CN104099351B - 一种区位选择性细菌硝基还原酶基因及其应用 - Google Patents

一种区位选择性细菌硝基还原酶基因及其应用 Download PDF

Info

Publication number
CN104099351B
CN104099351B CN201410336949.9A CN201410336949A CN104099351B CN 104099351 B CN104099351 B CN 104099351B CN 201410336949 A CN201410336949 A CN 201410336949A CN 104099351 B CN104099351 B CN 104099351B
Authority
CN
China
Prior art keywords
nfsb
seq
mutant
gene
nitroreductase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410336949.9A
Other languages
English (en)
Other versions
CN104099351A (zh
Inventor
杨君
白敬
刘培瑜
姜熙
杨青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201410336949.9A priority Critical patent/CN104099351B/zh
Publication of CN104099351A publication Critical patent/CN104099351A/zh
Application granted granted Critical
Publication of CN104099351B publication Critical patent/CN104099351B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种突变型细菌硝基还原酶基因及其应用,属于酶工程领域。基于蛋白质三维结构及分子对接,发现大肠杆菌硝基还原酶NfsB中第124位苯丙氨酸通过与多硝基底物的侧链基团相互作用,从而影响底物在活性口袋中的定位。突变体F124W、N71S/F124W、F123A/F124W和N71S/F123A/F124W可催化癌症治疗前药CB1954专一性生成具有高生物毒性的4‑NHOH产物。同时这些突变体较野生型酶相比催化活性提高了7‑24倍,以N71S/F123A/F124W表现最为显著。本发明所提供的具有专一还原选择性的硝基还原酶突变体在癌症及其他疾病治疗方面具有良好的应用前景。

