CN104099488A - 一种无压烧结-加压致密化制备钛铝碳颗粒增强锌铝基复合材料的方法 - Google Patents

一种无压烧结-加压致密化制备钛铝碳颗粒增强锌铝基复合材料的方法 Download PDF

Info

Publication number
CN104099488A
CN104099488A CN201410355654.6A CN201410355654A CN104099488A CN 104099488 A CN104099488 A CN 104099488A CN 201410355654 A CN201410355654 A CN 201410355654A CN 104099488 A CN104099488 A CN 104099488A
Authority
CN
China
Prior art keywords
sintering
titanium
zinc
aluminum
titanium aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410355654.6A
Other languages
English (en)
Other versions
CN104099488B (zh
Inventor
周洋
李海燕
陈晨
李世波
李翠伟
黄振莺
翟洪祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jiaotong University
Original Assignee
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University filed Critical Beijing Jiaotong University
Priority to CN201410355654.6A priority Critical patent/CN104099488B/zh
Publication of CN104099488A publication Critical patent/CN104099488A/zh
Application granted granted Critical
Publication of CN104099488B publication Critical patent/CN104099488B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种钛铝碳(Ti3AlC2)颗粒增强锌铝基复合材料的无压烧结-加压致密化制备方法,即“烧结-致密化两步法”。本方法将钛铝碳和锌铝合金的混合粉末在较高的温度烧结后,再在较低的温度进行加压致密化。在较高的温度进行烧结可明显改善钛铝碳增强相与锌铝合金基体之间的界面结合力,而在较低的温度进行加压致密化可避免加压导致锌铝合金液的挤出。采用本发明的方法所制备的钛铝碳颗粒增强锌铝基复合材料组织均匀、致密,缺陷少,基体与增强相之间结合紧密,具有良好的物理性能和力学性能。

Description

一种无压烧结-加压致密化制备钛铝碳颗粒增强锌铝基复合材料的方法
技术领域
本发明涉及金属基复合材料技术领域,特指一种钛铝碳颗粒增强锌铝基复合材料的制备方法。更具体地说,本发明涉及一种用“烧结-致密化两步法”来制备钛铝碳颗粒增强锌铝基复合材料的方法。 
背景技术
锌铝合金(ZA8、ZA12、ZA22、ZA27等合金系列)具有良好的力学性能和耐磨性能,成本低廉,制作方便,作为一种耐磨密封材料应用广泛,但锌铝合金工作温度低、抗蠕变性差等缺点也在很大程度上限制了它的应用范围。为解决这些问题,进一步扩大其应用领域,采用陶瓷颗粒、晶须和纤维等增强相对锌铝合金进行复合制成锌铝基复合材料正成为研究和开发的热点。与锌铝合金相比,锌铝基复合材料的耐温性能和耐磨性能都有了明显的改善,可替代青铜、黄铜、铝合金等材料,用于制造低速、中温条件使用的轴承、轴套、轴瓦等耐磨密封件,作为一种性能优良的耐磨减摩材料具有很高的经济性。 
目前开发的锌铝基复合材料以加入颗粒增强相为主,包括碳化硅、氧化铝、碳化钛、硅及石墨颗粒等,而制备这些复合材料的主要方法有:熔体搅拌铸造法、喷射成型法、粉末热锻法、叠层复合法和原位生成复合法等。例如发明专利“原位颗粒增强锌基复合材料的制备方法”(申请号200710020458.3)将定量的铝基复合材料浆料加入到锌 或锌铝合金熔体中,并通过缓慢搅拌,制备出Al2O3、TiB2+Al3Ti等陶瓷颗粒原位增强的锌铝基复合材料。发明专利“原位反应喷射成形制备金属基复合材料方法”(申请号99100510.4)采用熔铸-原位反应雾化喷射成形法制备了铝基、铜基和锌基复合材料。发明专利“一种陶瓷粉末增强锌铝合金基复合材料的制备方法”(申请号201110341289.X)采用粉末热锻法制备了碳化硅、氧化铝、氧化锆等陶瓷颗粒增强的锌铝基复合材料。发明专利“一种硅颗粒增强锌基复合材料的制备方法”(申请号200810155784.X)采用熔体浇注法制备了硅颗粒增强的锌基复合材料。发明专利“钛酸钾晶须增强锌铝合金复合材料及其制造方法”(申请号98113701.6)采用熔体挤压复合法制备了钛酸钾晶须增强的锌铝基复合材料。但已制备出的各种锌铝基复合材料普遍存在着一些难以克服的问题,如陶瓷粉末与锌铝合金熔液润湿性差,粉末分布不均,出现团聚等缺陷,显著影响了锌铝基复合材料的推广应用。为克服这些难题,寻找更为适合的颗粒增强相及新的制备方法无疑是一条行之有效的途径。 
钛铝碳(Ti3AlC2)是一种三元层状碳化物陶瓷,为Mn+1AXn化合物族的一种,属于六方晶系。钛铝碳具有类似金属的高导电、导热性,在高温下具有一定塑性,能用高速切削刀具进行机械加工;同时又具有陶瓷的高弹性模量、低密度、高热稳定性和良好的抗氧化性能;而且具有自润滑性和优异的摩擦学性能。与目前锌铝基复合材料中常用的颗粒增强相相比,钛铝碳作为增强相具有许多独特的优势。首先由其层状结构所致的良好自润滑性有助于提高复合材料耐磨性能,这对 于以耐磨密封件为主要应用方向的锌铝基复合材料来说十分重要;其次钛铝碳的热膨胀系数大(~10×10-6 K-1),介于普通陶瓷和金属之间,使其与锌铝合金之间的热失配小于其它复合体系,材料中的热应力小;再次,钛铝碳晶格中结合能较低的Al原子在高温下可部分脱出,与同样含有Al的锌铝合金基体能形成润湿性良好的界面,因此钛铝碳是一种十分理想的锌铝基复合材料增强相。 
申请人在前期研究工作中,分别采用无压烧结工艺和热压烧结工艺制备出了性能良好的钛铝碳颗粒增强锌铝基复合材料,并相应提交了两项专利申请:“一种钛铝碳颗粒增强锌铝基复合材料及其无压烧结制备方法”(申请号201310520069.2)和“一种钛铝碳颗粒增强锌铝基复合材料及其热压烧结制备方法”(申请号201310520702.8),目前这两项申请都处于公开阶段。最近,申请人采用“烧结-致密化两步法”制备新工艺得到了性能更为优异的钛铝碳颗粒增强锌铝基复合材料,故提出本项专利申请。 
发明内容
本发明所要解决的技术问题是提供一种钛铝碳颗粒增强锌铝基复合材料制备方法,以便制备出性能更为优异的颗粒增强锌基复合材料,扩大其应用领域。 
为解决上述技术问题,本发明采用的技术方案是提供一种制备钛铝碳颗粒增强锌铝基复合材料的“烧结-致密化两步法”制备方法,该方法包括如下步骤: 
1)称量钛铝碳和锌铝合金粉,将它们混合配料; 
2)将步骤1)中的混合配料机械合金化、过筛、得到均匀细化的混合粉末; 
3)将步骤2)的混合粉末放入模具中,进行预压成型; 
4)将步骤3)预压成型的坯体及模具放入热压烧结炉中进行无压烧结,保温一段时间后,降温到某一温度后进行加压致密化,保温保压一段时间后冷却出炉,即可制得钛铝碳颗粒增强锌铝基复合材料。 
优选地,步骤2)所述机械合金化采用行星式球磨,机械合金化的条件为:球料比5:1~15:1,转速200~500r/min,球磨时间2~12h。 
优选地,步骤3)和步骤4)所述模具为石墨模具,所述预压成型压强为10~20MPa。 
优选地,步骤4)所述无压烧结的工艺条件为:在氩气或氮气保护下以10~40℃/min的升温速率升至840~900℃,保温0.5~3小时后降温至加压致密化所需温度。 
优选地,步骤4)所述加压致密化的工艺条件为:温度350~500℃,压强20~30MPa,保压时间0.5~3小时。 
本发明所采用的“烧结-致密化两步法”制备工艺可以使锌铝合金基体与钛铝碳增强相在高温下发生轻微反应,明显改善两者之间的界面结合。同时在较低的温度下进行加压致密化可防止锌铝合金挤出,从而得到致密的复合材料块体。与无压烧结工艺相比,本工艺所制备的复合材料致密度高,内部缺陷少;而与热压烧结工艺相比,本工艺所制备的复合材料基体与增强相之间界面结合更好。 
因此,本发明的有益效果是:采用本发明的方法所制备的钛铝碳颗粒增强锌铝基复合材料,颗粒增强相与基体之间结合紧密,材料组织均匀,缺陷少,力学性能高。 
附图说明
图1是实施例1采用两步法制备工艺所制备的钛铝碳颗粒增强锌铝基复合材料的表面微观形貌图; 
图2是实施例1采用两步法制备工艺所制备的钛铝碳颗粒增强锌铝基复合材料的断口微观形貌图。 
具体实施方式
下面结合附图及实施例对本发明进一步加以说明。 
实施例1 
钛铝碳粉:本实施例中所用钛铝碳粉纯度为97%,平均粒径4.21μm。 
锌铝合金粉:本实施例中所用锌铝合金为市售ZA27合金粉,粉末粒度为300目,其质量百分比成分如下:Zn 72.31%、Al 27.47%、Fe 0.09%、Si 0.10%、其它0.03%。 
将ZA27合金粉与钛铝碳粉按照7:3的体积比配料,称取ZA27粉29.34g,钛铝碳粉10.66g,放入行星球磨机中,按球料比为10:1,转速300r/min,球磨混合3小时,冷却后过80目筛;将混合粉放入石墨模具中,在20MPa压强下预压成型,再将成型后的坯体连同模 具一起放入热压烧结炉中,在氮气保护下先进行无压烧结,以30℃/min的升温速率升至850℃,保温2小时,然后降温至500℃,缓慢加压至30MPa,保温保压1小时后冷却,制得钛铝碳颗粒增强锌铝基复合材料。 
所制备30vol%Ti3AlC2/ZA27复合材料的力学性能为:弯曲强度510MPa,抗拉强度300MPa,维氏硬度108HV。 
实施例2 
钛铝碳粉:本实施例中所用钛铝碳粉纯度为95%,平均粒径7.39μm。 
锌铝合金粉:本实施例中所用锌铝合金为市售ZA27合金粉,粉末粒度为300目,其质量百分比成分如下:Zn 72.31%、Al 27.47%、Fe 0.09%、Si 0.10%、其它0.03%。 
将ZA27合金粉与钛铝碳粉按照8:2的体积比配料,称取ZA27粉33.0g,钛铝碳粉7.0g,放入行星球磨机中,按球料比为15:1,转速400r/min,球磨混合2小时,冷却后过80目筛;将混合粉放入石墨模具中,在10MPa压强下预压成型,再将成型后的坯体连同模具一起放入热压烧结炉中,在氩气保护下先进行无压烧结,以20℃/min的升温速率升至870℃,保温1小时,然后降温至430℃,缓慢加压至25MPa,保温保压2.5小时后冷却,制得钛铝碳颗粒增强锌铝基复合材料。 
所制备20vol%Ti3AlC2/ZA27复合材料的力学性能为:弯曲强度 550MPa,抗拉强度323MPa,维氏硬度117HV。 
实施例3 
钛铝碳粉:本实施例中所用钛铝碳粉纯度为92%,平均粒径12.52μm。 
锌铝合金粉:本实施例中所用锌铝合金为市售ZA27合金粉,粉末粒度为300目,其质量百分比成分如下:Zn 72.31%、Al 27.47%、Fe 0.09%、Si 0.10%、其它0.03%。 
将ZA27合金粉与钛铝碳粉按照7:3的体积比配料,称取ZA27粉29.34g,钛铝碳粉10.66g,放入行星球磨机中,按球料比为10:1,转速250r/min,球磨混合6小时,冷却后过80目筛;将混合粉放入石墨模具中,在15MPa压强下预压成型,再将成型后的坯体连同模具一起放入热压烧结炉中,在氮气保护下先进行无压烧结,以25℃/min的升温速率升至890℃,保温1小时,然后降温至480℃,缓慢加压至30MPa,保温保压1.5小时后冷却,制得钛铝碳颗粒增强锌铝基复合材料。 
所制备30vol%Ti3AlC2/ZA27复合材料的力学性能为:弯曲强度570MPa,抗拉强度335MPa,维氏硬度120HV。 
实施例4 
钛铝碳粉:本实施例中所用钛铝碳粉纯度为95%,平均粒径7.39μm。 
锌铝合金粉:本实施例中所用锌铝合金为市售ZA8合金粉,粉末粒度为200目,其质量百分比成分如下:Zn 91.73%、Al 7.95%、Fe0.19%、Si 0.10%、其它0.03%。 
将ZA8合金粉与钛铝碳粉按照6:4的体积比配料,称取ZA8粉27.59g,钛铝碳粉12.41g,放入行星球磨机中,按球料比为10:1,转速400r/min,球磨混合3小时,冷却后过100目筛;将混合粉放入石墨模具中,在20MPa压强下预压成型,再将成型后的坯体连同模具一起放入热压烧结炉中,在氮气保护下先进行无压烧结,以35℃/min的升温速率升至870℃,保温1.5小时,然后降温至450℃,缓慢加压至28MPa,保温保压2小时后冷却,制得钛铝碳颗粒增强锌铝基复合材料。 
所制备40vol%Ti3AlC2/ZA8复合材料的力学性能为:弯曲强度464MPa,抗拉强度258MPa,维氏硬度105HV。 
图1是实施例1采用两步法制备工艺所制备的30vol%Ti3AlC2/ZA27复合材料的表面微观形貌图。图中,灰色的块体为钛铝碳颗粒增强相,条纹状部分为Zn-Al共析组织,即锌铝合金基体,可见钛铝碳增强颗粒均匀分布在锌铝基体中,两者之间结合紧密,材料中缺陷很少。 
图2是实施例1采用两步法制备工艺所制备的30vol%Ti3AlC2/ZA27复合材料的断口微观形貌图。由图可见,细小的钛铝碳颗粒被锌铝合金基体紧紧包裹着,断裂并未使增强颗粒脱落,说明两者间界面结合紧密。 

Claims (6)

1.一种无压烧结-加压致密化(即:烧结-致密化两步法)制备钛铝碳(Ti3AlC2)颗粒增强锌铝基复合材料的方法,其特征在于:将钛铝碳和锌铝合金的混合粉末在较高的温度烧结后,再在较低的温度进行加压致密化。 
2.根据权利要求1所述的钛铝碳颗粒增强锌铝基复合材料的制备方法,其特征在于,所述复合材料包含如下体积百分数的原料:钛铝碳5~45%,余量为锌铝合金;所述钛铝碳为粒度在0.5~20μm的颗粒,其纯度大于90%;所述锌铝合金为粒度100~400目的粉末,其组分按重量百分比组成为:Al 8~35%,余量为Zn和总量不超过0.5%的其它元素。 
3.根据权利要求1所述的钛铝碳颗粒增强锌铝基复合材料的制备方法,其特征在于,包括如下步骤: 
1)称量钛铝碳和锌铝合金粉,将它们混合配料; 
2)将步骤1)中的混合配料机械合金化、过筛、得到均匀细化的混合粉末; 
3)将步骤2)的混合粉末放入石墨模具中,以10~20MPa的压强预压成型; 
4)将步骤3)预压成型的坯体及模具放入热压烧结炉中,在高温下进行无压烧结,保温一定时间后,降温到较低温度并施加机械压力,经保温保压后冷却出炉,得到钛铝碳颗粒增强锌铝基复合材料。 
4.根据权利要求3所述的烧结-致密化两步法制备方法,其特征在于:步骤2)所述机械合金化采用行星式球磨,机械合金化的条件为: 球料比5:1~15:1,转速200~500 r/min,球磨时间2~12小时,冷却后过80目筛得到混合粉体。 
5.根据权利要求3所述的烧结-致密化两步法制备方法,其特征在于:步骤4)所述无压烧结的工艺条件为:烧结温度840~900℃,Ar或N2气氛保护下保温0.5~3小时。 
6.根据权利要求3所述的烧结-致密化两步法制备方法,其特征在于:步骤4)所述施加机械压力的工艺条件为:温度350~500℃,压强20~30MPa,保压时间0.5~3小时。 
CN201410355654.6A 2014-07-24 2014-07-24 一种无压烧结-加压致密化制备钛铝碳颗粒增强锌铝基复合材料的方法 Active CN104099488B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410355654.6A CN104099488B (zh) 2014-07-24 2014-07-24 一种无压烧结-加压致密化制备钛铝碳颗粒增强锌铝基复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410355654.6A CN104099488B (zh) 2014-07-24 2014-07-24 一种无压烧结-加压致密化制备钛铝碳颗粒增强锌铝基复合材料的方法

Publications (2)

Publication Number Publication Date
CN104099488A true CN104099488A (zh) 2014-10-15
CN104099488B CN104099488B (zh) 2016-07-06

Family

ID=51668023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410355654.6A Active CN104099488B (zh) 2014-07-24 2014-07-24 一种无压烧结-加压致密化制备钛铝碳颗粒增强锌铝基复合材料的方法

Country Status (1)

Country Link
CN (1) CN104099488B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463225A (zh) * 2015-12-07 2016-04-06 陕西理工学院 一种Ti3AlC2-SiC相协同增强Ni基复合材料及其制备方法
CN106602300A (zh) * 2016-12-20 2017-04-26 中国航空工业集团公司雷华电子技术研究所 一种毛纽扣连接组件
CN109967749A (zh) * 2018-11-28 2019-07-05 陕西理工大学 一种制动盘用先进金属基复合材料的制备方法
CN111848165A (zh) * 2020-08-03 2020-10-30 深圳见炬科技有限公司 一种p型碲化铋热电材料及其制备方法
CN113735585A (zh) * 2021-08-26 2021-12-03 济南大学 一种氧化铝/钛硅碳复合材料的制备方法
CN114669742A (zh) * 2022-02-23 2022-06-28 北京科技大学 高性能钛或钛合金制件及采用两步烧结法制备其的方法
CN115679229A (zh) * 2022-12-12 2023-02-03 西安稀有金属材料研究院有限公司 一种钛酸钾晶须增强铝基复合材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540783A (zh) * 2013-10-29 2014-01-29 北京交通大学 一种钛铝碳颗粒增强锌铝基复合材料及其无压烧结制备方法
CN103555982A (zh) * 2013-10-29 2014-02-05 北京交通大学 一种钛铝碳颗粒增强锌铝基复合材料及其热压烧结制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540783A (zh) * 2013-10-29 2014-01-29 北京交通大学 一种钛铝碳颗粒增强锌铝基复合材料及其无压烧结制备方法
CN103555982A (zh) * 2013-10-29 2014-02-05 北京交通大学 一种钛铝碳颗粒增强锌铝基复合材料及其热压烧结制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵效忠: "《陶瓷型芯的制备与使用》", 30 June 2013, article "陶瓷型芯的烧结" *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463225A (zh) * 2015-12-07 2016-04-06 陕西理工学院 一种Ti3AlC2-SiC相协同增强Ni基复合材料及其制备方法
CN106602300A (zh) * 2016-12-20 2017-04-26 中国航空工业集团公司雷华电子技术研究所 一种毛纽扣连接组件
CN109967749A (zh) * 2018-11-28 2019-07-05 陕西理工大学 一种制动盘用先进金属基复合材料的制备方法
CN109967749B (zh) * 2018-11-28 2022-03-29 陕西理工大学 一种制动盘用先进金属基复合材料的制备方法
CN111848165A (zh) * 2020-08-03 2020-10-30 深圳见炬科技有限公司 一种p型碲化铋热电材料及其制备方法
CN111848165B (zh) * 2020-08-03 2021-04-09 深圳见炬科技有限公司 一种p型碲化铋热电材料及其制备方法
CN113735585A (zh) * 2021-08-26 2021-12-03 济南大学 一种氧化铝/钛硅碳复合材料的制备方法
CN114669742A (zh) * 2022-02-23 2022-06-28 北京科技大学 高性能钛或钛合金制件及采用两步烧结法制备其的方法
CN115679229A (zh) * 2022-12-12 2023-02-03 西安稀有金属材料研究院有限公司 一种钛酸钾晶须增强铝基复合材料及其制备方法
CN115679229B (zh) * 2022-12-12 2023-11-17 西安稀有金属材料研究院有限公司 一种钛酸钾晶须增强铝基复合材料及其制备方法

Also Published As

Publication number Publication date
CN104099488B (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
CN104099488A (zh) 一种无压烧结-加压致密化制备钛铝碳颗粒增强锌铝基复合材料的方法
CN103540783B (zh) 一种钛铝碳颗粒增强锌铝基复合材料及其无压烧结制备方法
US11752593B2 (en) Binder compositions of tungsten tetraboride and abrasive methods thereof
CN101892411B (zh) 一种新型wc基硬质合金材料及其制备方法
CN108359825B (zh) 一种陶瓷-石墨烯增强铜基复合材料的制备方法
CN110257684B (zh) 一种FeCrCoMnNi高熵合金基复合材料的制备工艺
CN103757513A (zh) 一种Al2O3/Ti(C,N)纳米复合金属陶瓷模具材料及制备方法
CN103555982B (zh) 一种钛铝碳颗粒增强锌铝基复合材料及其热压烧结制备方法
CN108950299B (zh) 一种高熵合金结合金刚石超硬复合材料及其制备方法
CN101555137A (zh) (TiB2+TiC)/Ti3SiC2复相陶瓷材料及其制备方法
CN110846538B (zh) 一种Ti2AlC增强铝基复合材料及其制备方法
CN104060173A (zh) 一种Ti3AlC2增强Fe基复合材料及其原位热挤压制备方法
CN110578066A (zh) 原位生成AlN和AlB2双相颗粒增强的铝基复合材料的制备方法
CN110747378B (zh) 一种Ti3AlC2-Al3Ti双相增强Al基复合材料及其热压制备方法
CN102173802A (zh) 一种原位(TiB2+SiC)/Ti3SiC2复相陶瓷材料及其制备方法
CN1161483C (zh) 一种高强度原位铝基复合材料
CN102249682B (zh) 一种铁铝金属间化合物增强碳化钛陶瓷复合材料及其制备方法
CN107021759B (zh) 一种陶瓷晶体Ti3B2N及其制备方法
CN101555136B (zh) 一种钛硅化碳/二硼化钛-碳化钛复合材料及其制备方法
CN103949647A (zh) 一种自扩散梯度功能复合刀具材料及其制备方法
CN103553631B (zh) 一种利用烧结助剂间原位反应致密二硼化钛材料的方法
CN112142481B (zh) 一种聚晶立方氮化硼材料合成用粘结剂及其使用方法
Zhang et al. Structure and mechanical properties of impregnated diamond cutting tools using Cu-based metal matrix
CN102517482A (zh) 一种钛铝碳化硼基海洋复合材料及其制备方法
CN1769240A (zh) 一种氧化铝颗粒增强铝碳化钛基复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant