CN104076266A - Method for extracting subthreshold swing of MOSFET of double-material double-gate structure - Google Patents
Method for extracting subthreshold swing of MOSFET of double-material double-gate structure Download PDFInfo
- Publication number
- CN104076266A CN104076266A CN201410300741.1A CN201410300741A CN104076266A CN 104076266 A CN104076266 A CN 104076266A CN 201410300741 A CN201410300741 A CN 201410300741A CN 104076266 A CN104076266 A CN 104076266A
- Authority
- CN
- China
- Prior art keywords
- grid
- formula
- gate
- work function
- double
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 4
- 229920005591 polysilicon Polymers 0.000 claims description 4
- 230000005684 electric field Effects 0.000 claims description 3
- 238000006467 substitution reaction Methods 0.000 claims 5
- 101100496968 Caenorhabditis elegans ctc-1 gene Proteins 0.000 claims 1
- 101100221647 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cox-1 gene Proteins 0.000 claims 1
- 101150062589 PTGS1 gene Proteins 0.000 claims 1
- 230000001939 inductive effect Effects 0.000 claims 1
- ONUFESLQCSAYKA-UHFFFAOYSA-N iprodione Chemical compound O=C1N(C(=O)NC(C)C)CC(=O)N1C1=CC(Cl)=CC(Cl)=C1 ONUFESLQCSAYKA-UHFFFAOYSA-N 0.000 claims 1
- 230000010355 oscillation Effects 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 abstract description 4
- 230000005669 field effect Effects 0.000 abstract description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000008186 active pharmaceutical agent Substances 0.000 description 5
- 101100446289 Caenorhabditis elegans fbf-2 gene Proteins 0.000 description 3
- 102100031806 Fas-binding factor 1 Human genes 0.000 description 3
- 101001065295 Homo sapiens Fas-binding factor 1 Proteins 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 101000919849 Homo sapiens Cytochrome c oxidase subunit 1 Proteins 0.000 description 1
- 101000725401 Homo sapiens Cytochrome c oxidase subunit 2 Proteins 0.000 description 1
- 101000605122 Homo sapiens Prostaglandin G/H synthase 1 Proteins 0.000 description 1
- 101000605127 Homo sapiens Prostaglandin G/H synthase 2 Proteins 0.000 description 1
- 102100038277 Prostaglandin G/H synthase 1 Human genes 0.000 description 1
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明属于半导体技术领域,具体为一种提取双材料双栅结构金属-氧化物-半导体场效应晶体管的亚阈值摆幅的方法。本发明通过求出双材料双栅结构MOSFET的电势分布,然后根据亚阈值摆幅的定义,利用求得的电势得到亚阈值摆幅的解析模型。该亚阈值摆幅解析模型形式简洁、物理概念清晰,为电路模拟软件在研究新型双材料双栅结构器件时候,提供了一种快速的工具。
The invention belongs to the technical field of semiconductors, in particular to a method for extracting the subthreshold swing of a metal-oxide-semiconductor field-effect transistor with a double-material double-gate structure. The invention obtains the potential distribution of the dual-material double-gate structure MOSFET, and then obtains the analytical model of the sub-threshold swing by using the obtained potential according to the definition of the sub-threshold swing. The sub-threshold swing analytical model is simple in form and clear in physical concept, which provides a fast tool for circuit simulation software to study new dual-material double-gate structure devices.
Description
技术领域technical field
本发明属于半导体技术领域,具体涉及一种提取双材料双栅结构金属-氧化物-半导体场效应晶体管(MOSFET)亚阈值摆幅的方法。The invention belongs to the technical field of semiconductors, and in particular relates to a method for extracting a subthreshold swing of a metal-oxide-semiconductor field-effect transistor (MOSFET) with a double-material double-gate structure.
背景技术Background technique
随着集成电路芯片集成度不断提高,器件几何尺寸不断缩小,MOSFET器件已经逐步从平面结构向非平面立体结构发展。而在各类非传统平面器件结构中,双栅结构MOSFET的栅极控制能力强,能够更好抑制短沟道效应,降低器件的静待功耗。将双材料栅极MOSFET与双栅MOSFET结合,就能结合两者的优点,使得器件有更好的短沟道特性和性能。由于靠近漏端使用功函数较小的材料做栅,可以减小平带电压,增大有效栅压,可以减小漏端沿沟道方向电场,从而减小热载流子效应。由于以上优势,对这种双栅MOSFET结构创建解析模型变得尤为重要,并且其亚阈值摆幅提取模型日益受到工业界关注。传统体硅MOSFET亚阈值摆幅模型已经不再适合,这对于新型多栅纳米器件的建模与模拟带来了新的挑战。With the continuous improvement of integrated circuit chip integration and the continuous reduction of device geometry, MOSFET devices have gradually developed from a planar structure to a non-planar three-dimensional structure. Among all kinds of non-traditional planar device structures, the dual-gate structure MOSFET has strong gate control ability, which can better suppress the short-channel effect and reduce the static power consumption of the device. Combining dual-material gate MOSFET with dual-gate MOSFET can combine the advantages of both, making the device have better short-channel characteristics and performance. Since the gate is made of a material with a smaller work function near the drain end, the flat-band voltage can be reduced, the effective gate voltage can be increased, and the electric field along the channel direction at the drain end can be reduced, thereby reducing the hot carrier effect. Due to the above advantages, it is particularly important to create an analytical model for this dual-gate MOSFET structure, and its subthreshold swing extraction model is increasingly concerned by the industry. The traditional bulk silicon MOSFET subthreshold swing model is no longer suitable, which brings new challenges to the modeling and simulation of new multi-gate nanodevices.
亚阈值摆幅是MOSFET最为重要参数之一,它的定义为:亚阈值区域,电流每变化十倍,栅极偏压所需要变化量。为了使用电路模拟软件能够正确模拟电路特性,建立精确的亚阈值摆幅模型是非常重要的。Sub-threshold swing is one of the most important parameters of MOSFET. It is defined as: in the sub-threshold region, the gate bias voltage needs to change for every ten-fold change in current. In order to correctly simulate circuit characteristics using circuit simulation software, it is very important to establish an accurate subthreshold swing model.
发明内容Contents of the invention
本发明目的在于提供一种方便、正确提取双材料双栅MOSFET亚阈值摆幅的方法。The purpose of the present invention is to provide a convenient and correct method for extracting the sub-threshold swing of a dual-material dual-gate MOSFET.
本发明提供的提取双材料双栅MOSFET亚阈值摆幅的方法,关键是建立形式简洁、物理概念清晰,且精度高的双材料双栅MOSFET亚阈值摆幅解析模型。The key to the method for extracting the sub-threshold swing of the dual-material dual-gate MOSFET provided by the present invention is to establish an analytical model of the sub-threshold swing of the dual-material dual-gate MOSFET with simple form, clear physical concept and high precision.
本发明建立的双材料双栅结构MOSFET亚阈值摆幅解析模型,为电路模拟软件提供一种快速精确解析双栅结构模型。The dual-material double-gate structure MOSFET sub-threshold swing analysis model established by the invention provides a fast and accurate analysis double-gate structure model for circuit simulation software.
具体步骤如下:Specific steps are as follows:
(1)建立双材料双栅MOSFET(1) Build a dual-material dual-gate MOSFET
双材料双栅MOSFET与双栅MOSFET类似,中间是硅。沟道采用p型掺杂,源漏则采用n型重掺杂。栅极采用不对称的结构,其中一个栅极采用两种功函数不同的材料制备。为了得到阶梯型的沟道电势分布,材料M2采用功函数较小的n型重掺杂多晶硅(功函数为4.17eV),材料M1则采用功函数较高的p型多晶硅(功函数为5.25eV)。两端栅极外接同样的偏压。A dual-material dual-gate MOSFET is similar to a dual-gate MOSFET with silicon in the middle. The channel is doped with p-type, and the source and drain are heavily doped with n-type. The gate adopts an asymmetric structure, and one of the gates is made of two materials with different work functions. In order to obtain a stepped channel potential distribution, material M2 uses n-type heavily doped polysilicon with a small work function (work function is 4.17eV), and material M1 uses p-type polysilicon with a high work function (work function is 5.25eV ). The gates at both ends are externally connected with the same bias voltage.
沟道长度为L一端的栅极被划分为两个部分,分别对应两种功函数不同的栅极材料。材料M1对应的长度为L1,材料M2对应的长度为L2,L=L1+L2。材料M1的功函数为5.25eV,材料M2的功函数为4.17eV。tox1,tox2为前栅和背栅氧化层厚度,tsi为沟道厚度。The gate at one end of which the channel length is L is divided into two parts corresponding to two gate materials with different work functions. The length corresponding to the material M1 is L 1 , the length corresponding to the material M2 is L 2 , and L=L 1 +L 2 . The work function of the material M1 is 5.25 eV, and the work function of the material M2 is 4.17 eV. t ox1 and t ox2 are the thickness of the front gate and back gate oxide layer, and t si is the thickness of the channel.
(2)求解沟道电势的泊松方程,得到沟道电势(2) Solve the Poisson equation of the channel potential to obtain the channel potential
沟道电势的泊松方程可以表示为:The Poisson equation for the channel potential can be expressed as:
其中q为电子电荷,NA为沟道的掺杂浓度,εsi为硅的介电常数,φ(x,y)为沟道电势。Where q is the electron charge, N A is the doping concentration of the channel, ε si is the dielectric constant of silicon, and φ(x,y) is the channel potential.
根据电场在沟道、氧化层交界面连续以及源、漏两端的电压,边界条件可表示为:According to the continuity of the electric field at the interface between the channel and the oxide layer and the voltage across the source and drain, the boundary conditions can be expressed as:
φ(x=0,y)=VS (2)φ(x=0,y)=V S (2)
φ(x=L,y)=VS+VDS (3)φ(x=L,y)=V S +V DS (3)
其中,VS为内建电势,VDS为漏源电压,COX1、COX2分别为上栅和下栅氧化层单位面积电容,VGFF、VGFB分别为上栅和下栅有效栅压。Among them, VS is the built-in potential, VDS is the drain-source voltage, COX1 and COX2 are the capacitance per unit area of the oxide layer of the upper gate and the lower gate respectively, and V GFF and V GFB are the effective gate voltages of the upper gate and the lower gate respectively.
双栅材料的栅极采用两种功函数不同的材料来形成。由于有效栅压表达式为VGFF=VGS-VFBF,VFBF为前栅平带电压,且VFBF在两种材料中对应不同的值,因此(4)式中的VGFF应当为一个分段函数。如果定义VFBF1和VFBF2分别为两种材料的平带电压的话,那么VGFF就能够表示为VGFF=VGS-VFBF1(0<x<L1),VGFF=VGS-VFBF2(L1<x<L1+L2)。VFBF1和VFBF2可以通过材料的功函数来计算得到。定义r1=VGFB/VGFF,r2=Cox2/Cox1,并且代入式(5),边界条件可以重新表示为:The gate of the dual gate material is formed using two materials with different work functions. Since the effective gate voltage expression is V GFF =V GS -V FBF , V FBF is the front gate flat band voltage, and V FBF corresponds to different values in the two materials, so V GFF in formula (4) should be one piecewise function. If V FBF1 and V FBF2 are defined as the flat band voltages of the two materials respectively, then V GFF can be expressed as V GFF =V GS -V FBF1 (0<x<L 1 ), V GFF =V GS -V FBF2 (L 1 <x<L 1 +L 2 ). V FBF1 and V FBF2 can be calculated from the work function of the material. Define r 1 =V GFB /V GFF , r 2 =C ox2 /C ox1 , and substitute into formula (5), the boundary conditions can be re-expressed as:
解的形式可以表示为:The form of the solution can be expressed as:
其中n为整数,An为待定系数。Among them, n is an integer, and An is an undetermined coefficient.
将式(7)代入泊松方程(1),可以得到:Substituting equation (7) into Poisson equation (1), we can get:
其中kn=nπ/L,fn=(2qNA/nπεsi)[1-(-1)n]。式(8)是一个常微分方程,解为:where k n =nπ/L, f n =(2qN A /nπε si )[1-(-1) n ]. Equation (8) is an ordinary differential equation, the solution is:
将式(9)代入边界条件(4)与(6),然后作傅里叶展开,可以进一步求出系数Cn与Dn分别为:Substituting equation (9) into boundary conditions (4) and (6), and then performing Fourier expansion, the coefficients C n and D n can be further obtained as follows:
以及as well as
其中Gn、Hn分别为Among them, G n and H n are respectively
这样就可以得到双材料双栅的沟道电势表达式。如果引入更多的不同功函数的材料,那么可以用类似的方法求解。In this way, the channel potential expression of the double material double gate can be obtained. If more materials with different work functions are introduced, then similar methods can be used to solve them.
(3)建立双材料双栅MOSFET的亚阀值摆幅解析表达式(3) Establish an analytical expression for the subthreshold swing of a dual-material dual-gate MOSFET
亚阈值摆幅定义为:Subthreshold swing is defined as:
在亚阈值区域,双材料双栅MOSFET处于弱反型条件下,源漏电流压可以近似表示成:In the subthreshold region, the dual-material dual-gate MOSFET is under weak inversion conditions, and the source-drain current voltage can be approximately expressed as:
Ids∝nmin(y) (15)I ds ∝ n min (y) (15)
nmin(y)可以表示成
其中Vt=kBT/q,kB为波尔兹曼常数,T为温度。Where V t =k B T/q, k B is Boltzmann's constant, and T is temperature.
将前一部分沟道电势的结果代入(16)式,可以得到亚阈值摆幅的解析表达式为:Substituting the result of the channel potential in the previous part into Equation (16), the analytical expression of the subthreshold swing can be obtained as:
计算时,y可用沟道的有效导电路径yeff替代,也就是电荷的等效质心,When calculating, y can be replaced by the effective conduction path y eff of the channel, which is the equivalent centroid of the charge,
其中,ni为本征载流子浓度。yeff的表达式可改写为in, ni is the intrinsic carrier concentration. The expression of y eff can be rewritten as
这样,就得到了双材料双栅MOSFET的亚阈值摆幅解析模型。In this way, the sub-threshold swing analytical model of dual-material dual-gate MOSFET is obtained.
附图说明Description of drawings
图1双材料双栅MOSFET二维结构示意图。Figure 1 Schematic diagram of the two-dimensional structure of a dual-material dual-gate MOSFET.
图2电势在沟道表面的分布情况。Figure 2 The distribution of the potential on the channel surface.
图3在不同的体硅厚度时,双材料双栅MOSFET亚阈值摆幅与沟道长度的变化关系。Figure 3 shows the relationship between the subthreshold swing and the channel length of a dual-material dual-gate MOSFET with different bulk silicon thicknesses.
图4在不同的氧化层厚度时,双材料双栅MOSFET亚阈值摆幅与沟道长度的变化关系。Figure 4 shows the relationship between the subthreshold swing and the channel length of a dual-material dual-gate MOSFET with different oxide layer thicknesses.
图5亚阈值摆幅建模流程示意图。Fig. 5 Schematic diagram of the modeling process of subthreshold swing.
具体实施方式Detailed ways
通过我们的解析模型计算,如图3所示,本发明对双材料双栅MOSFET亚阈值摆幅在不同体硅厚度下随沟道长度变化的解析结果。图4为双材料双栅MOSFET亚阈值摆幅在不同栅氧化层厚度下随沟道长度变化的解析结果。同普通的双栅MOSFET一样,双材料双栅MOSFET的亚阈值摆幅同样随沟道长度减少而减少。同时,栅氧化层的增加以及沟道厚度的增加,都会使得沟道的亚阈值特性变差,亚阈值摆幅增加。Calculated by our analytical model, as shown in FIG. 3 , the present invention shows the analytical results of the variation of the subthreshold swing of the dual-material dual-gate MOSFET with the channel length under different bulk silicon thicknesses. Figure 4 shows the analytical results of the subthreshold swing of the dual-material dual-gate MOSFET as a function of channel length under different gate oxide thicknesses. Like ordinary dual-gate MOSFETs, the subthreshold swing of dual-material dual-gate MOSFETs also decreases with decreasing channel length. At the same time, the increase of the gate oxide layer and the increase of the thickness of the channel will make the sub-threshold characteristics of the channel worse, and the sub-threshold swing will increase.
根据我们的解析模型,可以非常方便、准确提取双材料双栅MOSFET亚阈值摆幅。According to our analytical model, the subthreshold swing of dual-material dual-gate MOSFET can be extracted very conveniently and accurately.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410300741.1A CN104076266A (en) | 2014-06-27 | 2014-06-27 | Method for extracting subthreshold swing of MOSFET of double-material double-gate structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410300741.1A CN104076266A (en) | 2014-06-27 | 2014-06-27 | Method for extracting subthreshold swing of MOSFET of double-material double-gate structure |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104076266A true CN104076266A (en) | 2014-10-01 |
Family
ID=51597658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410300741.1A Pending CN104076266A (en) | 2014-06-27 | 2014-06-27 | Method for extracting subthreshold swing of MOSFET of double-material double-gate structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104076266A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104881520A (en) * | 2015-05-04 | 2015-09-02 | 复旦大学 | Tri-gate Fin FET (fin field effect transistor) potential and sub-threshold oscillation amplitude extracting method |
CN107505376A (en) * | 2017-07-14 | 2017-12-22 | 浙江大学 | A kind of pH sensor part and its manufacture method based on field-effect transistor structure |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102270263A (en) * | 2011-09-05 | 2011-12-07 | 复旦大学 | Metal-oxide-semiconductor field effect transistor (MOSFET) threshold voltage analytic model with Schottky source and drain double-grid structure |
CN102332045A (en) * | 2011-09-22 | 2012-01-25 | 复旦大学 | An Analytical Model of Subthreshold Swing of MOSFET with Double Gate Structure |
-
2014
- 2014-06-27 CN CN201410300741.1A patent/CN104076266A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102270263A (en) * | 2011-09-05 | 2011-12-07 | 复旦大学 | Metal-oxide-semiconductor field effect transistor (MOSFET) threshold voltage analytic model with Schottky source and drain double-grid structure |
CN102332045A (en) * | 2011-09-22 | 2012-01-25 | 复旦大学 | An Analytical Model of Subthreshold Swing of MOSFET with Double Gate Structure |
Non-Patent Citations (1)
Title |
---|
PING XIANG 等: "Analytic Models for Electric Potential and Subthreshold Swing of the Dual-Material Double-Gate MOSFET", 《ASIC(ASICON), 2013 IEEE 10TH INTERNATIONAL CONFERENCE ON》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104881520A (en) * | 2015-05-04 | 2015-09-02 | 复旦大学 | Tri-gate Fin FET (fin field effect transistor) potential and sub-threshold oscillation amplitude extracting method |
CN104881520B (en) * | 2015-05-04 | 2017-12-01 | 复旦大学 | A kind of extracting method of three gate FinFETs potential and subthreshold swing |
CN107505376A (en) * | 2017-07-14 | 2017-12-22 | 浙江大学 | A kind of pH sensor part and its manufacture method based on field-effect transistor structure |
CN107505376B (en) * | 2017-07-14 | 2020-02-21 | 浙江大学 | A pH sensor device based on field effect transistor structure and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Tunneling field-effect transistor: capacitance components and modeling | |
Pan et al. | A quasi-analytical model for double-gate tunneling field-effect transistors | |
Liu et al. | On the interpretation of ballistic injection velocity in deeply scaled MOSFETs | |
Jena et al. | Inner-gate-engineered GAA MOSFET to enhance the electrostatic integrity | |
Ioannidis et al. | Drain-current flicker noise modeling in nMOSFETs from a 14-nm FDSOI technology | |
Samuel et al. | Analytical modeling and simulation of dual material gate tunnel field effect transistors | |
Biswas et al. | Impact of Fin width scaling on RF/Analog performance of junctionless accumulation-mode bulk FinFET | |
CN104881520B (en) | A kind of extracting method of three gate FinFETs potential and subthreshold swing | |
Sato et al. | Effects of corner angle of trapezoidal and triangular channel cross-sections on electrical performance of silicon nanowire field-effect transistors with semi gate-around structure | |
Mitra et al. | An analytical drain current model of gate-on-source/channel SOI-TFET | |
Samuel et al. | Analytical surface potential model with TCAD simulation verification for evaluation of surrounding gate TFET | |
CN102270263B (en) | Metal-oxide-semiconductor field effect transistor (MOSFET) threshold voltage analytic model with Schottky source and drain double-grid structure | |
CN104076266A (en) | Method for extracting subthreshold swing of MOSFET of double-material double-gate structure | |
Yoon et al. | DC performance variations by grain boundary in source/drain epitaxy of sub-3-nm nanosheet field-effect transistors | |
CN102332045A (en) | An Analytical Model of Subthreshold Swing of MOSFET with Double Gate Structure | |
CN102254072A (en) | Analytical model for threshold voltage of fence-structured MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) | |
Cerdeira et al. | Review on double-gate MOSFETs and FinFETs modeling | |
Al-Ameri et al. | Correlation between gate length, geometry and electrostatic driven performance in ultra-scaled silicon nanowire transistors | |
Paz et al. | From double to triple gate: Modeling junctionless nanowire transistors | |
CN102779205B (en) | Threshold voltage analytical model of short channel ring fence structure metal oxide semiconductor field effect transistor (MOSFET) | |
Gupta et al. | Modeling and simulation of triple metal cylindrical surround gate MOSFETs for reduced short channel effects | |
Das et al. | A TCAD simulation-based analysis of the asymmetrically designed channel effects on double gate-junctionless field-effect nanowire transistor | |
Bailey et al. | 3D device modeling and assessment of triple gate SOI FinFET for LSTP applications | |
Kusuma et al. | Performance analysis of FinFET using gate stack and workfunction engineering in 14nm technology | |
Lee et al. | Virtual-source carbon nanotube field-effect transistors model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20141001 |