Description

一种区位选择性细菌硝基还原酶基因及其应用
技术领域
本发明属于酶工程领域,具体涉及一种突变型硝基还原酶的基因,以及含有该基因的重组酶,及其在硝基区位选择性还原中的应用。
背景技术
硝基还原酶是一类依赖于FMN或FAD的细胞质酶,可利用NAD(P)H催化硝基基团还原,经亚硝基中间产物最终生成羟氨或氨基产物。硝基基团作为生物医药、抗菌剂和杀虫剂中常见的官能基团,它的还原是实现药物生物治疗和体内降解代谢的关键步骤,在此过程中硝基还原酶起到了关键性的作用。其中大肠杆菌硝基还原酶NfsB与癌症前药5-(1-氮丙啶)-2,4-二硝基苯甲酰胺(CB1954)组成的激活治疗系统目前已进入临床III期实验阶段。NfsB可在体内将CB1954转化成为强细胞毒性的DNA交联剂,能够同时杀死增殖期和休眠期的癌细胞。最近完成的I/II期实验表明,若在癌症病人体内利用复制缺陷型载体表达NfsB,随后注射前药CB1954可显著缓解病情。然而体内催化效果较差成为抑制其广泛应用的主要因素,而造成这一结果的原因之一则是NfsB对CB1954硝基的还原缺乏区位选择性。
以往研究发现,CB1954的两种羟氨产物(2-NHOH和4-NHOH)对癌细胞的生物毒性不同,其中4-NHOH产物具有更显著的生物毒性。而大肠杆菌硝基还原酶NfsB在催化CB1954时,等比例生成2-NHOH产物和4-NHOH产物,在一定程度上影响了NfsB对CB1954的体内激活活性。若能通过对酶分子的改造,使其选择性生成4-NHOH产物,可能将有利于该系统体内活性的提高。
因此,寻找开发高效的具有专一还原选择性的硝基还原酶在癌症及其他疾病的治疗方面具有显著的商业价值和应用前景。
发明内容
为获得专一区位选择性的硝基还原酶,本发明通过蛋白质结构及分子对接模拟分析,发现124的氨基酸残基通过与底物侧链基团的相互作用从而影响底物在活性中心的定位。若将124位的苯丙氨酸(Phe)突变为色氨酸(Trp)(简写为F124W),可显著改变酶的区域选择性。与野生型硝基还原酶相比,突变体NfsB-F124W可还原癌症治疗前药CB1954生成单一的较高生物毒性的4-NHOH产物。同时对其他可能影响酶催化活性的氨基酸进行了组合突变,将71位的天冬酰胺(Asn)突变为丝氨酸(Ser)(简写为N71S),将123位的苯丙氨酸(Phe)突变为丙氨酸(Ala)(简写为F123A),获得相应的组合突变体分别为NfsB-N71S/F124W、NfsB-F123A/F124W和NfsB-N71S/F123A/F124W,这些突变体在保持专一区位选择性的基础上均进一步提高了对CB1954的催化活性,其中NfsB-N71S/F123A/F124W表现最为显著,还原活性较野生型提高了24倍。目前硝基还原酶的生理底物和催化机制尚不明确,尤其是针对于外源的硝基芳香化合物而言,无法确定该底物在酶活性口袋内的正确定位,从而很难确定与侧链基团相互作用的关键氨基酸及该氨基酸是如何影响底物在活性口袋内的定位。此外,底物在酶活性口袋内定位通常受到多个氨基酸的共同作用,很难确定其中哪个或哪几个氨基酸发挥主要的作用。同时对这些位点的突变具有很高的风险性和不确定性,虽然在一定程度上实现了区位选择性的改变,但可能引起酶催化活性的降低甚至丧失。针对以上问题,本发明采用分子对接模拟的手段考察了候选氨基酸位点可能的作用,并在此基础上进行单点突变,进一步将有益突变位点进行组合突变,考察其对选择性实现及活性提高的协同作用。
本发明具体涉及四种突变型硝基还原酶的基因,以及含有该基因的重组表达载体和重组表达转化体,其重组酶和该重组酶的制备方法,以及该突变型硝基还原酶或含有该突变型基因重组表达转化体作为催化剂在药物激活及代谢、芳香羟氨生物合成和硝基污染物生物降解等领域中的应用。
本发明的一方面在于提供一类区位选择性细菌硝基还原酶基因,分别命名为硝基还原酶单突变体NfsB-F124W,以及三种组合突变体NfsB-N71S/F124W、NfsB-F123A/F124W和NfsB-N71S/F123A/F124W,其核苷酸序列分别如SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4所示。
本发明的另一目的是提供上述区位选择性细菌硝基还原酶基因所编码的蛋白质,具有SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8所示的氨基酸序列。
本发明的另一目的是提供含有上述区位选择性细菌硝基还原酶基因之一的重组表达载体,或其重组表达转化体。以及编码上述区位选择性细菌硝基还原酶DNA的基因工程菌或转基因细胞系。
本发明的另一目的是提供一种区位选择性细菌硝基还原酶的制备方法,其步骤包括:培养上述含有该区位选择性细菌硝基还原酶基因之一的重组表达转化体,分别从培养物中纯化得到相应的突变型区位选择性细菌硝基还原酶基因。
上文所述的制备方法,其更具体的技术方案如下:根据大肠杆菌(Escherichiacoli)硝基还原酶NfsB基因NCBI编码:NC_000913,设计定点突变的突变引物,以携带硝基还原酶基因的克隆载体为模板进行定点突变构建突变体;以pET-28a(+)或能表达该酶的载体为表达载体,将重组质粒转化到大肠杆菌BL21(DE3)细胞或能表达该酶的宿主细胞,挑选验证后的阳性单克隆进行发酵培养。经融合表达纯化得到突变型硝基还原酶蛋白。
