ak(x,y-2k-1)|
其中对于每个像素,能使E值达到最大的k值用来设置最佳尺寸Sbest(x,y)。最后,粗糙度可以通过计算整幅图像中Sbest的平均值来得到,
取水平和垂直方向上的最大均差值为当前像素的邻域均值插值,即
Ek=Emax=max(E1,E2,...,Eh)
对每个像素,从多邻域尺寸中设置最佳尺寸,为
Sbest(x,y)=2k+1
计算整幅图像Sbest的平均值为纹理粗糙程度Fcrs,m和n表示宽度和高度:
b.对比度,
α4=μ44
其中,σ为图像灰度的标准方差,α4为图像灰度值的峰态;μ4为四阶矩均值,σ2为图像灰度值的方差;
c.方向度,
其中,HD是θ角对应每个区域内相应的|ΔG|大于给定阈值的像素数目,np为所构造的直方图,φp是该直方图中峰值的位置,其中p表示某个峰值,wp表示谷之间该峰值的范围。
其中:
|ΔG|=(|ΔH|+|ΔV|)/2
|ΔH|和|ΔV|分别是通过图像卷积第一操作符和第二操作符所得的水平和垂直方向上的变化量,所述第一操作符和第二操作符的大小均为3×3,所述第一操作符的第一列、第二列、第三列的数据依次为“-1,-1,-1”,“0,0,0”,“1,1,1”,所述第二操作符的第一行、第二行、第三行的数据依次为“1,1,1”,“0,0,0”,“-1,-1,-1”。
所述statxture特征提取方法为:
根据图像灰度直方图,即图像灰度值的统计特征,统计图像的纹理信息,其中zi表示道路图像灰度级的随机变量,p(zi)为对应区域中灰度的像素分布,i=0,1,…,L-1,L是可区分的灰度级数,
这些统计特性包括:
a.灰度的平均值,
b.标准差,μ2(z)表示灰度级随机变量的二阶矩阵;
c.平滑度
d.三阶矩
e.一致性
f.熵
所述灰度图像的主轴方向特征提取方法为:
惯性主轴方向θ定义为惯性矩I(θ)为最小的方向,首先对目标质心、中心距和惯性矩进行定义,
目标的质心定义为目标像素坐标的均值,为:
其中R为图象中目标区域,N为目标像素总数,f(x,y)为(x,y)点的像素值,
中心矩mi,j定义如式,其中i,j分别为x轴和y轴方向的阶数,为:
目标的惯性矩定义如下式所示:
对上式的I(θ)求导数,令倒数为0得到两个解
为区分最大和最小值,对I(θ)求二阶导,得
I″=[2(m2,0-m0,2)cos2θ+4m1,1sin2θ]·f(x,y)
I″(θi)>0
将θ1和θ2分别代入上中,i=1,2时,θi为所求惯性主轴方向。
在发明的一种优选实施方式中,所述步骤S4具体包括如下步骤:
S41,将步骤S3中经过特征提取后的图像进行道路塌陷和边坡坍塌图像分类,详细步骤如下:
S411,将经过特征提取后的图像作为待测样本库,作为训练集,将已知的道路塌陷和边坡坍塌图像作为已知样本库,作为验证集;
S412,按照四比一的比例划分训练集和验证集,将训练集循环五次划分。
S413,通过一对一的三个二分类模型进行三分类模型的构建,根据不同类别样本的误分代价分别设定塌陷、坍塌和正常样本的惩罚因子,采用网格搜索算法对SVM权重因子、径向基函数关键参数进行寻优,通过样本集的总体识别正确率,以及每类样本的识别正确率来判别得到最优的参数;
S414,交叉验证训练分类器,用划分好的训练集训练分类模型,用验证集进行分类模型的测试,循环五次,求出每个分类模型及其对应的分类准确率,通过分类器识别的总体准确率,塌陷样本和坍塌样本的识别准确率和召回率,以及Sensitivity,Specificity,G-mean值对分类性能进行评估,
S415,选择最优分类器,选择五次交叉验证过程中分类性能最优的模型作为最终的预测模型;
S416,将待测样本点代入到经过训练的SVM最优模型的每一个线性分类函数中进行计算,求出该样本点所属的一个类别;
S417,统计待测样本所属类别的标记数最大的类为待测样本所属类别,从而判别出待测样本是正常、塌陷还是坍塌;
S42,塌陷、坍塌区域定位和塌陷面积、坍塌体积的计算。
本发明选择最优分类器,对道路塌陷和边坡坍塌图像分类方法准确快速。
8、所述步骤S42中塌陷、坍塌区域定位和塌陷面积、坍塌体积的计算的具体步骤如下:
S421,对道路塌陷和边坡坍塌样本感兴趣区域进行K-means聚类;
S422,计算每一类的最大连通区域,去掉其中的较小连通区域;
S423,每个区域分别进行GLCM特征提取;
S424,比较各区域GLCM特征中的熵特征,选取最大熵所属的那一块区域进行标记,即为塌陷和坍塌的区域;
S425,计算图像中塌陷区域的外界矩形的面积,并根据摄像头参数计算出塌陷的面积的实际大小;
S426,将图像中扇形堆积体简化为三菱体进行体积计算,并根据摄像头参数计算出堆积物方量的实际大小。
本发明提供对公路障碍的定位以及路基塌陷面积或边坡坍塌体积的计算,这样当公路发生障碍时,相关负责人不仅能直观的获知道路障碍状况,还能及时的了解障碍的程度以及严重性,从而有针对性的、有效的进行抢救决策。
所述步骤S41之前还具有如下步骤:
将步骤S3中经过特征提取后的图像进行不平衡数据预处理,步骤如下:
S401,对少数类样本进行过抽样处理获得新的少数类样本集,根据样本不平衡率设置抽样倍率N,计算每个少数类样本在样本集中的K近邻,并根据K近邻中多数类样本的占比将样本划分为安全样本、边界样本和孤立样本,然后分别对其进行过抽样;
S402,对样本集中的多数类样本进行数据约减,获得新的多数类样本集;
S403,将新生成的少数类样本集和多数类样本集归并为新的样本集。
通过对图像进行不平衡数据预处理,防止数据集出现不平衡现象,提高了计算的准确性。
为了实现本发明的上述目的,根据本发明的第一个方面,本发明提供了一种道路路基塌陷和边坡坍塌的自动检测系统,其包括摄像装置、远程服务器、远程数据库、道路图像检测装置和显示终端,所述摄像装置摄像定时获取道路图像信息并通过无线传输将道路图像传至远程服务器,远程服务器收集图片并传入远程数据库,道路图像检测装置定时从远程数据库中读取道路图片并利用本发明的道路路基塌陷和边坡坍塌的自动检测方法对道路进行分析,若有异常,则将异常信息存入远程数据库、通过显示终端显示并报警。
本发明的道路路基塌陷和边坡坍塌的自动检测系统,不同于已有的主要针对具有明显公路特征的道路进行检测,本发明能够应用与野外环境下,路面环境不规范、路面背景复杂的情况,应用范围广,检测准确。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明道路路基塌陷和边坡坍塌的自动检测方法的流程图;
图2是本发明一种优选实施方式中对图像进行识别分类,将有问题区域定位并计算相关参数的流程图;
图3是本发明道路路基塌陷和边坡坍塌的自动检测系统的框架图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
本发明提供了一种道路路基塌陷和边坡坍塌的自动检测方法,如图1所示,包括如下步骤:
第一步,读取道路图像,在本实施方式中,采用摄像装置获取道路图像。
第二步,对采集到的道路图像进行分割,分割出路面图像、边坡图像以及路基图像,由于发明的目的是路基塌陷和边坡坍塌体堆积物识别,所以兴趣区域为公路路面、路基和边坡。因此,图像分割的主要目标是分割出上述的兴趣区域。本发明的分割算法主要基于图像的RGB颜色特征,采用聚类的算法,结合图像中的几何特征,实现兴趣区域的提取。
在本实施方式中,对道路图像进行分割的步骤为:
S21,图像分割,分割出道路路面、路基和边坡区域,具体步骤为:
S211,去除图像中的绿色区域,对于绿色的植物,根据绿色的特征,即绿色的G分量大于其R值分量或者是B分量,处理公式如下:
其中,Io(i,j)为原道路图像;R、G、B依次为像素点的红,绿、蓝色度分量;Ig(i,j)为去除绿色区域之后的图像;
S212,将所述Ig(i,j)图像从RGB空间转换到HSI空间:
其中H为HIS的Hue值;I为HIS的Intensity值;S为HIS的Saturation值;
S213,将图片转换到HSI空间之后,利用道路路基和边坡区域S值的统计特征进行道路路基和边坡区域的分割,具体是当S值不大于阈值时,为道路路基和边坡区域,像素点像素值保持原来的像素值;当S值大于阈值时,不为道路路基和边坡区域,像素点像素值为黑色;
S22,进行K-means聚类,将步骤S21产生的图像的黑色部分设置为大于255的值,用K-means将图像聚类为四类,并求每一类的最大连通区域,将其它连通区域去掉;检验每一类的特征,如果此类的像素均值大于255或者此类的面积小于原始图像面积的θ倍则将其标签设置为0,否则保持原有的聚类标签,其中,θ为大于0且小于1的正数,在本发明的一种优选实施方式中,θ取值为1/25。
S23,去掉天空区域,找到步骤S23处理后标签不为0的类,如果其在步骤S22获得的图像所对应的二值图像中的值为1且从图像的第一行开始第一行为1的像素数量大于列宽的λ倍,λ为大于0且小于1的正数,则将此区域的标签设置为0,否则保持原有的标签不变;在输出中如果标签不为0则为道路路面、路基和边坡区域,在本实施方式中λ为1/13。
在本实施方式中,步骤S22获得的图像对应的二值图像,用二值图像判断天空区域,在二值图像中,天空是白色的,即值为1,具体的获取二值图像的方法可按照现有技术中的方法进行。
本发明通的道路图像分割方法能够去除绿色区域和天空区域,只留下道路路面、路基和边坡区域等感兴趣的区域。有利于提高检测速度和准确度。
第三步,公路图像塌陷和堆积物表面并不是均匀的,它包含颜色、形状、方向等各个方面不同却又特定相似的信息,无法根据经验直接判定哪些特征对其具有最好的表征,因此需要进行特征提取,选取基于GLCM的特征,基于Tamura的特征,statxture特征,分形特征,灰度图像的主轴方向特征和图像的空间特征这六种特征中的至少一种或者任意组合作为所述路面图像、边坡图像以及路基图像的特征。
在本发明的另一种优选实施方式中,特征提取的步骤为:
S31,将第二步处理后的彩色道路图像灰度化,将彩色图像转化为灰度图像,使得R=G=B,并采用加权平均法,对三个颜色分量赋予不同的权值进行加权平均,
Gray=(WRR+WGG+WBB)/(WR+WG+WB)
f(i,j)=0.299R(i,j)+0.587G(i,j)+0.144B(i,j)
其中,Gray为灰度图像,WR、WG和WB依次为红绿蓝颜色分量的权值,f(i,j)为红绿蓝颜色分量的权值依次为0.299、0.587、0.144时的灰度值;
S32,提取公路的纹理、形状、几何等特征,本发明选择对整块道路图像感兴趣区域进行整体特征的提取。对步骤S31处理后的道路图像进行特征提取,选取基于GLCM的特征,基于Tamura的特征,statxture特征,分形特征,灰度图像的主轴方向特征和图像的空间特征这六种特征作为所述道路图像的特征。
本发明利用多种特征提取方法进行道路纹理特征的筛选,能够准确检测道路图像塌陷和堆积物表面特性。
基于GLCM的特征提取方法为:灰度共生矩阵是通过计算图像中有某种位置关系的两点灰度之间的相关性来反映图像的纹理特征。考虑到正常路段与异常路段在纹理的对比度,相关性,复杂程度方面都会有着较大的差异,这里主要提取它的四个不相关的统计特征,该灰度共生矩阵是建立在估计图像的二阶组合条件概率密度函数基础上的。图像的灰度矩阵反映的是图像的视觉信息,灰度共生矩阵反映的则是图像关于方向、相邻间隔、变化幅度的综合信息。分析灰度共生矩阵可以分析图像的局部模式和排列规则。首先对灰度共生矩阵作正规化处理,令
p(i,j,d,θ)=p(i,j,d,θ)/R
其中,i,j为像素点的坐标,d为像素间距,θ为方向,R是正规化常数,是灰度共生矩阵中全部元素之和,灰度共生矩阵的大小N2,获得灰度共生矩阵的如下参数作为道路图像的特征:
a.对比度其中|i-j|=n,Ng为矩阵大小,对比度越大,纹理基元对比越强烈,沟纹越深,反之亦然。
b.相关,度量灰度共生矩阵元素在行列方向的相似程度,公式为,
其中:
c.熵,表征纹理的复杂程度,公式为,
d.逆差距,表征纹理的规则程度,公式为,
基于Tamura的特征提取方法为:
a.粗糙度,粗糙度反映了纹理的粒度,对具备不同结构的纹理模式来说,基元尺寸越大或重复次数越少,则越粗糙。其计算方法如下:首先计算图像中2k×2k个像素活动窗口中像素的亮度均值,如下式所示,其中(x,y)为选定区域在图像中的位置,g(i,j)表示选定区域中的第(i,j)点的像素亮度值,像素的范围通过k确定,例如1×1,2×2,3×3…,32×32,
对每个像素点在水平和垂直方向上互不重叠的活动窗口间的平均强度差进行计算,具体公式为:
Ek,h=|Ak(x+2k-1,y)-Ak(x-2k-1,y)|
Ek,v=|Ak(x,y+2k-1)-Ak(x,y-2k-1)|
其中对于每个像素,能使E值达到最大的k值用来设置最佳尺寸Sbest(x,y)。最后,粗糙度可以通过计算整幅图像中Sbest的平均值来得到,
取水平和垂直方向上的最大均差值为当前像素的邻域均值插值,即
Ek=Emax=max(E1,E2,...,Eh)
对每个像素,从多邻域尺寸中设置最佳尺寸,为
Sbest(x,y)=2k+1
计算整幅图像Sbest的平均值为纹理粗糙程度Fcrs,m和n表示宽度和高度:
b.对比度,
α4=μ44
其中,σ为图像灰度的标准方差,α4为图像灰度值的峰态;μ4为四阶矩均值,σ2为图像灰度值的方差;
c.方向度,
其中,HD是θ角对应每个区域内相应的|ΔG|大于给定阈值的像素数目,np为所构造的直方图,φp是该直方图中峰值的位置,其中p表示某个峰值,wp表示谷之间该峰值的范围。
其中:
|ΔG|=(|ΔH|+|ΔV|)/2
|ΔH|和|ΔV|分别是通过图像卷积第一操作符和第二操作符所得的水平和垂直方向上的变化量,所述第一操作符和第二操作符的大小均为3×3,所述第一操作符的第一列、第二列、第三列的数据依次为“-1,-1,-1”,“0,0,0”,“1,1,1”,所述第二操作符的第一行、第二行、第三行的数据依次为“1,1,1”,“0,0,0”,“-1,-1,-1”。
statxture特征提取方法为:
根据图像灰度直方图,即图像灰度值的统计特征,统计图像的纹理信息,其中zi表示道路图像灰度级的随机变量,p(zi)为对应区域中灰度的像素分布,i=0,1,…,L-1,L是可区分的灰度级数,
这些统计特性包括:
a.灰度的平均值,
b.标准差,μ2(z)表示灰度级随机变量的二阶矩阵;
c.平滑度
d.三阶矩
e.一致性
f.熵
灰度图像的主轴方向特征提取方法为:
惯性主轴方向θ定义为惯性矩I(θ)为最小的方向,首先对目标质心、中心距和惯性矩进行定义,
目标的质心定义为目标像素坐标的均值,为:
其中R为图象中目标区域,N为目标像素总数,f(x,y)为(x,y)点的像素值,
中心矩mi,j定义如式,其中i,j分别为x轴和y轴方向的阶数,为:
目标的惯性矩定义如下式所示:
对上式的I(θ)求导数,令倒数为0得到两个解
为区分最大和最小值,对I(θ)求二阶导,得
I″=[2(m2,0-m0,2)cos2θ+4m1,1sin2θ]·f(x,y)
I″(θi)>0
将θ1和θ2分别代入上中,i=1,2时,θi为所求惯性主轴方向。
另外,引入分形特征,分形特征分形维数作为图像表面不规则程度的度量,道路图像的分形特征通过求纹理图像的分形维数来获得。分形维数值可表征道路图像纹理形状、分布密度和均匀程度,纹理分布密度越高纹理宽度越大,分形维数值越大;分布均匀程度越好,分形维数值越小。能够有力的描述自然道路表面的复杂程度。
由于公路纹理变化相对平缓,而边坡、坍塌或者塌陷区域纹理变化剧烈,同时正常边坡与道理存在有规律的空间位置关系,因此引入图像空间特征,图像空间特征能够反应图像中物体的相对位置信息,可将特征正常道路区域与非道路区域定位的相对关系来判断正常路段以及非正常路段。
第四步,如图2所示,对第三步中经过特征提取后的图像进行识别分类,将有问题区域定位出来并计算出包括塌陷面积和坍塌体堆积物方量的参数指标。
在发明的一种优选实施方式中,具体包括如下步骤:
S41,将第三步中经过特征提取后的图像进行道路塌陷和边坡坍塌图像分类,详细步骤如下:
S411,将经过特征提取后的图像作为待测样本库,作为训练集,将已知的道路塌陷和边坡坍塌图像作为已知样本库,作为验证集;
S412,按照四比一的比例划分训练集和验证集,将训练集循环五次划分。
S413,通过一对一的三个二分类模型进行三分类模型的构建,根据不同类别样本的误分代价分别设定塌陷、坍塌和正常样本的惩罚因子,采用网格搜索算法对SVM权重因子、径向基函数关键参数进行寻优,通过样本集的总体识别正确率,以及每类样本的识别正确率来判别得到最优的参数;
S414,交叉验证训练分类器,用划分好的训练集训练分类模型,用验证集进行分类模型的测试,循环五次,求出每个分类模型及其对应的分类准确率,通过分类器识别的总体准确率,塌陷样本和坍塌样本的识别准确率和召回率,以及Sensitivity,Specificity,G-mean值对分类性能进行评估,
S415,选择最优分类器,选择五次交叉验证过程中分类性能最优的模型作为最终的预测模型,在本实施方式中,通过道路塌陷样本、边坡坍塌样本以及正常样本各自的识别正确率进行综合评估。得到分类性能最优的模型。
S416,将待测样本点代入到经过训练的SVM最优模型的每一个线性分类函数中进行计算,求出该样本点所属的一个类别;
S417,统计待测样本所属类别的标记数最大的类为待测样本所属类别,从而判别出待测样本是正常、塌陷还是坍塌;
S42,塌陷、坍塌区域定位和塌陷面积、坍塌体积的计算。
本发明选择最优分类器,对道路塌陷和边坡坍塌图像分类方法准确快速。
所述步骤S42中塌陷、坍塌区域定位和塌陷面积、坍塌体积的计算的具体步骤如下:
S421,对道路塌陷和边坡坍塌样本感兴趣区域进行K-means聚类;
S422,计算每一类的最大连通区域,去掉其中的较小连通区域;
S423,每个区域分别进行GLCM特征提取;
S424,比较各区域GLCM特征中的熵特征,选取最大熵所属的那一块区域进行标记,即为塌陷和坍塌的区域;
S425,计算图像中塌陷区域的外界矩形的面积,并根据摄像头参数计算出塌陷的面积的实际大小;
S426,将图像中扇形堆积体简化为三菱体进行体积计算,并根据摄像头参数计算出堆积物方量的实际大小。
本发明提供对公路障碍的定位以及路基塌陷面积或边坡坍塌体积的计算,这样当公路发生障碍时,相关负责人不仅能直观的获知道路障碍状况,还能及时的了解障碍的程度以及严重性,从而有针对性的、有效的进行抢救决策。
在步骤S41之前还可以具有如下步骤:
将步骤S3中经过特征提取后的图像进行不平衡数据预处理,步骤如下:
S401,对少数类样本进行过抽样处理获得新的少数类样本集,根据样本不平衡率设置抽样倍率N,计算每个少数类样本在样本集中的K近邻,并根据K近邻中多数类样本的占比将样本划分为安全样本、边界样本和孤立样本,然后分别对其进行过抽样,在本领域中,相比样本数最多的那类样本而言较少的样本集称为少数类样本。本发明中将道路塌陷样本和边坡坍塌样本定义为少数类样本。在本实施方式中,计算少数类样本集中每个样本的K近邻中多数类样本的占比V,K为正整数,若0<=V<0.5,则此样本为安全样本,若0.5<=V<1,则为边界样本,若V=1,则为孤立点样本;
S402,对样本集中的多数类样本进行数据约减,获得新的多数类样本集,在本实施方式中,对样本集中的多数类样本进行数据约减的方法为:计算总样本集中每个样本的3近邻中多数类样本的比例V1,对每个多数类样本,如果其V1<=1/3,则从原样本集中删除该样本;对每个少数类样本,如果其V1>=2/3,则从原样本集中删除该样本的3近邻中的多数类样本;
S403,将新生成的少数类样本集和多数类样本集归并为新的样本集。
通过对图像进行不平衡数据预处理,防止数据集出现不平衡现象,提高了计算的准确性。
本发明还提供了一种道路路基塌陷和边坡坍塌的自动检测系统,如图3所示,其包括摄像装置、远程服务器、远程数据库、道路图像检测装置和显示终端,所述摄像装置摄像定时获取道路图像信息并通过无线传输将道路图像传至远程服务器,远程服务器收集图片并传入远程数据库,道路图像检测装置定时从远程数据库中读取道路图片并利用本发明的道路路基塌陷和边坡坍塌的自动检测方法对道路进行分析,若有异常,则将异常信息存入远程数据库、通过显示终端显示并报警。
本发明的道路路基塌陷和边坡坍塌的自动检测系统,不同于已有的主要针对具有明显公路特征的道路进行检测,本发明能够应用与野外环境下,路面环境不规范、路面背景复杂的情况,引用范围广,检测准确。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (9)

1.一种道路路基塌陷和边坡坍塌的自动检测方法,其特征在于,包括如下步骤:
S1,读取道路图像;
S2,对所述道路图像进行分割,分割出路面图像、边坡图像以及路基图像;
S3,进行特征提取,选取基于GLCM的特征,基于Tamura的特征,statxture特征,分形特征,灰度图像的主轴方向特征和图像的空间特征这六种特征作为所述路面图像、边坡图像以及路基图像的特征;
所述基于Tamura的特征提取方法为:
a.粗糙度,
粗糙度反映了纹理的粒度,对具备不同结构的纹理模式来说,基元尺寸越大或重复次数越少,则越粗糙,其计算方法如下:首先计算图像中2k×2k个像素活动窗口中像素的亮度均值,如下式所示,其中(x,y)为选定区域在图像中的位置,g(i,j)表示选定区域中的第(i,j)点的像素亮度值,像素的范围通过k确定,
对每个像素点在水平和垂直方向上互不重叠的活动窗口间的平均强度差进行计算,具体公式为:
Ek,h=|Ak(x+2k-1,y)-Ak(x-2k-1,y)|
Ek,v=|Ak(x,y+2k-1)-Ak(x,y-2k-1)|,
其中对于每个像素,能使E值达到最大的k值用来设置最佳尺寸Sbest(x,y),最后,粗糙度可以通过计算整幅图像中Sbest的平均值来得到,
取水平和垂直方向上的最大均差值为当前像素的邻域均值插值,即
Ek=Emax=max(E1,E2,...,Eh)
对每个像素,从多邻域尺寸中设置最佳尺寸,为
Sbest(x,y)=2k+1
计算整幅图像Sbest的平均值为纹理粗糙程度Fcrs,m和n表示宽度和高度:
b.对比度,
α4=μ44
其中,σ为图像灰度的标准方差,α4为图像灰度值的峰态;μ4为四阶矩均值,σ2为图像灰度值的方差;
c.方向度,
其中,HD是θ角对应每个区域内相应的|ΔG|大于给定阈值的像素数目,np为所构造的直方图,φp是该直方图中峰值的位置,其中p表示某个峰值,wp表示谷之间该峰值的范围,
其中:
|ΔG|=(|ΔH|+|ΔV|)/2
|ΔH|和|ΔV|分别是通过图像卷积第一操作符和第二操作符所得的水平和垂直方向上的变化量,所述第一操作符和第二操作符的大小均为3×3,所述第一操作符的第一列、第二列、第三列的数据依次为“-1,-1,-1”,“0,0,0”,“1,1,1”,所述第二操作符的第一行、第二行、第三行的数据依次为“1,1,1”,“0,0,0”,“-1,-1,-1”;
S4,将步骤S3中经过特征提取后的图像进行不平衡数据预处理,步骤如下:计算少数类样本集中每个样本的K近邻中多数类样本的占比V,K为正整数,若0<=V<0.5,则此样本为安全样本,若0.5<=V<1,则为边界样本,若V=1,则为孤立点样本;计算总样本集中每个样本的3近邻中多数类样本的比例V1,对每个多数类样本,如果其V1<=1/3,则从原样本集中删除该样本;对每个少数类样本,如果其V1>=2/3,则从原样本集中删除该样本的3近邻中的多数类样本;将新生成的少数类样本集和多数类样本集归并为新的样本集;对图像进行识别分类,将有问题的区域定位出来并计算出包括塌陷面积和坍塌体堆积物方量的参数指标。
2.如权利要求1所述的道路路基塌陷和边坡坍塌的自动检测方法,其特征在于,在所述步骤S2中,对所述道路图像进行分割的步骤为:
S21,图像分割,分割出道路路面、路基和边坡区域,具体步骤为:
S211,去除图像中的绿色区域,对于绿色的植物,根据绿色的特征,即绿色的G分量大于其R值分量或者是B分量,处理公式如下:
其中,Io(i,j)为原道路图像;R、G、B依次为像素点的红,绿、蓝色度分量;Ig(i,j)为去除绿色区域之后的图像;
S212,将所述Ig(i,j)图像从RGB空间转换到HSI空间:
其中H为HIS的Hue值;I为HIS的Intensity值;S为HIS的Saturation值;
S213,将图片转换到HSI空间之后,利用道路路基和边坡区域S值的统计特征进行道路路基和边坡区域的分割,具体是当S值不大于阈值时,为道路路基和边坡区域,像素点像素值保持原来的像素值;当S值大于阈值时,不为道路路基和边坡区域,像素点像素值为黑色;
S22,进行K-means聚类,将步骤S21产生的图像的黑色部分设置为大于255的值,用K-means将图像聚类为四类,并求每一类的最大连通区域,将其它连通区域去掉;检验每一类的特征,如果此类的像素均值大于255或者此类的面积小于原始图像面积的1/25则将其标签设置为0,否则保持原有的聚类标签;
S23,去掉天空区域,找到步骤S23处理后标签不为0的类,如果其在步骤S22获得的图像所对应的二值图像中的值为1且从图像的第一行开始第一行为1的像素数量大于列宽的λ倍,所述λ为大于0且小于1的正数,则将此区域的标签设置为0,否则保持原有的标签不变;在输出中如果标签不为0则为道路路面、路基和边坡区域。
3.如权利要求1所述的道路路基塌陷和边坡坍塌的自动检测方法,其特征在于,在所述步骤S3中,特征提取的步骤为:
S31,将步骤S2处理后的彩色道路图像灰度化,将彩色图像转化为灰度图像,使得R=G=B,并采用加权平均法,对三个颜色分量赋予不同的权值进行加权平均,
Gray=(WRR+WGG+WBB)/(WR+WG+WB)
f(i,j)=0.299R(i,j)+0.587G(i,j)+0.144B(i,j)
其中,Gray为灰度图像,WR、WG和WB依次为红绿蓝颜色分量的权值,f(i,j)为红绿蓝颜色分量的权值依次为0.299、0.587、0.144时的灰度值;
S32,对步骤S31处理后的道路图像进行特征提取,选取基于GLCM的特征,基于Tamura的特征,statxture特征,分形特征,灰度图像的主轴方向特征和图像的空间特征这六种特征中作为所述道路图像的特征。
4.如权利要求1所述的道路路基塌陷和边坡坍塌的自动检测方法,其特征在于,所述基于GLCM灰度共生矩阵的特征提取方法为:对灰度共生矩阵作正规化处理,p(i,j,d,θ)=p(i,j,d,θ)/R,
其中,i,j为像素点的坐标,d为像素间距,θ为方向,R是正规化常数,是灰度共生矩阵中全部元素之和,灰度共生矩阵的大小N2,获得灰度共生矩阵的如下参数作为道路图像的特征:
a.对比度其中|i-j|=n,其中Ng为矩阵的大小,Ng=N2
b.相关
其中:
c.熵
d.逆差距
5.如权利要求1所述的道路路基塌陷和边坡坍塌的自动检测方法,其特征在于,所述灰度图像的主轴方向特征提取方法为:
惯性主轴方向θ定义为惯性矩I(θ)为最小的方向,首先对目标质心、中心距和惯性矩进行定义,
目标的质心定义为目标像素坐标的均值,为:
其中R为图象中目标区域,N为目标像素总数,f(x,y)为(x,y)点的像素值,
中心矩mi,j定义如式,其中i,j分别为x轴和y轴方向的阶数,为:
目标的惯性矩定义如下式所示:
对上式的I(θ)求导数,令倒数为0得到两个解,
为区分最大和最小值,对I(θ)求二阶导,得
I″=[2(m2,0-m0,2)cos2θ+4m1,1sin2θ]·f(x,y)
I″(θi)>0
将θ1和θ2分别代入上中,i=1,2时,θi为所求惯性主轴方向。
6.如权利要求1所述的道路路基塌陷和边坡坍塌的自动检测方法,其特征在于,所述步骤S4具体包括如下步骤:
S41,将步骤S3中经过特征提取后的图像进行道路塌陷和边坡坍塌图像分类,详细步骤如下:
S411,将经过特征提取后的图像作为待测样本库,作为训练集,将已知的道路塌陷和边坡坍塌图像作为已知样本库,作为验证集;
S412,按照四比一的比例划分训练集和验证集,将训练集循环五次划分;
S413,通过一对一的三个二分类模型进行三分类模型的构建,根据不同类别样本的误分代价分别设定塌陷、坍塌和正常样本的惩罚因子,采用网格搜索算法对SVM权重因子、径向基函数关键参数进行寻优,通过样本集的总体识别正确率,以及每类样本的识别正确率来判别得到最优的参数;
S414,交叉验证训练分类器,用划分好的训练集训练分类模型,用验证集进行分类模型的测试,循环五次,求出每个分类模型及其对应的分类准确率,通过分类器识别的总体准确率,塌陷样本和坍塌样本的识别准确率和召回率,以及Sensitivity,Specificity,G-mean值对分类性能进行评估,
S415,选择最优分类器,选择五次交叉验证过程中分类性能最优的模型作为最终的预测模型;
S416,将待测样本点代入到经过训练的SVM最优模型的每一个线性分类函数中进行计算,求出该样本点所属的一个类别;
S417,统计待测样本所属类别的标记数最大的类为待测样本所属类别,从而判别出待测样本是正常、塌陷还是坍塌;
S42,塌陷、坍塌区域定位和塌陷面积、坍塌体积的计算。
7.如权利要求6所述的道路路基塌陷和边坡坍塌的自动检测方法,其特征在于,所述步骤S42中塌陷、坍塌区域定位和塌陷面积、坍塌体积的计算的具体步骤如下:
S421,对道路塌陷和边坡坍塌样本感兴趣区域进行K-means聚类;
S422,计算每一类的最大连通区域,去掉其中的较小连通区域;
S423,每个区域分别进行GLCM特征提取;
S424,比较各区域GLCM特征中的熵特征,选取最大熵所属的那一块区域进行标记,即为塌陷和坍塌的区域;
S425,计算图像中塌陷区域的外界矩形的面积,并根据摄像头参数计算出塌陷的面积的实际大小;
S426,将图像中扇形堆积体简化为三菱体进行体积计算,并根据摄像头参数计算出堆积物方量的实际大小。
8.如权利要求6所述的道路路基塌陷和边坡坍塌的自动检测方法,其特征在于,所述步骤S41之前还具有如下步骤:
将步骤S3中经过特征提取后的图像进行不平衡数据预处理,步骤如下:
S401,对少数类样本进行过抽样处理获得新的少数类样本集,根据样本不平衡率设置抽样倍率N,计算每个少数类样本在样本集中的K近邻,并根据K近邻中多数类样本的占比将样本划分为安全样本、边界样本和孤立样本,然后分别对其进行过抽样;
S402,对样本集中的多数类样本进行数据约减,获得新的多数类样本集;
S403,将新生成的少数类样本集和多数类样本集归并为新的样本集。
9.一种道路路基塌陷和边坡坍塌的自动检测系统,其特征在于:包括摄像装置、远程服务器、远程数据库、道路图像检测装置和显示终端,所述摄像装置摄像定时获取道路图像信息并通过无线传输将道路图像传至远程服务器,远程服务器收集图片并传入远程数据库,道路图像检测装置定时从远程数据库中读取道路图片并利用权利要求1所述的道路路基塌陷和边坡坍塌的自动检测方法对道路进行分析,若有异常,则将异常信息存入远程数据库、通过显示终端显示并报警。
CN201410376693.4A 2014-08-01 2014-08-01 一种道路路基塌陷和边坡坍塌的自动检测方法及系统 Active CN104134080B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410376693.4A CN104134080B (zh) 2014-08-01 2014-08-01 一种道路路基塌陷和边坡坍塌的自动检测方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410376693.4A CN104134080B (zh) 2014-08-01 2014-08-01 一种道路路基塌陷和边坡坍塌的自动检测方法及系统

Publications (2)

Publication Number Publication Date
CN104134080A CN104134080A (zh) 2014-11-05
CN104134080B true CN104134080B (zh) 2018-09-11

Family

ID=51806754

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410376693.4A Active CN104134080B (zh) 2014-08-01 2014-08-01 一种道路路基塌陷和边坡坍塌的自动检测方法及系统

Country Status (1)

Country Link
CN (1) CN104134080B (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105389806B (zh) * 2015-10-26 2018-05-08 北京邮电大学 一种坍塌检测方法及装置
CN105956542B (zh) * 2016-04-28 2019-12-10 武汉大学 一种结构线束统计匹配的高分遥感影像道路提取方法
CN106157623B (zh) * 2016-07-27 2018-10-19 长安大学 一种高速公路路况实时监测装置及方法
CN106340023B (zh) * 2016-08-22 2019-03-05 腾讯科技(深圳)有限公司 图像分割的方法和装置
CN106803106B (zh) * 2017-02-27 2020-04-21 民政部国家减灾中心 Sar图像自动分类系统及方法
CN107105211A (zh) * 2017-03-22 2017-08-29 建荣半导体(深圳)有限公司 一种白平衡修正方法、装置及电子设备
CN108288063A (zh) * 2018-01-09 2018-07-17 交通运输部公路科学研究所 路面的气象状态确定方法、装置及系统
CN108549862A (zh) * 2018-04-11 2018-09-18 北京航空航天大学 异常场景检测方法及装置
CN109558881B (zh) * 2018-11-22 2023-05-23 重庆广睿达科技有限公司 一种基于计算机视觉的危岩崩塌监控方法
CN111368592B (zh) * 2018-12-25 2023-02-03 億增营造有限公司 智能型道路缺失辨识方法及其系统
CN112085044B (zh) * 2019-06-14 2023-11-24 中南大学 一种基于自动化监测数据的边坡动态分类方法
CN111145105B (zh) * 2019-12-04 2020-09-01 广东省新一代通信与网络创新研究院 一种图像快速去雾方法、装置、终端及存储介质
CN111370126B (zh) * 2020-03-17 2023-04-25 杭州妞诺科技有限公司 基于惩罚集成模型的icu死亡率预测方法及系统
CN111598001B (zh) * 2020-05-18 2023-04-28 哈尔滨理工大学 一种基于图像处理的苹果树病虫害的识别方法
CN111797687A (zh) * 2020-06-02 2020-10-20 上海市城市建设设计研究总院(集团)有限公司 基于无人机航摄的道路损坏状况提取方法
CN111862143B (zh) * 2020-07-13 2024-03-19 郑州信大先进技术研究院 一种河堤坍塌自动监测方法
CN111986176B (zh) * 2020-08-20 2021-06-15 国网湖南省电力有限公司 一种裂纹图像识别方法、系统、终端及可读存储介质
CN112488221B (zh) * 2020-12-07 2022-06-14 电子科技大学 一种基于动态刷新正样本图像库的道路路面异常检测方法
CN112966885B (zh) * 2021-05-12 2021-07-13 西南交通大学 坡面破坏模式概率预测方法、装置、设备及可读存储介质
CN114781498B (zh) * 2022-04-06 2023-09-01 欧亚高科数字技术有限公司 基于人工智能的道路塌陷监测方法及系统
CN115760779B (zh) * 2022-11-17 2023-12-05 苏州中恒通路桥股份有限公司 一种道路施工监管系统
CN116630899B (zh) * 2023-07-21 2023-10-20 四川公路工程咨询监理有限公司 一种高速公路边坡病害监测预警系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8913831B2 (en) * 2008-07-31 2014-12-16 Hewlett-Packard Development Company, L.P. Perceptual segmentation of images
CN102509291B (zh) * 2011-10-31 2013-09-18 东南大学 基于无线网络视频传感器的公路路面病害检测及识别方法
CN103048329B (zh) * 2012-12-11 2015-07-29 北京恒达锦程图像技术有限公司 一种基于主动轮廓模型的路面裂缝检测方法
CN103778681B (zh) * 2014-01-24 2016-03-30 青岛秀山移动测量有限公司 一种车载高速公路巡检系统及数据获取和处理方法

Also Published As

Publication number Publication date
CN104134080A (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
CN104134080B (zh) 一种道路路基塌陷和边坡坍塌的自动检测方法及系统
Hoang Automatic detection of asphalt pavement raveling using image texture based feature extraction and stochastic gradient descent logistic regression
Kaseko et al. A neural network-based methodology for pavement crack detection and classification
US8340372B2 (en) Image analysis
Taskin Kaya et al. Damage assessment of 2010 Haiti earthquake with post-earthquake satellite image by support vector selection and adaptation
CN101799921B (zh) 一种光学遥感图像云检测方法
CN108537215A (zh) 一种基于图像目标检测的火焰检测方法
Chen et al. Bottom-up image detection of water channel slope damages based on superpixel segmentation and support vector machine
CN105825169B (zh) 一种基于道路影像的路面裂缝识别方法
Pan et al. Object-based and supervised detection of potholes and cracks from the pavement images acquired by UAV
CN107240079A (zh) 一种基于图像处理的路面裂缝检测方法
CN102855622A (zh) 一种基于显著性分析的红外遥感图像海面船只检测方法
CN109284786A (zh) 基于分布和结构匹配生成对抗网络的sar图像地物分类方法
CN104021396A (zh) 基于集成学习的高光谱遥感数据分类方法
CN108681693A (zh) 基于可信区域的车牌识别方法
CN108564577A (zh) 基于卷积神经网络的太阳能电池片断栅缺陷检测方法
CN102542293A (zh) 一种针对高分辨率sar图像场景解译的一类提取分类方法
CN106295498A (zh) 光学遥感图像目标区域检测装置与方法
CN109740504A (zh) 一种基于遥感影像提取海域资源的方法
CN113240735B (zh) 一种边坡位移活动性监测方法
Zahs et al. Classification of structural building damage grades from multi-temporal photogrammetric point clouds using a machine learning model trained on virtual laser scanning data
CN114494845A (zh) 一种用于施工项目现场人工智能隐患排查系统及其排查方法
CN106022217A (zh) 无监督多级分类的民用机场跑道区域检测方法
Tsai et al. Automatic detection of deficient video log images using a histogram equity index and an adaptive Gaussian mixture model
CN107748866B (zh) 违法停车自动识别方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant