发明内容
本发明的目的在于提供一种异构网络中基于Starckelberg博弈的功率分配方法,该方法易于分布式实施且大大简化了计算复杂度,且在进行功率分配的同时实现了跨层干扰的协调。
为达到上述目的,本发明采用了以下技术方案包括如下步骤:
1)建立两层异构网络,包含K个子载波,一个中心的macro小区和N个pico小区,且每个pico都和macro共享全部的频谱;
2)利用Starkelberg博弈分别建立两层异构网络的macro层的最优化博弈模型和两层异构网络的pico层的最优化博弈模型;且pico层作为领导者,并设定pico层对macro层的干扰价格,pico层向macro层索价,macro层作为跟随者;
pico层的最优化博弈模型表示为:
其中,是pico n在子载波k上的数据速率;在子载波k上pico n到用户的信道增益;No是噪声功率谱密度;W是两层异构网络的带宽;是在子载波k上,pico n接收到的来自macro的干扰功率;α是电力价格;β表示在pico n中数据速率与干扰收益之间的权衡因子;表示在pico n中数据速率与功耗之间的权衡因子;表示pico n在子载波k上的发射功率的向量;表示pico n在子载波k上的发射功率;是在子载波k上,macro到pico n之间的干扰信道增益;yk表示子载波k上的干扰价格;Pk表示macro在子载波k上的发射功率,是pico n的最大发射功率;y表示干扰价格的向量;
macro层的最优化博弈模型表示为:
其中,hk是在子载波k上macro到用户的信道增益,μk表示在macro中数据速率与功耗之间的权衡因子;νk表示在macro中 数据速率与干扰收益之间的权衡因子;Ith是pico n能够忍受的最大干扰功率门限;Pmax是macro的最大发射功率;
3)采用拉格朗日乘子法对macro层的最优化博弈模型求解得到macro层的最优功率分配根据macro层的节能功率分配结果,采用拉格朗日乘子法对pico层的最优化博弈模型求解得到pico层的最优功率分配
所述的步骤3)中采用拉格朗日乘子法对macro层的最优化博弈模型求解完成macro层的节能功率分配的过程中,拉格朗日函数L(Pk,ε,λ)为:
其中,εk为对应Pk≥0的拉格朗日乘子,λ为对应的拉格朗日乘子,为对应的拉格朗日乘子;
KKT条件为:
其中,为Pk≥0时的最优拉格朗日乘子,λ*为时的最优拉格朗日乘子,为时的最优拉格朗日乘子。
所述的步骤3)中macro层的最优功率分配如下:
其中,λ*为时的最优拉格朗日乘子;为时的最优拉格朗日乘子;[x]+=max(0,x)。
所述的步骤3)采用拉格朗日乘子法对pico层的最优化博弈模型求解完成pico层的节能功率分配的过程中,拉格朗日函数为:
其中,ρ为对应的拉格朗日乘子;δk为对应的拉格朗日乘子;其KKT条件如下:
所述的步骤3)中的pico n的最优功率为:
与现有技术相比,本发明的有益效果在于:
本发明将Starckelberg博弈的思想引入到两层异构网络的节能中,根据Starckelberg博弈将两层异构网络的最优化问题转化为macro层的最优化博弈 模型和pico层的最优化博弈模型去处理,这样大大简化了计算复杂度且易于分布式实施,同时,由于构建的macro层的最优化博弈模型和pico层的最优化博弈模型中pico层作为领导者,macro层作为跟随者,而在求解时,先求解macro层,再求解pico层,因此,本发明模型在求解过程中采用了逆推法,且每一阶段的求解采用了拉格朗日乘子法,并讨论的算法的复杂度。
另外,本发明在进行功率分配的过程中考虑到了异构网络中的跨层干扰,并对跨层干扰进行有效抑制,因此,本发明的功率分配过程也是跨层干扰的协调过程。
具体实施方式
下面结合附图对本发明做进一步详细说明。
(一)本发明异构网络中基于Starckelberg博弈的功率分配和干扰协调方法包括以下步骤:
1)如图1所示,建立两层异构网络,且将两层异构网络的频谱划分为K个子载波,一个中心的macro小区和N个pico小区,每个pico依据一定的距离限制分布在macro的周围,并且每个pico都和macro共享全部的频谱以 使频谱效率最大;
2)“bit/焦耳”或“吞吐量/焦耳”作为经典的衡量系统能量效率(Energy efficiency,EE)的指标,在节能无线通信系统的研究中受到了越来越多的关注,但这个指标不能体现异构网络中跨层干扰的影响,以及网络自身能量的消耗。本发明用利用博弈理论中效用的概念设计了衡量异构网络能效(Energy efficiency,EE)的指标,并用来度量两层异构网络中的能量效率η,这样更为科学;
直接求两层解异构网络能效的全局最优解较为困难,并且计算复杂度高,在实际网络中实施也会较为困难。因此设计一种行之有效的解决办法是十分必要的,而能量效率在效用域的定义,很好的和经济学中的博弈理论吻合起来。
本发明从效用域的角度引入博弈理论,鉴于异构网络的多层性,自然地想到Starkerberg博弈,利用Starkelberg博弈分别建立两层异构网络的macro层的最优化博弈模型和两层异构网络的pico层的最优化博弈模型;以达到整个网络能效最优。
pico层作为领导者(leaders),设定pico层对macro层的干扰价格,pico层向macro索价,以保护自己内部的用户(PU)免受多大的跨层干扰。由于pico的发射功率远小于macro的发射功率,假设pico的分布是稀疏的,可以忽略pico之间的同层干扰。而macro作为跟随者(follower),会根据pico层设定的价格进行节能的功率分配;反过来,macro进行节能功率分配也会影响pico对干扰价格的设定。
2.1)pico层的最优化博弈模型是采用如下方法得到的:
对于pico小区的两层异构网络,由式1)得到的pico层效用函数 如式1)所示:
这里,是pico n在子载波k上的数据速率(或吞吐量);为在子载波k上pico n到用户的信道增益;α是电力价格,用以衡量pico小区的两层异构网络自身的功耗;是在子载波k上,macro到pico n之间的干扰信道增益。就是在子载波k上,pico n接收到的来自macro的干扰功率。Pk表示macro在子载波k上的发射功率,表示pico n在子载波k上的发射功率;No是噪声功率谱密度。W是系统带宽;β表示在pico n中数据速率与干扰收益之间的权衡因子,表示在pico n中数据速率与功耗之间的权衡因子。y表示干扰价格的向量;表示pico n在子载波k上的发射功率的向量;yk表示子载波k上的干扰价格;
考虑功率受限的pico网络,由式2)得到pico层的最优化博弈模型,其表示为式2):
其中,是pico的最大发射功率。
2.1)macro层的最优化博弈模型是采用如下方法得到的:
对于macro小区的两层异构网络,由式1)得到的macro层的效用函数Um(Pk),Um(Pk)如式3)所示:
其中,hk在子载波k上macro到用户的信道增益;μk表示在macro中数据速率与功耗之间的权衡因子;νk表示在macro中数据速率与干扰收益之间的权衡因子;
考虑干扰受限和功率受限的macro异构网络,由式4)得到macro层的最优化博弈模型,如式4)所示:
其中,Ith是pico n是能够忍受的最大干扰功率门限,且 Pmax是macro的最大发射功率.不失一般性,假设N个pico的Ith和是一样的。由于干扰功率限制之前被用于认知无线电(cognitive radio,CR)系统中,而普通的用户设备(user equipment,UE)并不具备环境感知能力和功率自适应能力,因此本发明在macro层进行干扰功率限制,以保证pico的正常通信,从而macro层网络是一个干扰受限的网络。
3)考虑到Starkelberg博弈模型中的两个阶段之间的耦合,即macro层的最优化博弈模型和pico层的最优化博弈模型由于跨层干扰的存在而耦合在 一起,且彼此每一层的策略决定都会影响另外一层的策略;因此,对macro层的最优化博弈模型和pico层的最优化博弈模型的求解采用逆推法(backward induction method);也就是先采用拉格朗日乘子法对macro层的最优化博弈模型求解得到macro层的最优功率分配根据macro层的节能功率分配结果,采用拉格朗日乘子法对pico层的最优化博弈模型求解得到pico层的最优功率分配
具体的,macro层的最优化博弈模型和pico层的最优化博弈模型求解过程中,均采用拉格朗日乘子法,通过对KKT条件的讨论,确定最优解的存在;
首先,对macro层的最优化博弈模型进行求解,其具体过程为:
在macro层由于macro的效用函数Um(Pk)是关于Pk的凹函数,因此可以通过凸优化理论进行求解;分别对非负的功率分配限制,总发射功率限制,干扰功率限制引入非负的对偶变量,即拉格朗日乘子,且该拉格朗日乘子分别为:Pk≥0时的拉格朗日乘子εk,k=1,2,…K;时的拉格朗日乘子λ; 时的拉格朗日乘子n=1,2,…N;从而可以写出对macro层的最优化博弈模型进行求解时的拉格朗日函数,如式5)所示:
KKT条件如式6)-10)所示:
其中,为Pk≥0时的最优拉格朗日乘子,λ*为时的最优拉格朗日乘子,为时的最优拉格朗日乘子。
由式7)可以得到macro层的最优的功率分配如式11)所示:
其中,[x]+=max(0,x)。
其次,对pico层的最优化博弈模型求解的具体过程中的拉格朗日函数如式12)所示:
其中,ρ为时的拉格朗日乘子;δk为时的拉格朗日乘子;
其KKT条件如式13)-16)所示:
从式13)可以求解出pico n的最优的功率分配如式17)所示:
(二)下面对对拉格朗日乘子法的求解做了算法性能分析,具体如下:
通过式11)可以看出,本发明的功率分配方法虽然传统的功率分配类似,但本发明的功率分配使多水平面的。其功率水平面由1/Yk决定,而1/Yk是由和λ*确定的。
为求算法的时间复杂度,本发明考虑最坏的情况,也就是和λ*均大于0,那么二者分别由式(n=1,2,…N)和式确定,也就是本发明需要求解这N+1个方程。对于多载波的功率分配系统,前人研究表明,可以通过以子载波个数K为阶的线性复杂度获得。从而本发明的时间复杂度为O(KN)。该复杂度在实际系统中是能接受的。
(三)分析干扰价格对macro效用的影响,确定了满足macro效用最优的yk的存在性,具体过程如下:
将拉格朗日函数分为式18)和式19)两个与yk有关的函数。分别讨论其关于yk的凸凹性与否。
显然是关于yk的凹函数。下面通过以下三个式子讨论Lm(yk)关于yk的凹凸性与否。
Lm(yk)关于yk的一阶导数为:
Lm(yk)关于yk的二阶导数为:
由于当yk→0时,
从而,和Lm(yk)是关于yk除断点外的凹函数。因此根据搜索算法和迭代算法可以求解出最优的yk。
(四)本发明还对所建立的模型求解并进行方案仿真验证。
1、仿真实验参数设置:
仿真场景设置为1个macro小区和2个pico小区,子载波个数为2。参数设置如下:vk=1,μk=1,β=10,No=0.5,
对信道增益的设定如下:
hk=[0.4;0.4];
2、注意到为了便于观察各参数对性能的影响,对信道增益的取值做了处理。功率取值为:Ith=2W,Pmax=30W.
图2a-c是对不同干扰价格下的macro和pico进行功率分配。由图2可以看出:随着pico设定的干扰价格的增加,macro分配的功率逐渐降低,并且当干扰价格超过一个阈值的时候,功率分配为0,也就是此时macro不进行通信。这个前面的讨论相吻合。另外,对于pico而言,在相同的干扰价格下,较低的干扰功率带来较高的功率分配。
图3a-c是对不同干扰价格下的macro和pico效用进行了仿真的结果。由图3可以看出:曲线显示了有两个不可微的断点,和前面的讨论吻合。可以看出曲线刚开始都是凹的,随着干扰价格的增加,超过一个阈值后,曲线会趋于一条直线,这是因为超过这个阈值,功率分配为0而导致的。
图4是讨论了电力价格对macro功率分配的影响的结果。由图4可以看出:随着电力价格的增加,macro会降低其功率分配。
Starckelberg博弈可以将异构网络中的节能问题按照macro和pico划分为两个阶段,pico作为领导者(多个pico就是多领导者场景)先进行干扰价格设定和节能资源分配,而macro做为跟随者(单macro就是单跟随者场景,也可以拓展为多跟随者场景)会根据pico的策略进行自己的功率分配。
考虑到macro的发射功率远大于pico的发射的功率,倘若假设pico的部署是稀疏的,那么网络中就只有跨层干扰的存在,而没有同层干扰的影响。对macro产生的跨层干扰进行干扰功率约束,从而macro层的节能是在一个干扰受限和功率受限的场景中。