CN104103055B - 自动获取最优输出数据 - Google Patents

自动获取最优输出数据 Download PDF

Info

Publication number
CN104103055B
CN104103055B CN201410145349.4A CN201410145349A CN104103055B CN 104103055 B CN104103055 B CN 104103055B CN 201410145349 A CN201410145349 A CN 201410145349A CN 104103055 B CN104103055 B CN 104103055B
Authority
CN
China
Prior art keywords
target image
image point
point
energy
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410145349.4A
Other languages
English (en)
Other versions
CN104103055A (zh
Inventor
B.施密特
M.塞德尔梅尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Healthineers AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN104103055A publication Critical patent/CN104103055A/zh
Application granted granted Critical
Publication of CN104103055B publication Critical patent/CN104103055B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/405Source units specially adapted to modify characteristics of the beam during the data acquisition process

Abstract

本发明涉及一种用于从计算机断层造影拍摄中自动获取检查对象内部的最优输出数据的方法和图像数据获取系统。本方法包括如下步骤:接收基于第一能量的X射线辐射采集的检查对象的第一测量数据和基于不同于第一能量的第二能量的X射线辐射采集的检查对象的第二测量数据;基于在分别的目标图像点处的第一和第二测量数据分别取决于目标图像点的局部最优参数值调节目标图像点的最优输出,分别局部地从位于目标图像点区域内的第一和第二测量数据中,在推导代表了目标图像点的最优输出的图像点重现参数值下确定所述局部最优参数值;和基于目标图像点的最优输出确定输出数据。

Description

自动获取最优输出数据
技术领域
本发明涉及一种用于从从计算机断层造影拍摄中自动获取检查对象的内部的最优输出数据的方法。此外还涉及一种用于从计算机断层造影拍摄中自动获取检查对象的内部的最优输出数据的图像数据获取系统。
背景技术
在计算机断层造影中,为了改善在待成像的身体内的物质区分而多次使用所谓的多光谱方法(亦被标识为多能量方法)或双光谱方法(双能量方法)。在此通过身体的(近似)同样位置以(近似)同样方向同时或连续地进行不同能量的X射线辐射,在多光谱方法的情况下一般是多个不同的X射线辐射(光谱),在双光谱方法(多光谱方法的一个分类)的情况下是刚好两个。
在多光谱方法的情况下至少生成两个不同的X射线投影,其由不同的典型能量产生。由此可以将身体的吸收特性,特别是有机组织或在其内存储的结构的吸收特性在成像时同时考虑:也就是该吸收特性是主要取决于X射线辐射的能量。通常来说基于源自带有更低的典型能量的X射线辐射的X射线投影数据重建低能量图像,而基于源自带有更高的典型能量的X射线辐射的X射线投影数据重建高能量图像。这两个图像然后可以彼此之间组合,以便从中例如生成患者的软组织图像或骨骼图像。借助多光谱方法以此方式可以实现待成像的身体区域内部的不同物质的更好的区别,例如为检查区域以内的骨骼组织和造影剂之间的区分。
从每次利用分别一个能量的获取中生成或计算出一个单独的所谓单能量图像堆栈,其既可以单独的(如上所述)又可以在(与分别的其它图像堆栈)组合的图像堆栈中为了最优输出被准备。在后一种情况下重要的是,如此选择组合的图像堆栈的输出参数,使得能够为用户提供观察时的最优的认知获取。在此意义上的输出优化考虑例如所谓的对比度噪声比(contrast-noise-ratio-CNR),其中在输出的组合图像堆栈中达到相对于尽可能小的噪声的尽可能大的对比度。
为了将多个单能量图像堆栈组合成一个组合图像堆栈,当前存在两种不同原理的组合方法,也就是所谓的最优对比度方法和另外一种方法,在其中生成单能量图像堆栈。
最优对比度方法例如在Holmes,David等的文章:“Evaluation of non-linearblending in dual-energy computed tomography”.Eur J Radiol.2008十二月,68(3),第409至413页被描述,其内容被视为在这里提供的描述的一部分。在这里借助非线性算法从两个双能量图像堆栈的低能量和高能量部分中算出最优比例,并且将两个图像堆栈彼此融合(geblendet),也即是说混合。在此涉及到所谓的S形融合,也即是说两个图像的分别确定的最优部分在混合图像堆栈上非线性地,也就是S形地出现(ausfallen)。
单能量图像堆栈的生成例如在Silva,Alvin等的文章:“Dual-Energy(Spectral)CT:Applications in Abdominal Imaging”.Radio Graphics2011,31,第1031至1046页被描述,其内容同样被视为当前公开文件的一部分。在这里假设两个(或多个)提供的通过测量产生的图像堆栈生成另外的、虚拟的基于所假定的(第三)能量的图像堆栈,所述能量通常不同于在图像获取时的多个能量。在这里再次如此选择所假定的第三能量,使得获得上面提到的意义上的输出优化。
借助这里介绍的方法可以通过完整组合的图像堆栈获得输出优化,也即是说始终为此设计,即取决于特定的输出兴趣而优化整个组合图像堆栈的输出。由此不可避免地特定的图像区域(例如是特定的器官或结构)尤其好地被显示,与此同时其余图像区域的可成像性也不可避免地被降低。
发明内容
从这里显示的问题出发,基于本发明要解决的技术问题是,进一步优化在多光谱方法中获得的测量数据的图像输出。这些涉及到尤其是优选在检查对象的身体内部的不同结构的可识别性的优化。
开始提及类型的方法因此根据本发明包括以下步骤:
a)接收基于第一能量的X射线辐射采集的检查对象的第一测量数据和基于不同于第一能量的第二能量的X射线辐射采集的检查对象的第二测量数据,
b)基于在分别的目标图像点处的第一和第二测量数据,分别取决于目标图像点的局部最优参数值,在推导代表了目标图像点的最优输出的图像点重现参数值的条件下,来调节目标图像点的最优输出,所述局部最优参数值分别局部地从位于目标图像点区域内的第一和第二测量数据中被确定,
c)基于目标图像点的最优输出确定输出数据。
第一和第二测量数据的接收可以包括在图像获取的范围内的该测量数据的生成,但是所述生成也可以后置于如此的图像获取,并且由此包括简单的例如源自存储介质的测量数据接收。作为“测量数据”在该描述的范围内既可理解为投影数据,也就是源自计算机断层造影的图像获取的原始数据,也可理解为重建的图像数据。如果原始数据作为测量数据被接收,则将该原始数据在根据本发明的方法的流程中被重建为重建的图像数据。
分别的X射线辐射能量光谱的能量特性在此(以及接下来)作为X射线辐射的能量或典型能量来理解,其常见缩短地等同于术语能量。如果在这里谈到第一和第二能量,则始终以该典型能量的定义为基础。X射线辐射的能量的变化因此意味着X射线光谱往更低或更高能量值的移动,也即是说在特别情况下的平均能量或最高达到的能量值。典型能量大多以X射线源的加速电压的说明的形式被给出,所述电压通常在双能源测量或双能源系统的情况下位于140kV和80kV的值附近。
作为X射线源既可以使用足够公知的X射线管,其在计算机断层造影设备的机架的相对探测器装置的一侧上旋转,也可以使用这样的装置,其中电子束从机架的外部旋转地对准机架内部的焦点。在这样的焦点上然后生成X射线辐射。
在步骤b)中在接收测量数据之后进行目标图像点的最优输出的调节。相对于现有技术的本质区别就刚好位于此处,也就是在于,代替在整个图像堆栈中的一般输出匹配现在对于单个的图像点在其输出中进行匹配。其涉及到局部输出匹配,也就是基于图像点的。在此作为图像点可以理解为检查对象的待成像的身体之内或测量数据之内的单个体素或像素。所述“目标图像点”涉及到检查对象之内的位置。可以对于每个这样的位置假设,源自数个投影的测量值既存在于第一图像数据中又存在于第二图像数据中。基于这样的测量值在测量数据之内自行确定和定义目标图像点。每个目标图像点由此在所生成的输出数据中有一个作为像素或体素的对应物。所有目标图像点的总和形成输出数据中所有像素或体素的总和。
通过以图像点为导向的输出匹配会达到,分别对于图像点(和可能情况下其邻近的周围环境)根据作为基础的优化参数值达到最优。意即可以随之使测量数据的重现在观感中被一定程度的歪曲,但是这一效应很大程度通过输出数据中的结构的更好的识别性的好处而被消除。换句话说用户现在可以更清楚明确地在显著增加的图像区域内自行识别出更小的显著特点。随之显著提高对于用户的好处。
本发明避开了输出参数的“一般”调节而替代地致力于在输出数据的微观领域的调节。据此达到整体输出的显著简化。
在步骤c)中的确定之后可以跟随着输出数据的显示,例如在显示器上或打印输出,然而也有输出数据到其它形态的简单转发和/或带有存档和/或转发目的的存储。
开始提及类型的图像数据获取系统包括根据本发明的至少以下组件或单元:
-输入接口(也可以包括多个,例如两个单独输入接口,例如用于第一和第二测量数据的单独数据接收),用于接收基于第一能量的X射线辐射采集的检查对象的第一测量数据和基于不同于第一能量的第二能量的X射线辐射采集的检查对象的第二测量数据,
-调节和推导单元,其在运行中基于第一和第二测量数据取决于目标图像点的局部最优参数值调节目标图像点的最优输出,所述局部最优参数值分别局部地从位于目标图像点区域内的第一和第二测量数据中被确定,并且其在运行中推导出代表了目标图像点的最优输出的图像点重现参数值,和
-确定单元,其如此构造,使得其基于目标图像点的最优输出确定输出数据。
优选如此构造图像数据获取系统,使得其全自动地,也即是说自行地执行根据本发明的方法。然而其也可以半自动地运行,也即是说通过额外的外部的输入,例如源自其它可能情况下与数据库相联系的逻辑单元,或通过操作者的手动输入,提供必需的额外信息。这一输入可以尤其涉及到身体的说明,所述身体在图像获取中被扫描。例如可以通过患者信息存储系统馈入关于个人的基础信息,所述个人在计算机断层造影中被扫描。
总的来说可以将用于实现图像数据获取系统的组件的大部分以根据本发明的方式,尤其是调节和推导单元,整个或部分地以软件模块的形式在处理器上实现。
所述(提及的和可能情况下也包括其它的)接口并不必须必定作为硬件组件来构造,而是也可以作为软件模块来实现,例如当图像数据可以由已经在同样的设备上被实现的其它组件(如图像重建装置或类似装置)来接收时,或必须在软件内传输到其它组件时。同样接口可以由硬件和软件组件组成,例如标准硬件接口,其通过软件对于具体的使用目的特定地配置。此外也可以将多个接口联合到共同的接口,例如输入输出接口。
本发明由此也包括计算机程序产品,其可以直接在可编程图像数据获取系统的处理器上被加载,带有在所述程序产品在图像数据获取系统上被执行时用于执行根据本发明的方法的所有步骤的程序代码工具。
此外本发明包括带有拍摄单元和根据本发明的图像数据获取系统的计算机断层造影设备。
其它特别具有优势的本发明的构造和扩展方案得自于以下描述。在此图像数据获取系统也可以对应于本方法被扩展。
特别优选的是通过带有大约140kV的加速电压的X射线源的运行生成第一能量和通过带有大约80到100kV之间的加速电压的X射线源的运行来生成第二能量。80和140kV的加速电压是双能量方法中的典型的标准值,从而在可能情况下可以将既有计算机断层造影系统进行简单的重新编程以便执行根据本发明的方法。而且随之存在对于该能量对的最佳经验值。
输出数据的优化可以从不同的视角进行。这些视角在方法中通过被考虑到的最优参数值被代表。在此优选,分别的目标图像点的最优参数值包括至少一个以下参数值:
-目标图像点关于其周围环境的对比度:通过考虑该最优参数值可以达到在分别的图像点处的局部对比度变化。
-在目标图像点和其周围环境处的图像噪声:通过考虑该最优参数值可以达到在分别的图像点处噪声的局部变化。
-该图像点和其周围环境的对比度噪声比(CNR):该最优参数值的考虑意味着,对比度和图像噪声都会被互相尽可能优化地调谐。
-在目标图像点处的输出信号强度:通过考虑该最优参数值可以调节在分别的图像点处的亮度。
在此可以观察到,也可以同时在考虑多个最优参数值的前提下处理。一个示例是CNR,然而例如也可以将输出信号强度与其它所谓的最优参数值中的一个组合地考虑,并且然后分别对于这样的最优参数值的组合或由其形成的最优参数值比例进行优化。优选通过基于同样的最优参数值的整体测量数据进行优化,因为据此进行通用的和逻辑上决定性的优化,所述优化不会对由此推导出的输出数据不必要的歪曲和随之对于用户的观察结果与其弄混淆不如更简化。当对于输出数据不同的子区域用户的不同的认知兴趣发挥作用时,原则上局部(也即是说基于图像点)混合优化,也即是说局部地在考虑了不同最优参数值的前提下是可行的。此种现象例如发生于事故后的全身扫描情况下,在所述事故中检查对象的全身,也即是说事故患者,必须被检查不同的损伤类型,例如既检查断骨又检查器官损伤。
按照根据本发明的方法的第一变形,将目标图像点关于其相邻周边环境的对比度调整到最大值。在这里对比度提高在所有其它最优参数值的调整之前发挥决定性作用。
按照根据本发明的方法的第二(替代)变形,将图像点和其相邻周边环境的对比度噪声比调整到最大值。在这里对比度与图像噪声的最优比例在所有其它最优参数值的调整之前发挥决定性作用。
按照根据本发明的方法的第三(同样是替代)变形,将目标图像点处的输出信号强度调整到最大值。在这里输出信号强度(通常以亨氏单位(Hounsfield Units-HU)重现)在所有其它最优参数值的调整之前发挥决定性作用。
按照根据本发明的方法的第四(同样是替代)变形,将目标图像点和其相邻周边环境的图像噪声调整到最小值。在这里现在图像噪声的降低在所有其它最优参数值的调整之前发挥决定性作用。
所有这四种变形可以如同上面提及的彼此之间调谐和进行取决于用户的加权。
基本上可行的是,最优参数值唯独在分别的目标图像点自行确定。另一方面也可以从图像点出发,在更大面积或更大体积区域对于分别的最优参数值进行检查。优选的是,分别的目标图像点的最优参数值取决于在分别的目标图像点处和其相邻周边环境处的参数值确定被确定。如此的相邻,也即是说接近的周边环境尤其被理解为直至5个图像点的周边环境,优选直至3个图像点,特别优选直至1个图像点。据此达到,尤其在基于最优参数值如同对比度、图像噪声或类似的优化的情况下,取决于周围环境的最优参数值可以产生有意义的结果。
同样地类似适用于分别的目标图像点的图像点重现参数值的调整。这些也可以唯独在分别的目标图像点处自行被调整。另外一方面也可以从目标图像点出发,在更大面积或更大体积区域对于分别的图像点重现参数值进行调整。但是在这里源自上面引述的理由特别优选的是,分别的目标图像点的图像点重现参数值在分别的目标图像点和其临近周围环境处被调整。换句话说:目标图像点的图像点重现参数值也确定其临近的周围环境中的图像点重现参数值。这些不必然意味着,对于目标图像点的周围环境的图像点重现参数值必须被定义为等同于目标图像点自身的图像点重现参数值,而是仅仅取决于在该目标图像点处的图像点重现参数值。由此产生在图像显示中的更柔顺的过渡,在其之中图像点重现参数值没有需要记录的太过突然的跳动,否则所述跳动可能会使输出数据从图像点到图像点地太过变形和因此歪曲。
原则上另外还可能,将步骤b)仅仅应用于在输出数据中选择的单独的目标图像点;这些目标图像点例如作为一种对于其的其它周围环境的代表类型来处理。然后可以将此种代表特别地如此地定位,使得其代表检查对象的不同结构(例如是不同的器官和/或组织和/或骨骼结构等等)。它们也可以如此被定位,使得其按照预先给出的常规或非常规的样本在输出数据中分散地被布置。优选的是,对于多个,和换句话说特别优选所有的,彼此之间直接相邻的检查对象的目标图像点执行步骤b)。这些意味着,检查对象可以逐个像素或逐个体素地按照根据本发明的方法最优地被输出,要么逐个区域要么如优选全部。这样做法借助根据本发明的方法最大程度提高了质量。
另外一个可能性在于,对于检查对象的预先定义的显示区域之内的所有目标图像点执行步骤b)。在这里焦点位于检查对象的成像的一部分,也就是说优选这样的部分,其适用于充当用户(例如是检查的医生)的识别兴趣的部分。尤其定义好的显示区域可以包括一个或多个器官和/或结构如骨骼、组织、血管等,该识别兴趣指向所述区域。
分别的图像点重现参数值的推导可以例如按照以下替代进行。
第一种替代是,分别的图像点,参数值在步骤b)中如下被推导,即将第一和第二测量数据在分别的目标图像点处按照取决于在分别的目标图像点存在的最优参数值而推导出的比例彼此混合。这两个测量数据的混合也可以作为融合被标识,如其开始时已经描述的那样。现在将上面描述的最优对比度方法局部地,涉及到分别的目标图像点和可能情况下其附近(或更远)的周围环境地应用。为此再一次参考上面提及的参考文献和其它用于最优对比度方法的实施。
第二种替代是,在步骤b)中的分别的图像点重现参数值通过基于源自两个测量数据的第三能量的分别的单能量目标图像点的计算,在参照对应数据库的前提下被确定。在这里如同同样在现有技术中描述的那样,将第三能量模拟地确定和使其成为在目标图像点处的局部图像重现的基础。为此求助于(refurriert)相应的对应数据库,在其之中所述对应的重现值(特别是HU-值)在特定的虚拟能量的情况下被给出。
定义局部(在目标图像点处)的虚拟X射线投影数据或重建的图像数据,所述图像数据从第一和第二测量数据中推导得出,代表了带有第三能量的虚拟发射的X射线辐射的来自(近似)相同方向的身体的(近似)相同位置的投影或图像值。虚拟的X射线投影数据可以尤其基于Alvarez和Macovski方法(对此:Alvarez,Robert E./Albert Macovski:Energy-selektiveReconstructions in X-ray ComputerizedTomography.Phy.Med.Biol.1976,Vol.21,No.5,第733至744页和继续见于Alvarez,Robert/Edward Seppi:AComparison of Noise and Dose in Conventional and EnergySelective ComputedTomography.IEEE Transactions on Nuclear Science,Vol.NS-26,No.2,1979年四月,第2853至2856页)来确定,这就是说从第一和第二测量数据中以第一和第二X射线投影数据的形式被推导出来。在此从不同能量的两个X射线辐射的两个X射线投影数据中执行被辐射穿过的结构的物质析像。源自从析像中推导出的物质推导出分别的表面密度,在所述表面密度中现逆用该方法计算出对于实际的每个任意能量的X射线辐射的衰减系数。基于该吸收属性的知识对于(虚拟的)第三能量可以如此虚拟地推导出相应于能量的X射线投影数据。
额外地可以将根据本发明的方法由此扩展,即通过取决于以认知兴趣为导向的关于检查对象和/或关于检查对象目标区域的参数默认值推导分别的图像点重现参数值。除了上面提及的最优参数值以外也可以还考虑附加的(特别是下属的)参数值。如此的参数可以例如从使用输出数据的诊断专家(即输出数据的申请者)的请求得出和/或涉及到特定的、待检查的结构,例如是特定或多个器官、组织、骨骼、或血管等。不同器官的较好的可识别性常常制约了非常不同的重现:如此可以例如将充满空气的肺部相较于近似于充满水的血管以一种显示方式更好地显示出来。
附加的参数值的这样的参数默认值尤其优选从用户得到。在此用户在执行优选的唯独自动的、纯粹基于算法的根据本发明的方法之前,给出输入,然后基于所述输入执行本方法。用户输入也可以通过有针对的提问来进行。尤其本方法因此从步骤b)起被全自动地执行。
附图说明
接下来基于附图的提示结合实施例再一次具体解释本发明。在此在不同附图中的同样组件具有同样的附图标记。其中:
图1表示源自带有根据现有技术的不同能量的计算机断层造影拍摄的八幅输出图像,
图2表示根据本发明方法的实施例的示意性方块图,
图3表示带有取决于拍摄能量的亨氏值的对应的局部测量曲线的计算机断层造影拍摄图像,和
图4表示带有根据本发明的图像数据获取系统的实施例的根据本发明的计算机断层造影设备的实施例的示意性方块图。
具体实施方式
图1示出穿过相同患者P的相同的截面的八幅输出图像A、B、C、D、E、F、G、H,其以不同的能量拍摄,也就是对于输出图像A以40keV,对于输出图像B以80keV,对于输出图像C以100keV,对于输出图像D以120keV,对于输出图像E以140keV,对于输出图像F以160keV,对于输出图像G以180keV和对于输出图像H以190keV。
在输出图像A、B、C、D、E、F、G、H中分别有脊椎1,也就是骨骼,肝脏3,脂肪组织5和肾脏7可识别,当然在不同的拍摄能量下有不同的清晰度。如此例如脊椎1在带有最低拍摄能量级的第一输出图像A中尤其利于被识别。这同样适用于肾脏7。与之相反肝脏3在输出图像A的情况下可以识别相对较强的图像噪声,从而肝脏3可以在最后一幅输出图像H中最不被歪曲地识别。这样的情况类似适用于脂肪组织5。
输出图像A、B、C、D、E、F、G、H既可以分别在带有不同能量的单独拍摄中被记录,或可以从带有不同能量的至少两个拍摄出发,也可以通过基于所存储的数据库值的计算人工的生成输出图像。代表性地在80keV和140keV的情况下执行图像获取且输出图像A、B、C、D、E、F、G、H可以由此被推导出。这样的对于分别作为基础的能量的虚拟推导用作例如是使得特定的目标结构,如在这里提及的器官、组织和骨骼以及其它在这里未示出的结构对于操作者尽可能好地可视。代替单能量图像如这里示出的输出图像A、B、C、D、E、F、G、H也可以从基于不同获取能量的测量数据中生成一种混合图像,借助所述混合图像可以同样增加结构的可识别性。对此参见于上面提及的最优对比度方法。
图2示出根据本发明的方法Z的实施例。前置于该方法的是在同样的获取区域的患者P的同样身体的两次计算机断层造影图像获取9、11。这样的图像获取借助不同的能量进行。由此从第一图像获取9中产生第一测量数据MD1和从第二图像获取11中产生第二测量数据MD2。这样的测量数据MD1、MD2在第一方法步骤13中被接收。
然后在第二方法步骤15中调节目标图像点的最优输出ODA。这些是基于分别在目标图像点处的第一和第二测量数据MD1、MD2进行的。作为局部最优参数值OPW的基础,预先在(前置于方法的,例如通过预先调整或用户关联的)步骤16中被定义。在考虑该最优参数值OPW的前提下,关于目标图像点进行这样的调节,所述目标图像点分别局部地在目标图像点区域内的第一和第二测量数据MD1、MD2中被确定。在此在第三方法步骤17中分别推导出图像点重现参数值BWP,所述图像点重现参数值代表目标图像点的最优输出ODA。第四方法步骤19是基于目标图像点的最优输出ODA的输出数据DBD的确定19。
这样的步骤结合图3示例性解释。为了更好的理解和作为参考在这里代表性示出患者P的输出图像J,在其上标记有特定的图像点BP1、BP2、BP3、BP4。第一图像点BP1定位于患者P的肝脏3以内,第二图像点BP2在脂肪组织5的区域,第三图像点BP3在肾脏5区域之内和第四图像点BP4在脊椎1的区域内。这些图像点BP1、BP2、BP3、BP4是输出图像J的分别的像素BP1、BP2、BP3、BP4,并且同时有着患者P的身体上的位置对应。
图像点BP1、BP2、BP3、BP4是分别对应于HU值曲线,在所述曲线上通过keV的能量(也即是说上面提及的在获取的情况下的能量或从带有不同能量的两次获取之一推导出的任意虚拟能量)将图像点BP1、BP2、BP3、BP4处的信号强度以HU标注。这样的HU值曲线是纯粹示意性的,并且不必然对应于在分别的图像点BP1、BP2、BP3、BP4处的可测量的实际表现。可见的是,在每一个图像点BP1、BP2、BP3、BP4处分别达到在其它能量的情况下的HU-值的最大值。
一种类似的做法可以是例如通过能量的对比度噪声比(CNR)的显示,所述对比度噪声比接下来被视为决定性的最优参数:
基于HU值曲线和类似的CNR-曲线可以局部地在分别的图像点BP1、BP2、BP3、BP4处确定HU-值:首先为每一个图像点BP1、BP2、BP3、BP4和它们的邻近周围环境对于所有能量级计算局部CNR。相应的HU-值也可以完全一样地被确定。因此呈现出HU值曲线和CNR曲线。如果现在应该按照CNR作为最优参数进行优化,则在分别的图像点BP1、BP2、BP3、BP4处寻找CNR的最大值,并基于与该CNR-最大值对应的能量来选择相应的HU-值。这样的HU-值用作在所涉及的图像点BP1、BP2、BP3、BP4处的信号值。对于每个图像点执行这样的做法,直至患者P的检查区域的测量数据MD1、MD2被完整处理。
图4示出根据本发明的计算机断层造影21的实施例的示意性的方块图。其包括拍摄单元23和根据本发明的图像数据获取系统27的实施例。
图像数据获取系统27包括输入接口25、调节和推导单元29、确定单元31和输出接口33。在图像数据获取系统27中现运行根据本发明的方法Z,如同借助图2已经解释的那样。
第一和第二测量数据MD1、MD2通过输入接口25(其也可以包括两个或多个彼此作用的和/或空间分散的单独接口)到达图像数据获取系统27。
在那里在调节和推导单元29中基于第一和第二测量数据MD1、MD2取决于目标图像点BP1、BP2、BP3、BP4的局部最优参数值OPW调节目标图像点BP1、BP2、BP3、BP4的最优输出ODA,所述局部最优参数值OPW分别局部地从位于目标图像点BP1、BP2、BP3、BP4区域内的第一和第二测量数据MD1、MD2中被确定。所述调节和推导单元29此外推导出代表了目标图像点BP1、BP2、BP3、BP4的最优输出ODA的图像点重现参数值BWP。为了这一目的也可以将调节和推导单元29多组件地构造并且尤其具有类似于图2中的步骤15和17的调节子单元和推导子单元。
确定单元31基于目标图像点BP1、BP2、BP3、BP4的最优输出ODA确定输出数据DBD。其也从关于最优输出ODA的说明中推导出输出数据DBD。然后该输出数据DBD通过输出接口33向用户和/或其它形态和/或数据存储器传输。
最后再一次指出,以上细节化描述的方法以及所示出的装置仅仅是实施例,其可以由专业人员以不同方式修改,而不脱离本发明的范围。如此本方法尤其不是仅仅可用于两个能量,而是也可以在建立具有多于两个能量的最优输出数据时使用,其中既可以在多个不同的恒定能量级也可以在多个变化的能量级下工作。另外所述不定冠词“一”或“一个”的使用并不排除所涉及的特征也可以多重地存在。

Claims (14)

1.一种用于从计算机断层造影拍摄中自动获取检查对象的内部的最优的输出数据的方法,包括以下步骤:
a)接收基于第一能量的X射线辐射采集的检查对象的第一测量数据和基于不同于第一能量的第二能量的X射线辐射采集的检查对象的第二测量数据,
b)基于在分别的目标图像点处的第一和第二测量数据,分别取决于目标图像点的局部最优参数值,在推导代表了目标图像点的最优输出的图像点重现参数值的条件下,来调节目标图像点的最优输出,所述局部最优参数值分别局部地从位于目标图像点区域内的第一和第二测量数据中被确定,和
c)基于目标图像点的最优输出确定输出数据。
2.根据权利要求1所述的方法,其特征在于,所述分别的目标图像点的最优参数值包括至少一个以下的参数值:
-目标图像点关于其相邻周边环境的对比度,
-在目标图像点处和其相邻周边环境的图像噪声,
-目标图像点和其相邻周边环境的对比度噪声比,和
-在目标图像点处的输出信号强度。
3.根据权利要求2所述的方法,其特征在于,所述目标图像点关于其相邻周边环境的对比度或所述目标图像点和其相邻周边环境的对比度噪声比或所述在目标图像点处的输出信号强度被调整到最大值。
4.根据权利要求2所述的方法,其特征在于,所述在目标图像点处和其相邻周边环境的图像噪声被调整到最小值。
5.根据权利要求1所述的方法,其特征在于,所述分别的目标图像点的最优参数值取决于在分别的目标图像点和其相邻周边环境的参数值确定而被确定。
6.根据权利要求5所述的方法,其特征在于,所述分别的目标图像点的图像点重现参数值在分别的目标图像点和其相邻周边环境被调整。
7.根据权利要求1所述的方法,其特征在于,对于检查对象的多个彼此直接相邻的目标图像点执行步骤b)。
8.根据权利要求1所述的方法,其特征在于,对于在预先定义的检查对象的显示区域内的所有目标图像点执行步骤b)。
9.根据权利要求1所述的方法,其特征在于,分别的图像点重现参数值在步骤b)中如此被推导,即,将在分别的目标图像点处的第一和第二测量数据互相按照取决于分别的目标图像点处存在的最优参数值推导出的比例彼此相混合。
10.根据权利要求1所述的方法,其特征在于,分别的图像点重现参数值在步骤b)中通过基于源自两个测量数据的第三能量的分别的单能量的目标图像点的计算,在参照对应数据库下被确定。
11.根据权利要求1所述的方法,其特征在于,分别的图像点重现参数值额外地取决于以认知兴趣为导向的关于检查对象和/或关于检查对象目标区域的参数默认值被推导。
12.根据权利要求11所述的方法,其特征在于,所述参数默认值从用户获得。
13.一种用于从计算机断层造影拍摄中自动获取检查对象的内部的最优的输出数据的图像数据获取系统,至少包括:
-输入接口,用于接收基于第一能量的X射线辐射采集的检查对象的第一测量数据和基于不同于第一能量的第二能量的X射线辐射采集的检查对象的第二测量数据,
-调节和推导单元,其在运行中基于第一和第二测量数据取决于目标图像点的局部最优参数值调节目标图像点的最优输出,所述局部最优参数值分别局部地从位于目标图像点区域内的第一和第二测量数据中被确定,并且其在运行中推导出代表了目标图像点的最优输出的图像点重现参数值,和
-确定单元,其如此构造,使得其基于目标图像点的最优输出确定输出数据。
14.一种带有拍摄单元和根据权利要求13所述的图像数据获取系统的计算机断层造影设备。
CN201410145349.4A 2013-04-11 2014-04-11 自动获取最优输出数据 Expired - Fee Related CN104103055B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013206415.2 2013-04-11
DE102013206415.2A DE102013206415A1 (de) 2013-04-11 2013-04-11 Automatische Gewinnung optimierter Ausgabedaten

Publications (2)

Publication Number Publication Date
CN104103055A CN104103055A (zh) 2014-10-15
CN104103055B true CN104103055B (zh) 2018-02-16

Family

ID=51618334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410145349.4A Expired - Fee Related CN104103055B (zh) 2013-04-11 2014-04-11 自动获取最优输出数据

Country Status (3)

Country Link
US (1) US9254110B2 (zh)
CN (1) CN104103055B (zh)
DE (1) DE102013206415A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10354418B2 (en) * 2014-08-16 2019-07-16 Fei Company Tomographic reconstruction for material characterization
WO2016086744A1 (en) 2014-12-02 2016-06-09 Shanghai United Imaging Healthcare Co., Ltd. A method and system for image processing
CN104851107B (zh) * 2015-06-08 2017-11-28 武汉联影医疗科技有限公司 基于ct序列图像的脊椎定位方法
DE102015204450A1 (de) * 2015-03-12 2016-09-15 Siemens Healthcare Gmbh Verfahren zur Erzeugung eines Ergebnisbildes zu einer vorgebbaren, virtuellen Röntgenquantenenergieverteilung, Computerprogramm, Datenträger sowie Röntgenbildaufnahmevorrichtung
DE102015215938A1 (de) * 2015-08-20 2017-02-23 Siemens Healthcare Gmbh Verfahren zur lokalen Verbesserung der Bildqualität
US10313304B2 (en) 2015-11-04 2019-06-04 Panasonic Avionics Corporation System for demand-based regulation of dynamically implemented firewall exceptions
EP3605448A1 (en) * 2018-08-01 2020-02-05 Koninklijke Philips N.V. Method for providing automatic adaptive energy setting for ct virtual monochromatic imaging
CN111603187B (zh) * 2019-02-25 2024-02-13 上海西门子医疗器械有限公司 自适应图像质量优化方法和装置、存储介质和医疗设备
WO2021232195A1 (en) * 2020-05-18 2021-11-25 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for image optimization

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102462504A (zh) * 2010-11-08 2012-05-23 通用电气公司 用于分析和可视化能谱ct数据的系统和方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102462504A (zh) * 2010-11-08 2012-05-23 通用电气公司 用于分析和可视化能谱ct数据的系统和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Comparison of image quality and radiation dose of different pulmonary CTA protocols on a 128-slice CT: high-pitch dual source CT, dual energy CT and conventional spiral CT;Tobias De Zordo等;《European radiology》;20120229;第22卷(第2期);第279-286页 *
双能量CT冠状动脉和心肌成像的优化对比噪声比研究;王怡宁等;《中国医学影像学杂志》;20100915;第18卷(第5期);第449-453页 *

Also Published As

Publication number Publication date
US9254110B2 (en) 2016-02-09
CN104103055A (zh) 2014-10-15
DE102013206415A1 (de) 2014-10-16
US20140307847A1 (en) 2014-10-16

Similar Documents

Publication Publication Date Title
CN104103055B (zh) 自动获取最优输出数据
US10925566B2 (en) X-ray imaging device and X-ray image forming method
JP6985482B2 (ja) X線コンピュータ断層撮影装置、スキャン計画設定支援装置、医用画像診断システム、制御方法及び制御プログラム
US9140803B2 (en) Acquisition protocol assessment apparatus
US7983383B2 (en) X-ray CT apparatus
JP6492005B2 (ja) X線ct装置、再構成演算装置、及び再構成演算方法
JP5442530B2 (ja) 画像処理装置、画像表示装置およびプログラム並びにx線ct装置
CN102254310A (zh) 用于减少ct图像数据中的图像伪影、尤其是金属伪影的方法
CN109965893A (zh) 通过注入造影剂执行计算机断层摄影成像的方法和装置
US10089728B2 (en) Radiation-image processing device and method
JP2016137050A (ja) 医用画像処理装置、医用画像処理方法および医用画像診断装置
US10012600B2 (en) X-ray apparatus and method of controlling the same
JP5295661B2 (ja) 断層像処理装置、x線ct装置およびプログラム
EP3830788B1 (en) Method for providing automatic adaptive energy setting for ct virtual monochromatic imaging
US10475180B2 (en) Radiation-image processing device and method
KR101141055B1 (ko) 디지털 x―선 촬영을 위한 단층영상합성 시스템의 영상 평탄화 방법
KR101870856B1 (ko) 엑스선 영상 장치 및 엑스선 영상 시스템
CN117338316A (zh) 一种计算机断层扫描的扫描参数确定方法、装置和系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220130

Address after: Erlangen

Patentee after: Siemens Healthineers AG

Address before: Munich, Germany

Patentee before: SIEMENS AG

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180216