本发明的另一目的是提供上述技术方案中所述的各个区位选择性细菌硝基还原酶基因编码的蛋白或重组表达转化体,或者其各自作为催化剂在催化硝基还原,在药物激活剂代谢、芳香羟胺化合物的生物合成以及硝基类环境污染物生物代谢等领域的应用。其中,组合突变体NfsB-N71S/F123A/F124W可还原癌症治疗前药CB1954生成单一的较高生物毒性的4-NHOH产物,其还原活性较野生型提高了24倍。
附图说明
图1.HPLC分析NfsB野生型及突变体蛋白对癌症治疗前药CB1954还原的区域选择性。由图中所示内容可知,单突变体NfsB-F124W和组合突变体NfsB-N71S/F124W、NfsB-F123A/F124W和NfsB-N71S/F123A/F124W均专一性还原CB1954的4位硝基,生成高生物毒性的4NHOH产物。此外,在相同反应条件、反应时间内突变体可实现CB1954的完全转化,而野生型催化的反应混合物中仍有底物CB1954剩余。这些突变体在具有4位硝基专一选择性之外,对CB1954的催化活性较野生型也均有显著的提高。因此,突变体NfsB-F124W、NfsB-N71S/F124W、NfsB-F123A/F124W和NfsB-N71S/F123A/F124W可替代野生型蛋白应用于CB1954前药激活系统中,有利于提高该系统在体内对CB1954的催化活性。
具体实施方式
下述非限定性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
本发明中设计使用的重叠延伸PCR引物序列:
nfsB-WT-F:5’-GGAATTCCATATGGATATCATTTCTGTCGCCTTAAAG-3’;SEQ ID NO:9;
nfsB-WT-R:5’-GGAATTCTTACACTTCGGTTAAGGTGATGTT-3’;SEQ ID NO:10;
nfsB-N71S-F:5’-ATGTGTTCAGCGAACGTAAAATGCTTGATG-3’;SEQ ID NO:11;
nfsB-N71S-R:5’-ATTTTACGTTCGCTGAACACATAATTACCGGCAG-3’SEQ ID NO:12;
nfsB-F124W-F:5’-TCGCAAGTTCTGGGCTGATATGCACCGTAAAGATC-3’;SEQ ID NO:13;
nfsB-F124W-R:5’-TATCAGCCCAGAACTTGCGACCTTTATCGTTCG-3’;SEQ ID NO:14;
nfsB-F123A/F124W-F:5’-TCGCAAGGCCTGGGCTGATATGCACCGTAAAGATC-3’;SEQ IDNO:15;
nfsB-F123A/F124W-R:5’-TATCAGCCCAGGCCTTGCGACCTTTATCGTTCG-3’;SEQ ID NO:16;
实施例1突变型硝基还原酶F124W、N71S/F124W、F123A/F124W和N71S/F123A/F124W的基因获取及表达载体构建
1.野生型nfsB基因的克隆与克隆载体构建
根据NCBI提供的E.coli K12菌株(Invitrogen)中nfsB基因序列,设计引物(nfsB-WT-F:5’-GGAATTCCATATGGATATCATTTCTGTCGCCTTAAAG-3’,nfsB-WT-R:5’-GGAATTCTTACACTTCGGTTAAGGTGATGTT-3’),其中下划线部分表示酶切位点对应的基因序列。利用提取的E.coli K12基因组DNA为模版,进行PCR扩增。取10μl PCR反应产物跑琼脂糖凝胶电泳验证,电泳条带约650bp与nfsB基因大小一致。使用TaKaRa Agarose Gel DNAPurification Kit Ver.3.0切胶回收上述电泳目的条带,然后用EcoR I/Nde I双酶切处理回收产物,使用TaKaRa DNA Fragment Purification Kit Ver.3.0将其纯化,之后使用DNALigation Kit Ver.3.0中的连接酶,将纯化后得到的目的产物与经EcoR I/Nde I双酶切处理的pET28a(+)空载体连接后,热激转化至E.coli DH5α感受态细胞中,涂布平板,37℃过夜培养。挑选阳性菌落过夜37℃培养后提取质粒并送TaKaRa测序确认与nfsB基因(Gene ID:945778)序列一致,验证基因克隆成功,并将其命名为野生型nfsB基因,并将其对应的阳性菌落和重组质粒分别命名为克隆菌E.coli DH5α-nfsB-WT和质粒pET28a-nfsB-WT。
2.突变型NfsB-F124W的基因获取及表达载体构建
过夜培养E.coli DH5α-nfsB-WT克隆菌,提取pET28a-nfsB-WT重组质粒,以此为模板构建突变体载体pET28a-nfsB-F124W。
首先以质粒pET28a-nfsB-WT为模板,使用引物nfsB-WT-F和nfsB-F124W-R:5’-TATCAGCCCAGAACTTGCGACCTTTATCGTTCG-3’进行一次PCR反应,命名为nfsB-F124W-1。同样以质粒pET28a-nfsB-WT为模板,使用引物nfsB-WT-R和nfsB-F124W-F:5’-TCGCAAGTTCTGGGCTGATATGCACCGTAAAGATC-3’进行二次PCR反应,命名为nfsB-F124W-2。其中引物nfsB-F124W-F和nfsB-F124W-R中下划线标记的为124位氨基酸突变位点对应的基因序列。使用TaKaRa MiniBest Agarose Gel DNA Extraction Kit Ver.3.0,对于两次PCR产物切胶回收纯化。以回收产物nfsB-F124W-1和nfsB-F124W-2作为模板,使用引物nfsB-WT-F和nfsB-WT-R进行第三次重叠延伸PCR,PCR产物使用TaKaRa DNA Fragment PurificationKit Ver.3.0回收纯化,获得突变体基因,其命名为nfsB-F124W基因,其序列信息为SEQ IDNO:1。
将获得的突变体基因SEQ ID NO:1和pET28a(+)空载使用NdeⅠ/EcoRⅠ分别进行双酶切,使用TaKaRa Agarose Gel DNA Purification Kit Ver.3.0切胶回收上述电泳目的条带,之后使用DNA Ligation Kit Ver.3.0中的连接酶,将纯化后得到的目的产物与经EcoR I/Nde I双酶切处理的pET28a(+)载体连接后,热激转化至E.coli DH5α感受态细胞中,涂布平板,37℃过夜培养。挑选阳性菌落过夜37℃培养后提取质粒并送TaKaRa测序确认与SEQ ID NO:1序列一致,验证表达载体构建成功,并将其对应的阳性菌落和重组质粒命名为克隆菌E.coli DH5α-nfsB-F124W和质粒pET28a-nfsB-F124W。
3.突变型NfsB-N71S/F124W的基因获取及表达载体构建
过夜培养E.coli DH5α-nfsB-F124W克隆菌,提取pET28a-nfsB-F124W重组质粒,以此为模板构建突变体载体pET28a-nfsB-N71S/F124W。
首先以质粒pET28a-nfsB-F124W为模板,使用引物nfsB-WT-F和nfsB-N71S-R:5’-ATTTTACGTTCGCTGAACACATAATTACCGGCAG-3’进行一次PCR反应,命名为nfsB-N71S/F124W-1。同样以质粒pET28a-nfsB-F124W为模板,使用引物nfsB-WT-R和nfsB-N71S-F:5’-ATGTGTTCAGCGAACGTAAAATGCTTGATG-3’进行二次PCR反应,命名为nfsB-N71S/F124W-2。其中引物nfsB-N71S-F和nfsB-N71S-R中下划线标记的为71位氨基酸突变位点对应的基因序列。使用TaKaRa MiniBest Agarose Gel DNA Extraction Kit Ver.3.0,对于两次PCR产物切胶回收纯化。以回收产物nfsB-N71S/F124W-1和nfsB-N71S/F124W-2作为模板,使用引物nfsB-WT-F和nfsB-WT-R进行第三次重叠延伸PCR,PCR产物使用TaKaRa DNA FragmentPurification Kit Ver.3.0回收纯化,获得突变体基因,其命名为nfsB-N71S/F124W基因,其序列信息为SEQ ID NO:2。
将获得的突变体基因SEQ ID NO:2和pET28a(+)空载使用NdeⅠ/EcoRⅠ分别进行双酶切,使用TaKaRa Agarose Gel DNA Purification Kit Ver.3.0切胶回收上述电泳目的条带,之后使用DNA Ligation Kit Ver.3.0中的连接酶,将纯化后得到的目的产物与经EcoR I/Nde I双酶切处理的pET28a(+)载体连接后,热激转化至E.coli DH5α感受态细胞中,涂布平板,37℃过夜培养。挑选阳性菌落过夜37℃培养后提取质粒并送TaKaRa测序确认与SEQ ID NO:2序列一致,验证表达载体构建成功,并将其对应的阳性菌落和重组质粒命名为克隆菌E.coli DH5α-nfsB-N71S/F124W和质粒pET28a-nfsB-N71S/F124W。
4.突变型NfsB-F123A/F124W的基因获取及表达载体构建
过夜培养E.coli DH5α-nfsB-F124W克隆菌,提取pET28a-nfsB-F124W重组质粒,以此为模板构建突变体载体pET28a-nfsB-F123A/F124W。
首先以质粒pET28a-nfsB-F124W为模板,使用引物nfsB-WT-F和nfsB-F123A/F124W-R:5’-TATCAGCCCAGGCCTTGCGACCTTTATCGTTCG-3’进行一次PCR反应,命名为nfsB-F123A/F124W-1。同样以质粒pET28a-nfsB-F124W为模板,使用引物nfsB-WT-R和nfsB-F123A/F124W-F:5’-TCGCAAGGCCTGGGCTGATATGCACCGTAAAGATC-3’进行二次PCR反应,命名为nfsB-F123A/F124W-2。其中引物nfsB-F123A/F124W-F和nfsB-F123A/F124W-R中下划线标记的为123和124位氨基酸突变位点对应的基因序列。使用TaKaRa MiniBest Agarose GelDNA Extraction Kit Ver.3.0,对于两次PCR产物切胶回收纯化。以回收产物nfsB-F123A/F124W-1和nfsB-F123A/F124W-2作为模板,使用引物nfsB-WT-F和nfsB-WT-R进行第三次重叠延伸PCR,PCR产物使用TaKaRa DNA Fragment Purification Kit Ver.3.0回收纯化,获得突变体基因,其命名为nfsB-F123A/F124W基因,其序列信息为SEQ ID NO:3。
将获得的突变体基因SEQ ID NO:3和pET28a(+)空载使用Nde Ⅰ/EcoR Ⅰ分别进行双酶切,使用TaKaRa Agarose Gel DNA Purification Kit Ver.3.0切胶回收上述电泳目的条带,之后使用DNA Ligation Kit Ver.3.0中的连接酶,将纯化后得到的目的产物与经EcoR I/Nde I双酶切处理的pET28a(+)载体连接后,热激转化至E.coli DH5α感受态细胞中,涂布平板,37℃过夜培养。挑选阳性菌落过夜37℃培养后提取质粒并送TaKaRa测序确认与SEQ ID NO:3序列一致,验证表达载体构建成功,并将其对应的阳性菌落和重组质粒命名为克隆菌E.coli DH5α-nfsB-F123A/F124W和质粒pET28a-nfsB-F123A/F124W。
5.突变型NfsB-N71S/F123A/F124W的基因获取及表达载体构建
过夜培养E.coli DH5α-nfsB-F123A/F124W克隆菌,提取pET28a-nfsB-F123A/F124W重组质粒,以此为模板构建突变体载体pET28a-nfsB-N71S/F123A/F124W。
首先以质粒pET28a-nfsB-F123A/F124W为模板,使用引物nfsB-WT-F和nfsB-N71S-R:5’-ATTTTACGTTCGCTGAACACATAATTACCGGCAG-3’进行一次PCR反应,命名为nfsB-N71S/F123A/F124W-1。同样以质粒pET28a-nfsB-F123A/F124W为模板,使用引物nfsB-WT-R和nfsB-N71S-F:5’-ATGTGTTCAGCGAACGTAAAATGCTTGATG-3’进行二次PCR反应,命名为nfsB-N71S/F123A/F124W-2。其中引物nfsB-N71S-F和nfsB-N71S-R中下划线标记的为71位氨基酸突变位点对应的基因序列。使用TaKaRa MiniBest Agarose Gel DNA Extraction KitVer.3.0,对于两次PCR产物切胶回收纯化。以回收产物nfsB-N71S/F123A/F124W-1和nfsB-N71S/F123A/F124W-2作为模板,使用引物nfsB-WT-F和nfsB-WT-R进行第三次重叠延伸PCR,PCR产物使用TaKaRa DNA Fragment Purification Kit Ver.3.0回收纯化,获得突变体基因,其命名为nfsB-N71S/F123A/F124W基因,其序列信息为SEQ ID NO:4。
将获得的突变体基因SEQ ID NO:4和pET28a(+)空载使用NdeⅠ/EcoRⅠ分别进行双酶切,使用TaKaRa Agarose Gel DNA Purification Kit Ver.3.0切胶回收上述电泳目的条带,之后使用DNA Ligation Kit Ver.3.0中的连接酶,将纯化后得到的目的产物与经EcoR I/Nde I双酶切处理的pET28a(+)载体连接后,热激转化至E.coli DH5α感受态细胞中,涂布平板,37℃过夜培养。挑选阳性菌落过夜37℃培养后提取质粒并送TaKaRa测序确认与SEQ ID NO:4序列一致,验证表达载体构建成功,并将其对应的阳性菌落和重组质粒命名为克隆菌E.coli DH5α-nfsB-N71S/F123A/F124W和质粒pET28a-nfsB-N71S/F123A/F124W。
实施例2.细菌硝基还原酶突变体的表达纯化
1.硝基还原酶突变体的诱导表达
将重组质粒pET28a-nfsB-F124W、pET28a-nfsB-N71S/F124W、pET28a-nfsB-F123A/F124W和pET28a-nfsB-N71S/F123A/F124W分别热激转化到大肠杆菌E.coli BL21(DE3)感受态细胞(Invitrogen)中,涂布平板,37℃过夜培养。挑取阳性克隆,分别命名为表达菌E.coli BL21(DE3)-nfsB-F124W、E.coli BL21(DE3)-nfsB-N71S/F124W、E.coli BL21(DE3)-nfsB-F123A/F124W和E.coli BL21(DE3)-nfsB-N71S/F123A/F124W,再分别接种于LB液体培养基中(含50μg/ml Kana),37℃振荡过夜。将种子培养液以1%接种量转接至100mlLB扩大培养基中(含50μg/ml Kana),37℃摇床培养至OD600在0.4-0.6。加入终浓度为0.5mMIPTG于30℃下诱导表达6h。培养结束后,发酵液于5000r/min离心10min收集菌体。
2.硝基还原酶突变体的纯化
收集菌体用20mM磷酸盐缓冲液(pH7.4,含有500mM NaCl)进行重悬,利用高压匀浆破碎仪在低温下进行破碎,12000r/min离心5min收集上清。
样品分离纯化均使用purifier蛋白质快速层析系统(GE Healthcare)完成,采用GE Healthcare FF HisTrap层析柱(即Ni柱)。首先用缓冲液A(20mM NaH2PO4,0.5MNaCl,pH7.4)平衡Ni柱,将破碎后收集的蛋白上清样品以1ml/min的流速通过Ni柱,使目的蛋白结合于Ni柱。待紫外基线平稳后,使用缓冲液B(elution buffer:20mM NaH2PO4,0.5MNaCl,250mM咪唑,pH7.4)洗脱,洗脱梯度依次为20mM,100mM,250mM咪唑,每个洗脱梯度洗脱体积为20个柱体积。分管收集每个梯度洗脱的流出液,对每管样品分别进行蛋白质含量、活力以及SDS-PAGE分析。
3.硝基还原酶突变体的SDS-PAGE电泳分析及Western-Blotting验证
利用SDS-PAGE电泳分析突变型硝基还原酶的分子量及其纯度,对照Marker选用低分子量标准蛋白。待电泳结束后,用考马斯亮蓝R-250染色3小时以上,用脱色液(以乙醇:醋酸:水的体积比为1:2:17配制而成)震荡脱色,观察电泳结果。
电泳结果发现在分子量27kDa左右有一条明显的诱导条带。同时诱导条带对应蛋白在250mM咪唑洗脱组分得到富集,初步判断该蛋白为突变体蛋白。突变体NfsB-F124W、NfsB-N71S/F124W、NfsB-F123A/F124W和NfsB-N71S/F123A/F124W序列信息依次为SEQ IDNO:5、SEQ ID NO:6、SEQ ID NO:7和SEQ ID NO:8。
针对转膜仪,采用半干法转膜,转膜缓冲液为48mM Tris,39mM甘氨酸,20%甲醇,0.037%SDS,具体步骤如下:
将SDS聚丙烯酰胺凝胶取下,置于转膜缓冲液中平衡,剪裁一块大小相同的PVDF膜,将其放置于100%甲醇中激活10s,然后将膜用去离子水清洗掉膜上残余的甲醇,置于转膜缓冲液中;按滤纸-PVDF膜-凝胶-滤纸,自下而上顺序组装,准备转膜;将转膜仪组装完毕,设置恒压18V,转膜2个小时;
封闭:将转完的PVDF膜浸泡在含有5%的脱脂奶粉的TBST缓冲液中(20mM Tris-HCl,150mM NaCl,0.05%的Tween20)中封闭1h;
一抗包被:将封闭好的PVDF膜浸泡于含一抗TBST包被液中(含anti-Hisantibody,1:3000,Invitrogen,3%脱脂奶粉)1小时;用TBST缓冲液每隔10min洗涤一次,洗6次,去除非特异性结合抗体;
二抗包被:将上步中的PVDF膜浸泡在含有山羊抗鼠IgG/辣根酶标记抗体和3%的脱脂奶粉的的TBST缓冲液中,振荡1小时;用TBST缓冲液每隔10min洗涤一次,洗6次,,去除非特异性结合的二抗;
用TBST缓冲液每隔10min洗涤一次,洗6次,加入发色底物反应3-5min,曝光,显影,定影。
Western-Blotting结果显示IPTG诱导组分中分子量27kDa处蛋白条带为目的蛋白条带,且该蛋白经Ni柱分离纯化后于250mM咪唑下中得到富集分离,纯度达95%以上。
实施例3.细菌硝基还原酶突变体的活性测定
将250mM咪唑洗脱下来的重组蛋白,按照摩尔浓度比蛋白:FMN=1:10的比例混匀,放置4℃冰箱中孵育2个小时。孵育结束后,将重组蛋白脱盐至20mM Tris-HCl缓冲液(pH7.0)中,以进行后续蛋白活性检测等实验。
1.HPLC分析突变体对CB1954还原的区位选择性
用高效液相色谱(HPLC)安捷伦1200分析突变体NfsB-F124W、NfsB-N71S/F124W、NfsB-F123A/F124W和NfsB-N71S/F123A/F124W对底物CB1954还原的区位选择性。HPLC酶催化反应体系中含有:0.1mM CB1954,0.2mM NADH,200nM突变体酶,反应缓冲液为20mMTris-HCl pH7.0,室温反应5-15分钟。由于CB1954及其反应产物加热不稳定,所以用等体积乙酸乙酯萃取终止反应,12000×g离心10min。取上层乙酸乙酯相用于HPLC分析。图1为HPLC分析NfsB野生型及突变体蛋白对癌症治疗前药CB1954还原的区域选择性。
HPLC分析柱选用C18反相疏水层析柱,粒径5μm,4.6mm×250mm,流动相组成为甲醇和水体系,流速为0.8ml/min,进样体积为10μl,用紫外检测器检测。洗脱梯度为20%-60%甲醇线性洗脱30min,检测波长为262nm,柱温20℃。两种羟氨产物保留时间分别为:R4-NHOH=6.6min,R2-NHOH=13.7min。
F124W、N71S/F124W、F123A/F124W及N71S/F123A/F124W突变体均可催化癌症治疗前药CB1954还原生成单一的较高生物毒性的4-NHOH产物。
2.硝基还原酶突变体的动力学测定
所有的动力学常数都是用全波长扫描荧光酶标仪(Thermo FisherScientific)用连续测点的方法于37℃恒温检测。硝基还原酶动力学检测体系:总体积200μl,20mM Tris-HCl(pH7.0)的缓冲液中含有60μM NADH,一系列不同浓度的待测底物和适量的酶。随反应进行,通过检测340nm下NADH的消耗量,进而计算底物消耗反应速率。每还原1mol硝基基团,需要消耗2mol的NADH分子。所有的动力学实验至少重复3次,数据用非线性拟合软件Origin8.5处理得出数据以及误差范围。
表1.野生型及突变体NfsB蛋白对底物CB1954的动力学常数。
由表中数据分析可知,F124W、N71S/F124W、F123A/F124W和N71S/F123A/F124W突变体除实现了CB1954的4-NO2选择性还原外,对CB1954的催化活性较野生型也均有明显提高,其中单突变体F124W活性比野生型酶活性提高了6.7倍,双突变体N71S/F124W和F123A/F124W在单点突变的基础上活性进一步提高,分别为野生型的15.6倍和9.1倍,而三突变体N71S/F123A/F124W活性提高最为明显,达到野生酶活性的23.3倍,这四种突变体在CB1954的前药激活系统中有广阔的应用前景。

Claims (6)

1.一类区位选择性细菌硝基还原酶基因,其核苷酸序列为SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4中的一种。
2.如权利要求1所述的区位选择性细菌硝基还原酶基因所编码的蛋白质,其氨基酸序列为SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8中的一种。
3.一种包含如权利要求1所述基因之一的重组表达载体。
4.一种包含如权利要求3所述的重组表达载体之一的重组表达转化体。
5.一种重组区位选择性细菌硝基还原酶的制备方法,其特征在于:培养权利要求4所述重组表达转化体之一的菌株,从菌株的培养物中纯化得到突变型区位选择性细菌硝基还原酶的蛋白。
6.如权利要求2所述的蛋白质或如权利要求4所述的重组表达转化体作为催化剂在制备催化硝基还原,在药物激活剂代谢、芳香羟胺化合物的生物合成以及硝基类环境污染物生物代谢领域的制剂的应用。
CN201410336949.9A 2014-07-15 2014-07-15 一种区位选择性细菌硝基还原酶基因及其应用 Expired - Fee Related CN104099351B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410336949.9A CN104099351B (zh) 2014-07-15 2014-07-15 一种区位选择性细菌硝基还原酶基因及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410336949.9A CN104099351B (zh) 2014-07-15 2014-07-15 一种区位选择性细菌硝基还原酶基因及其应用

Publications (2)

Publication Number Publication Date
CN104099351A CN104099351A (zh) 2014-10-15
CN104099351B true CN104099351B (zh) 2016-08-24

Family

ID=51667891

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410336949.9A Expired - Fee Related CN104099351B (zh) 2014-07-15 2014-07-15 一种区位选择性细菌硝基还原酶基因及其应用

Country Status (1)

Country Link
CN (1) CN104099351B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108998429B (zh) * 2017-06-06 2019-11-19 南京农业大学 硝基还原酶基因lnr及其编码的蛋白和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1796548A (zh) * 2004-12-28 2006-07-05 中国科学院微生物研究所 一种硝基苯硝基还原酶及其编码基因与应用
CN102286508A (zh) * 2011-06-23 2011-12-21 浙江大学 用于降解硝基苯的重组质粒、基因工程菌及其制备方法
CN103642861A (zh) * 2013-11-28 2014-03-19 华东理工大学 一种硝基还原酶在芳香族硝基化合物降解还原中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1796548A (zh) * 2004-12-28 2006-07-05 中国科学院微生物研究所 一种硝基苯硝基还原酶及其编码基因与应用
CN102286508A (zh) * 2011-06-23 2011-12-21 浙江大学 用于降解硝基苯的重组质粒、基因工程菌及其制备方法
CN103642861A (zh) * 2013-11-28 2014-03-19 华东理工大学 一种硝基还原酶在芳香族硝基化合物降解还原中的应用

Also Published As

Publication number Publication date
CN104099351A (zh) 2014-10-15

Similar Documents

Publication Publication Date Title
Liu et al. NIN-like protein 7 transcription factor is a plant nitrate sensor
Garg et al. In vitro activity of the nisin dehydratase NisB
Lin et al. Cryptochrome structure and signal transduction
Masuda et al. AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides
Takahashi et al. Characterization of five polyamine oxidase isoforms in Arabidopsis thaliana
Chen et al. Distinct phytochrome actions in nonvascular plants revealed by targeted inactivation of phytobilin biosynthesis
Zeng et al. Comparative transcriptome combined with proteome analyses revealed key factors involved in alfalfa (Medicago sativa) response to waterlogging stress
Kunugi et al. Evolutionary Changes in Chlorophyllide a Oxygenase (CAO) Structure Contribute to the Acquisition of a New Light-harvesting Complex in Micromonas*♦
Hong et al. Ectopic expression of multiple chrysanthemum (Chrysanthemum× morifolium) R2R3-MYB transcription factor genes regulates anthocyanin accumulation in tobacco
Zhou et al. Characterization of a novel annexin gene from cotton (Gossypium hirsutum cv CRI 35) and antioxidative role of its recombinant protein
Tang et al. Genome‐wide identification of U‐box genes and protein ubiquitination under PEG‐induced drought stress in potato
Moon et al. Brassinosteroids signaling via BZR1 down-regulates expression of ACC oxidase 4 to control growth of Arabidopsis thaliana seedlings
Guo et al. Proteomic analysis of Potentilla fruticosa L. leaves by iTRAQ reveals responses to heat stress
Shaikhali et al. Biochemical and redox characterization of the mediator complex and its associated transcription factor GeBPL, a GLABROUS1 enhancer binding protein
CN104099351B (zh) 一种区位选择性细菌硝基还原酶基因及其应用
Xu et al. Functional analyses of the NRT2 family of nitrate transporters in Arabidopsis
Hadden et al. Arabidopsis PEX19 is a dimeric protein that binds the peroxin PEX10
Yang et al. Molecular characterization of a dehydroascorbate reductase from Pinus bungeana
CN104099352B (zh) 一种高活性细菌硝基还原酶基因及其应用
Smagghe et al. Immunolocalization of non-symbiotic hemoglobins during somatic embryogenesis in chicory
Li et al. Heterologous expression of Oenococcus oeni sHSP20 confers temperature stress tolerance in Escherichia coli
Kumar et al. Selective abolition of pancreatic RNase binding to its inhibitor protein
CN103421749A (zh) 棉花多胺氧化酶GhPAO2基因及其应用
CN104099353B (zh) 一种区位选择性细菌硝基还原酶基因、其重组酶及其应用
Yang et al. An ERF-type transcription factor is involved in the regulation of the dehydrin wzy1-2 gene in wheat

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160824

Termination date: 20200715

CF01 Termination of patent right due to non-payment of annual fee