CN104096849A - 金核银壳纳米探针及其制备方法与在氰根离子比色检测中的应用 - Google Patents

金核银壳纳米探针及其制备方法与在氰根离子比色检测中的应用 Download PDF

Info

Publication number
CN104096849A
CN104096849A CN201410336231.XA CN201410336231A CN104096849A CN 104096849 A CN104096849 A CN 104096849A CN 201410336231 A CN201410336231 A CN 201410336231A CN 104096849 A CN104096849 A CN 104096849A
Authority
CN
China
Prior art keywords
solution
silver
shell
probe
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410336231.XA
Other languages
English (en)
Other versions
CN104096849B (zh
Inventor
曾景斌
赵翠影
曹莹莹
陈秀秀
种法运
任卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201410336231.XA priority Critical patent/CN104096849B/zh
Publication of CN104096849A publication Critical patent/CN104096849A/zh
Application granted granted Critical
Publication of CN104096849B publication Critical patent/CN104096849B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

金核银壳纳米探针及其制备方法与在氰根离子比色检测中的应用,涉及一种金核银壳纳米探针。所述金核银壳纳米探针是具有核-壳结构的球形纳米粒子,金为核,直径为11~14nm;银为壳,厚度为1.3~7.4nm,稳定剂为吸附在银壳表面的柠檬酸根离子。金核银壳纳米探针的粒径为13.6~28.8nm。制备方法:将HAuCl4溶解在水中,配成HAuCl4溶液,加热至沸腾得溶液A;另将柠檬酸钠溶解在水中,加热至沸腾得溶液B;再将溶液A和溶液B混合,加热后溶液由浅黄色变为酒红色,冷却至室温,即得金纳米粒子溶液;将金纳米粒子溶液加入水,再依次加入银氨溶液和甲醛,反应后,溶液变为黄色,即得金核银壳纳米探针。

Description

金核银壳纳米探针及其制备方法与在氰根离子比色检测中的应用
技术领域
本发明涉及一种金核银壳纳米探针,尤其是涉及一种适用于氰根离子比色检测的金核银壳纳米探针。
背景技术
氰化物是最致命的有毒物之一,因为它可以与细胞色素氧化酶的Fe3+结合,生成氰化高铁细胞色素氧化酶,使细胞丧失传递电子的能力,最终窒息死亡。尽管氰化物有剧毒,它仍然在诸如冶炼金属、电镀及有机聚合物合成等工业领域有着广泛的应用。氰化物的广泛应用导致其不可避免地在环境中超标排放,增加了地表水及地下水受污染的风险。由于氰化物的剧毒性,世界卫生组织对饮用水中的氰根含量做了严格的规定,规定其在饮用水中的最高允许存在浓度为1.9μM。因此建立一种能够实时、快速地检测水中氰根离子含量的分析方法对保障人们身体健康具有十分重要意义。
传统的检测氰根离子的方法有气相色谱法、电化学法和荧光法。虽然这些方法检测灵敏度高、重现性好,但是操作较为繁琐且需要昂贵的大型仪器和专业的操作人员,难以实现水中氰根离子的实时、快速检测。目视比色法是实现氰根实时、快速检测的一种重要手段。现有的氰根比色法主要是利用氰根与具有共轭体系和发光基团的有机受体发生亲核反应,使有机受体的共轭体系发生变化,进而产生肉眼可以观测的颜色变化(M.Tomasulo and F.M.Raymo,Org.Lett.,2005,7,4633;D.Cho,J.H.Kim and J.L.Sessler,J.Am.Chem.Soc.2008,130,12163;X.Cheng,Y.Zhou,J.Qin and Z.Li,Acs Appl.Mater.Interfaces2012,4,2133;S.Madhu,S.K.Basu,S.Jadhav and M.Ravikanth,Analyst2013,138,299.)。这些方法一般较为灵敏,但是难以直接应用于水中氰根的检测,因为亲核反应一般需要在有机溶剂的环境中进行。不仅如此,其它亲核能力较强的阴离子如F-和AcO-对检测体系会造成干扰。此外,反应时间长、有机受体的合成复杂等不足也削弱了这些方法的实际应用价值。
发明内容
本发明的目的在于针对现有的氰根比色检测方法所存在的水兼容性差、反应时间长、有机受体合成复杂、特异性低等不足,提供一种具有合成简便、反应灵敏、特异性高等优点的适用于环境水样中氰根离子比色检测的金核银壳纳米探针及其制备方法。
本发明的另一目的在于提供所述金核银壳纳米探针在氰根离子比色检测中的应用。
所述金核银壳纳米探针是具有核-壳结构的球形纳米粒子,金为核,直径为11~14nm;银为壳,厚度为1.3~7.4nm,稳定剂为吸附在银壳表面的柠檬酸根离子。
所述金核银壳纳米探针的粒径为13.6~28.8nm。
所述金核银壳纳米探针的制备方法,包括以下步骤:
1)制备金纳米粒子溶液:将HAuCl4溶解在水中,配成HAuCl4溶液,加热至沸腾得溶液A;另将柠檬酸钠溶解在水中,加热至沸腾得溶液B;再将溶液A和溶液B混合,加热后溶液由浅黄色变为酒红色,冷却至室温,即得金纳米粒子溶液;
2)制备金核银壳纳米探针:将步骤1)得到的金纳米粒子溶液加入水,再依次加入银氨溶液和甲醛,反应后,溶液变为黄色,即得金核银壳纳米探针。
在步骤1)中,所述HAuCl4、水的配比可为0.41mg∶100mL,所述HAuCl4、柠檬酸钠的配比可为0.41mg∶114mg,所述柠檬酸钠、水的配比可为114mg∶10mL,其中,HAuCl4、柠檬酸钠以质量计算,水以体积计算;所述水可采用超纯水;所述加热的时间可为15min,所得金纳米粒子为直径11~14nm的金纳米粒子。
在步骤2)中,所述金纳米粒子溶液、水、银氨溶液、甲醛按体积比可为(200~400)∶(444~644)∶(40~80)∶(60~120);所述水可采用超纯水;所述银氨溶液可采用摩尔浓度为0.024~0.048M的银氨溶液;所述甲醛可采用摩尔浓度为0.01~0.05M的甲醛;所述反应的时间可为20~40min;所制得的金核银壳纳米探针的粒径为13.6~28.8nm。
所述金核银壳纳米探针可在氰根离子比色检测中应用。应用的方法如下:
取500μL已知浓度的氰根离子标准溶液(0、1.2、20、40、60、80、100、120、160μM),分别加入等体积的金核银壳纳米粒子溶液,使所有混合溶液在室温条件下反应5~10min后,用数码相机拍摄溶液的颜色,制作标准比色卡;同时,利用分光光度计扫描上述混合溶液的紫外-可见光谱,以394nm处的吸光度变化值为纵坐标,氰根离子的浓度为横坐标,绘制工作曲线,得到一元一次方程。取500μL的氰根污染环境水样,加入等体积的金核银壳纳米粒子溶液,使混合溶液在室温条件下反应5~10min后,用数码相机拍摄溶液颜色,将该照片中溶液的颜色与标准比色卡对比,即可对水样中的氰根离子含量进行半定量检测;同时,扫描混合溶液的紫外-可见光谱获取394nm波长处的吸光度变化值,代入上述一元一次方程,即可求得水样中氰根离子的浓度。
本发明给出一种新的检测氰根的方法,即使用金核银壳纳米粒子快速比色检测水中的氰根离子。首先通过柠檬酸钠还原氯金酸法合成金纳米溶胶,该溶胶颜色为红色。然后在金纳米溶胶中加入银氨试剂和甲醛,甲醛与银氨试剂发生银镜反应,生成的银层包裹在金纳米的表面,形成金核银壳纳米颗粒,形成的金核银壳纳米粒子性质稳定,在溶液中均匀分散,溶液颜色呈黄色。通过调整银氨和甲醛的浓度配比可改变生成的银壳厚度,即可制备不同核壳粒径比的金核银壳纳米粒子。当该金核银壳纳米粒子体系暴露于含有氰根离子的水溶液,氰根与银壳在氧气的作用下反应生成[Ag(CN)2]-,银壳逐渐溶解,其表面等离子体共振吸收逐渐由金银协同共振向金纳米共振过渡,最大吸收波长由394nm逐渐红移至520nm,溶液颜色由黄色向橙色、粉红色过渡。随着氰根浓度的进一步增加,金核也被溶解,生成[Au(CN)2]-,溶液颜色由粉红色变为无色。这一系列颜色变化与氰根浓度呈正相关,操作人员根据颜色的变化即可半定量检测氰根,通过扫描紫外-可见光谱可实现定量检测。这种比色分析法灵敏度高、选择性好、反应时间短、无需大型仪器和专业的操作人员,利用肉眼即可进行氰根的定性和半定量分析,可以用于现场水样氰根含量的快速检测。
附图说明
图1为本发明金核银壳纳米粒子比色检测氰根离子的原理示意图。
图2为本发明金核银壳纳米粒子的透射电镜和能量色散X射线元素分析图。在图2中,曲线a~c为透射电镜图,曲线d为能量色散X射线元素分析图。
图3为不同壳核尺寸比的金核银壳纳米粒子的透射电镜和粒径分布图。在图3中,曲线a~c为甲醛和银氨浓度配比分别为1∶120,1∶24和1∶15合成的金核银壳纳米粒子;曲线b~f为上述合成的金核银壳纳米粒子所对应的粒径分布图。
图4为本发明金核银壳纳米粒子实施例检测不同浓度氰根的照片。
图5为本发明金核银壳纳米粒子实施例检测不同浓度氰根的紫外-可见扫描光谱。
图6为本发明金核银壳纳米粒子实施例检测不同浓度氰根的394nm处吸光度变化值与氰根浓度的线性关系曲线图。
图7为本发明金核银壳纳米粒子实施例检测不同浓度氰根的响应时间曲线。
图8为本发明金核银壳纳米粒子实施例对氰根与其它类型的18种阴离子的响应效果比较图。
具体实施方式
以下实施例将结合附图对本发明作进一步的说明。
图1给出本发明所述的金核银壳纳米粒子比色检测氰根离子的原理示意图。本发明所制备金核银壳纳米粒子溶液的颜色为黄色。当该金核银壳纳米粒子暴露在氰根离子的环境中,氰根会逐渐溶解银壳,生成[Ag(CN)2]-,溶液的颜色发生由黄色变为粉红色;随着氰根浓度提高,进一步溶解金核,生成[Au(CN)2]-,溶液的颜色由粉红色逐渐变为无色,这一系列溶液颜色变化与氰根浓度呈正相关,可用于氰根浓度的半定量测定。
图2给出本发明所述的金核银壳纳米粒子的透射电镜与能量色散X射线元素分析图。如图1a-b所示,大部分纳米粒子呈球形,具有不均匀的电子密度,呈现出颜色较深的核和颜色较浅的壳。能量色散X射线元素分析结果进一步表明,金元素主要分布在中心部分,而银则在四周。以上表征结果说明了本发明所提供的方法成功合成了金核银壳纳米粒子。
图3给出采用不同配比的银氨和甲醛合成不同尺寸的金核银壳纳米粒子的透射电镜与粒径分布图。本发明利用银氨和甲醛发生银镜反应生成银包裹在金纳米表面,形成金核银壳纳米粒子。我们可以通过改变银氨和甲醛的配比,控制生成的银的厚度,进而制备不同核壳尺寸比的金核银壳纳米粒子。如图3a~c所示,随着甲醛和银氨的配比逐渐提高,制备的金核银壳纳米粒子逐渐增大;图3d~f显示,其尺寸由15.6nm增加为21.2nm和27.8nm。以上结果说明,本发明所提供的方法可以方便的制备不同核壳比的金核银壳纳米粒子。
以下结合具体实施例对本方法的性能进行详细的考察。
实施例1:以下给出本发明所制备的金核银壳纳米探针对系列浓度氰根离子溶液的检测效果。配制一系列浓度的氰根离子溶液(0~160μM),加入金核银壳纳米粒子溶液,室温下反应5min后进行拍照和扫描紫外-可见光谱。图4表明,随着氰根浓度的增加,溶液颜色由黄色变为粉红色,最后变为无色,根据颜色变化即可实现对氰根浓度的半定量检测。图5表明,随着氰根浓度提高,394nm的吸光度值逐渐降低,并且吸光度的变化值与氰根浓度在0-100μM范围内呈很好的线性关系(图6),线性相关系数达到0.9984,最低检测浓度为0.4μM,说明本方法可用于氰根的定量检测。
实施例2:以下给出本发明所述的金核银壳纳米粒子实施例检测不同浓度氰根的响应时间曲线。配置不同浓度的氰根离子溶液,分别加入金核银壳纳米溶胶,在室温下采用分光光度计监测394nm吸光度变化值与反应时间的关系曲线。由图7所示,当金核银壳纳米溶胶暴露于氰根离子环境,394nm处的吸光度值在1min内显著下降,随后趋于平衡,说明利用本发明所述的金核银壳纳米粒子检测氰根离子具有响应速度快、反应时间短的优点。
实施例3:以下给出本发明所述的金核银壳纳米粒子实施例对氰根与其它类型的18种阴离子的响应效果比较。图8表明,本发明所述的金核银壳纳米粒子对氰根离子的响应信号是其它所有18种阴离子的9.2-230倍,说明本方法对氰根离子具有很高的特异性。
实施例4:以下给出本发明所述的金核银壳纳米粒子实施例检测实际饮用水样品。为了检验本方法在实际样品中氰根检测的可行性,将其应用于三种不同品牌的桶装饮用水中氰根含量的检测。实验结果表明,三份水样均未检测出氰根。往水样中加入一定浓度的氰根,做加标回收测试,加标浓度分别为1μM,10μM,25μM。如表1所示,三份水样的加标回收率介于100%-108%之间,相对标准偏差小于0.93%,说明建立的方法能满足饮用水中氰根离子的检测要求。
表1 方法对不同浓度氰根的饮用水加标回收测试
本发明所提出的基于金核银壳纳米粒子为探针的氰根比色检测方法主要有以下特点:
1)合成的金核银壳纳米粒子具有尺寸均一、合成简便、稳定性好等优点,并且可以方便的通过控制银氨和甲醛浓度配比达到制备不同核壳粒径比的纳米粒子的目的。
2)基于金银核壳纳米粒子比色检测水中氰根的方法反应速度快、灵敏度高、选择性好,通过肉眼即可实现对氰根浓度的实时、快速半定量检测。

Claims (10)

1.金核银壳纳米探针,其特征在于为具有核-壳结构的球形纳米粒子,金为核,直径为11~14nm;银为壳,厚度为1.3~7.4nm,稳定剂为吸附在银壳表面的柠檬酸根离子。
2.如权利要求1所述金核银壳纳米探针,其特征在于所述金核银壳纳米探针的粒径为13.6~28.8nm。
3.如权利要求1所述金核银壳纳米探针的制备方法,其特征在于包括以下步骤:
1)制备金纳米粒子溶液:将HAuCl4溶解在水中,配成HAuCl4溶液,加热至沸腾得溶液A;另将柠檬酸钠溶解在水中,加热至沸腾得溶液B;再将溶液A和溶液B混合,加热后溶液由浅黄色变为酒红色,冷却至室温,即得金纳米粒子溶液;
2)制备金核银壳纳米探针:将步骤1)得到的金纳米粒子溶液加入水,再依次加入银氨溶液和甲醛,反应后,溶液变为黄色,即得金核银壳纳米探针。
4.如权利要求3所述金核银壳纳米探针的制备方法,其特征在于在步骤1)中,所述HAuCl4、水的配比为0.41mg∶100mL,所述HAuCl4、柠檬酸钠的配比为0.41mg∶114mg,所述柠檬酸钠、水的配比为114mg∶10mL,其中,HAuCl4、柠檬酸钠以质量计算,水以体积计算。
5.如权利要求3所述金核银壳纳米探针的制备方法,其特征在于在步骤1)中,所述水采用超纯水;所述加热的时间可为15min,所得金纳米粒子为直径11~14nm的金纳米粒子。
6.如权利要求3所述金核银壳纳米探针的制备方法,其特征在于在步骤2)中,所述金纳米粒子溶液、水、银氨溶液、甲醛按体积比为(200~400)∶(444~644)∶(40~80)∶(60~120);所述水可采用超纯水。
7.如权利要求3所述金核银壳纳米探针的制备方法,其特征在于在步骤2)中,所述银氨溶液采用摩尔浓度为0.024~0.048M的银氨溶液;所述甲醛采用摩尔浓度为0.01~0.05M的甲醛。
8.如权利要求3所述金核银壳纳米探针的制备方法,其特征在于在步骤2)中,所述反应的时间为20~40min;所制得的金核银壳纳米探针的粒径为13.6~28.8nm。
9.如权利要求1所述金核银壳纳米探针在氰根离子比色检测中的应用。
10.如权利要求9所述应用,其特征在于其具体方法如下:
分别取500μL已知浓度的氰根离子标准溶液0、1.2μM、20μM、40μM、60μM、80μM、100μM、120μM、160μM,分别加入等体积的金核银壳纳米粒子溶液,使所有混合溶液在室温条件下反应5~10min后,用数码相机拍摄溶液的颜色,制作标准比色卡;同时,利用分光光度计扫描上述混合溶液的紫外-可见光谱,以394nm处的吸光度变化值为纵坐标,氰根离子的浓度为横坐标,绘制工作曲线,得到一元一次方程;取500μL的氰根污染环境水样,加入等体积的金核银壳纳米粒子溶液,使混合溶液在室温条件下反应5~10min后,用数码相机拍摄溶液颜色,将该照片中溶液的颜色与标准比色卡对比,即对水样中的氰根离子含量进行半定量检测;同时,扫描混合溶液的紫外-可见光谱获取394nm波长处的吸光度变化值,代入上述一元一次方程,即求得水样中氰根离子的浓度。
CN201410336231.XA 2014-07-15 2014-07-15 金核银壳纳米探针的制备方法及其在氰根离子比色检测中的应用 Expired - Fee Related CN104096849B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410336231.XA CN104096849B (zh) 2014-07-15 2014-07-15 金核银壳纳米探针的制备方法及其在氰根离子比色检测中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410336231.XA CN104096849B (zh) 2014-07-15 2014-07-15 金核银壳纳米探针的制备方法及其在氰根离子比色检测中的应用

Publications (2)

Publication Number Publication Date
CN104096849A true CN104096849A (zh) 2014-10-15
CN104096849B CN104096849B (zh) 2016-10-19

Family

ID=51665612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410336231.XA Expired - Fee Related CN104096849B (zh) 2014-07-15 2014-07-15 金核银壳纳米探针的制备方法及其在氰根离子比色检测中的应用

Country Status (1)

Country Link
CN (1) CN104096849B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104308184A (zh) * 2014-10-24 2015-01-28 武汉理工大学 一种可见光制备Au-Ag核壳纳米粒子的方法
CN105044092A (zh) * 2015-06-25 2015-11-11 中国石油大学(华东) 一种基于金纳米-硫脲的Hg2+比色检测方法
CN105842181A (zh) * 2016-06-03 2016-08-10 盐城工学院 一种基于金纳米棒检测氰根离子的方法
CN106932392A (zh) * 2017-04-06 2017-07-07 南昌大学 一种基于半胱氨酸修饰的金银合金纳米粒子探针可视化检测水中镉的方法
CN108213459A (zh) * 2018-03-14 2018-06-29 郑州轻工业学院 一种葡聚糖/纳米金-银合金复合物的制备方法
CN108247041A (zh) * 2018-01-23 2018-07-06 中国科学院长春应用化学研究所 一种Au@Ag核壳结构纳米材料、制备方法及降低细胞毒性的方法
CN110879223A (zh) * 2019-11-20 2020-03-13 厦门华厦学院 一种啤酒中甲醛的快速检测试剂及其检测方法
CN110940718A (zh) * 2019-12-10 2020-03-31 集美大学 一种近红外光电Ag2S@Au立方材料的制备和测试方法
CN112113925A (zh) * 2020-09-28 2020-12-22 重庆大学 一种Au NDC@Ag NRs探针及其制备方法和应用
CN113059175A (zh) * 2021-01-08 2021-07-02 中国石油大学(华东) 一种Au@Ag@AgCl纳米粒子的制备方法及其在氨气比色检测中的应用
CN113075275A (zh) * 2021-03-23 2021-07-06 常州大学 一种金@银核壳纳米粒子及其用于电化学交流阻抗超灵敏手性识别的方法
CN113138189A (zh) * 2021-04-22 2021-07-20 中国石油大学(华东) 一种AgPt-Fe3O4@SiO2纳米粒子探针用于比色检测氟离子的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020177143A1 (en) * 2001-05-25 2002-11-28 Mirkin Chad A. Non-alloying core shell nanoparticles
US20060275596A1 (en) * 2005-05-07 2006-12-07 Payne J D Plasmon resonant based eye protection
CN102066941A (zh) * 2008-05-07 2011-05-18 首尔大学校产学协力财团 用于生物传感器的新型Au/Ag核-壳复合材料
CN102094246A (zh) * 2009-12-11 2011-06-15 国家纳米科学中心 一种金核与银壳双金属纳米晶体及其制备方法
CN102788786A (zh) * 2011-05-18 2012-11-21 国家纳米科学中心 利用金纳米颗粒和银镜反应检测葡萄糖的方法
CN102908633A (zh) * 2012-07-31 2013-02-06 南京大学 一种多功能的金银核壳纳米颗粒及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020177143A1 (en) * 2001-05-25 2002-11-28 Mirkin Chad A. Non-alloying core shell nanoparticles
US20060275596A1 (en) * 2005-05-07 2006-12-07 Payne J D Plasmon resonant based eye protection
CN102066941A (zh) * 2008-05-07 2011-05-18 首尔大学校产学协力财团 用于生物传感器的新型Au/Ag核-壳复合材料
CN102094246A (zh) * 2009-12-11 2011-06-15 国家纳米科学中心 一种金核与银壳双金属纳米晶体及其制备方法
CN102788786A (zh) * 2011-05-18 2012-11-21 国家纳米科学中心 利用金纳米颗粒和银镜反应检测葡萄糖的方法
CN102908633A (zh) * 2012-07-31 2013-02-06 南京大学 一种多功能的金银核壳纳米颗粒及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
纪小会,等: ""Au/Ag核-壳结构纳米粒子的制备及其SERS效应"", 《高等学校化学学报》, vol. 23, no. 12, 31 December 2002 (2002-12-31) *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104308184B (zh) * 2014-10-24 2016-08-24 武汉理工大学 一种可见光制备Au-Ag核壳纳米粒子的方法
CN104308184A (zh) * 2014-10-24 2015-01-28 武汉理工大学 一种可见光制备Au-Ag核壳纳米粒子的方法
CN105044092A (zh) * 2015-06-25 2015-11-11 中国石油大学(华东) 一种基于金纳米-硫脲的Hg2+比色检测方法
CN105842181A (zh) * 2016-06-03 2016-08-10 盐城工学院 一种基于金纳米棒检测氰根离子的方法
CN105842181B (zh) * 2016-06-03 2018-09-18 盐城工学院 一种基于金纳米棒检测氰根离子的方法
CN106932392A (zh) * 2017-04-06 2017-07-07 南昌大学 一种基于半胱氨酸修饰的金银合金纳米粒子探针可视化检测水中镉的方法
CN108247041A (zh) * 2018-01-23 2018-07-06 中国科学院长春应用化学研究所 一种Au@Ag核壳结构纳米材料、制备方法及降低细胞毒性的方法
CN108213459B (zh) * 2018-03-14 2020-12-29 郑州轻工业学院 一种葡聚糖/纳米金-银合金复合物的制备方法
CN108213459A (zh) * 2018-03-14 2018-06-29 郑州轻工业学院 一种葡聚糖/纳米金-银合金复合物的制备方法
CN110879223A (zh) * 2019-11-20 2020-03-13 厦门华厦学院 一种啤酒中甲醛的快速检测试剂及其检测方法
CN110940718A (zh) * 2019-12-10 2020-03-31 集美大学 一种近红外光电Ag2S@Au立方材料的制备和测试方法
CN110940718B (zh) * 2019-12-10 2022-04-01 集美大学 一种近红外光电Ag2S@Au立方材料的制备和测试方法
CN112113925A (zh) * 2020-09-28 2020-12-22 重庆大学 一种Au NDC@Ag NRs探针及其制备方法和应用
CN113059175A (zh) * 2021-01-08 2021-07-02 中国石油大学(华东) 一种Au@Ag@AgCl纳米粒子的制备方法及其在氨气比色检测中的应用
CN113059175B (zh) * 2021-01-08 2022-08-19 中国石油大学(华东) 一种Au@Ag@AgCl纳米粒子的制备方法及其在氨气比色检测中的应用
CN113075275A (zh) * 2021-03-23 2021-07-06 常州大学 一种金@银核壳纳米粒子及其用于电化学交流阻抗超灵敏手性识别的方法
CN113138189A (zh) * 2021-04-22 2021-07-20 中国石油大学(华东) 一种AgPt-Fe3O4@SiO2纳米粒子探针用于比色检测氟离子的方法

Also Published As

Publication number Publication date
CN104096849B (zh) 2016-10-19

Similar Documents

Publication Publication Date Title
CN104096849A (zh) 金核银壳纳米探针及其制备方法与在氰根离子比色检测中的应用
Schoolaert et al. Colorimetric nanofibers as optical sensors
Chu et al. Highly sensitive and linear optical fiber carbon dioxide sensor based on sol–gel matrix doped with silica particles and HPTS
Sun et al. Performance enhancement of paper-based SERS chips by shell-isolated nanoparticle-enhanced Raman spectroscopy
CN103411962B (zh) 一种钴离子比色法检测试剂盒及其检测方法
Liang et al. Arsenazo III-functionalized gold nanoparticles for photometric determination of uranyl ion
Zhang et al. Gas-segmented continuous flow analysis of iron in water with a long liquid waveguide capillary flow cell
Zhang et al. Colorimetric determination of copper (II) using a polyamine-functionalized gold nanoparticle probe
CN110125432A (zh) 一种绿色荧光铜纳米团簇的制备方法及应用
Yang et al. Metal-enhanced fluorometric formaldehyde assay based on the use of in-situ grown silver nanoparticles on silica-encapsulated carbon dots
CN105044092A (zh) 一种基于金纳米-硫脲的Hg2+比色检测方法
Feng et al. Highly selective colorimetric detection of Ni 2+ using silver nanoparticles cofunctionalized with adenosine monophosphate and sodium dodecyl sulfonate
CN103983638B (zh) 一种利用金纳米颗粒同时检测三价六价铬离子的方法
Wang et al. High-performance electrochemiluminescence sensors based on ultra-stable perovskite quantum dots@ ZIF-8 composites for aflatoxin B1 monitoring in corn samples
CN104330364A (zh) 一种比色检测碘离子的方法
CN113059175B (zh) 一种Au@Ag@AgCl纳米粒子的制备方法及其在氨气比色检测中的应用
Shen et al. Fluorescence detection of carbofuran in aqueous extracts based on dual‐emission SiO2@ Y2O3:(Eu3+, Tb3+)@ MIP core‐shell structural nanoparticles
Yang et al. Multifunctional paper strip based on GO-veiled Ag nanoparticles with highly SERS sensitive and deliverable properties for high-performance molecular detection
Bian et al. Graphene Oxide‐Hyperbranched Polyethyleneimine Fabricated and Stabilized AuNPs Nanocomposites for Colorimetric Detection of Silver Ions Based on a Non‐Aggregation Mechanism
Wang et al. High-sensitivity biosensor based on SERS integrated with dendrimer-assisted boronic acid-functionalized magnetic nanoparticles for IL-6 detection in human serum
Islam et al. Synthesis of optically active bromophenol blue encapsulated mesoporous silica–titania nanomatrix: structural and sensing characteristics
Yang et al. Preparation of porous uranium oxide hollow nanospheres with peroxidase mimicking activity: application to the colorimetric determination of tin (II)
Zheng et al. Application of CD and Eu3+ dual emission MOF colorimetric fluorescent probe based on neural network in Fe3+ detection
CN106670497A (zh) 温度敏感的纳米材料及其制备方法和应用
CN108827897A (zh) 检测汞离子的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161019

Termination date: 20170715