CN104049012B - 一种环糊精与纳米金修饰玻碳电极的制备方法 - Google Patents

一种环糊精与纳米金修饰玻碳电极的制备方法 Download PDF

Info

Publication number
CN104049012B
CN104049012B CN201410282808.3A CN201410282808A CN104049012B CN 104049012 B CN104049012 B CN 104049012B CN 201410282808 A CN201410282808 A CN 201410282808A CN 104049012 B CN104049012 B CN 104049012B
Authority
CN
China
Prior art keywords
electrode
cyclodextrin
gold
preparation
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410282808.3A
Other languages
English (en)
Other versions
CN104049012A (zh
Inventor
马晓燕
惠昱晨
屈枫锦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201410282808.3A priority Critical patent/CN104049012B/zh
Publication of CN104049012A publication Critical patent/CN104049012A/zh
Application granted granted Critical
Publication of CN104049012B publication Critical patent/CN104049012B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种环糊精与纳米金修饰玻碳电极的制备方法,其特征在于:电聚合环糊精修饰层组份为:羧甲基β环糊精,氨基β环糊精与β环糊精的用量比为0~1:0~1:0~1重量份;所述的修饰层使用电聚合方式制备而成。本发明采用电沉积与电聚合法分别制备纳米金与环糊精修饰层是提高电极催化性能最简单的方法,在金纳米粒子修饰层上电聚合环糊精修饰层,进一步提高了电极的稳定性,线性范围,减小了电极的检出限。存放2周催化峰电流下降小于95%,线性范围达到4~5个数量级,检出限低于1μmol/L。本发明的电极能满足作为葡萄糖传感器中使用的电极对葡萄糖检测的要求。

Description

一种环糊精与纳米金修饰玻碳电极的制备方法
技术领域
本发明属于电催化电极的制备技术领域,涉及一种环糊精与纳米金修饰玻碳电极的制备方法,及将该电极应用于电催化氧化葡萄糖。
背景技术
葡萄糖是一种在自然界中广泛存在的有机小分子化合物。它在生物学领域具有重要地位,是活细胞的能量来源和新陈代谢中间产物,即生物的主要供能物质。在糖果制造业和医药领域有着广泛应用。血液中的葡萄糖浓度是诊断某些疾病,尤其是糖尿病的重要指标。此外,葡萄糖作为一种典型的单糖,对它的检测在糖化学领域也十分关键。因此,对于葡萄糖浓度的检测具有重要的实用价值与广阔的发展前景。
在葡萄糖的众多检测手段之中,电化学检测具有方便,快捷,准确,廉价的特点。在葡萄糖的电化学检测领域,人们正在努力通过在选定的工作电极上修饰适当的催化剂与助催化剂,开发同时具有线性范围宽,检出限低,稳定性高,价格低廉的电极来检测葡萄糖。而相对于酶作为催化剂的电极,使用贵金属纳米粒子,如金纳米粒子,作为催化剂的电极具有稳定性高;工作的温度范围与pH范围宽的优点。另一方面,环糊精及其衍生物可以提高葡萄糖的吸附速率,加速催化反应,是一种良好的助催化剂。而相对于小分子环糊精,环糊精聚合物的化学稳定性更高,与电极的结合力更牢固,结构也更加可控。综上所述,我们选择金纳米粒子作为催化剂,环糊精聚合物作为助催化剂,通过效率极高的电沉积法与电聚合法分别制备电极的催化剂与助催化剂修饰层。并应用于葡萄糖的电化学催化氧化。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种环糊精与纳米金修饰玻碳电极的制备方法,制成的电极应用于葡萄糖电催化氧化,能满足在血液以及化学研究领域中的葡萄糖检测。
技术方案
一种环糊精与纳米金修饰玻碳电极的制备方法,其特征在于步骤如下:
步骤1:纳米金沉积液的制备:将氯金酸配成10mg/mL的溶液,取该溶液3~100μL加入10ml的pH值为8~12,浓度为0.1mol/L的K2HPO4-KH2PO4缓冲溶液中,再按重量比0~1:0~1:0~1加入羧甲基β-环糊精,氨基β-环糊精与β-环糊精共5~100mg,搅拌得到纳米金沉积液,通入10~20分钟氮气,备用;
步骤2:电沉积纳米金修饰层的制备:以玻碳电极为工作电极,以铂柱电极为对电极,以银/氯化银电极为参比电极构筑三电极系统,采用循环伏安法在纳米金沉积液中进行扫描,扫描范围-1.4~0.6V,扫描速率0.05~1.0V/s,扫描圈数2~10圈,得到修饰了纳米金的玻碳电极,将该电极保存在超纯水中;
步骤3:环糊精聚合液的制备:将羧甲基β-环糊精,氨基β-环糊精与β-环糊精的按重量比0~1:0~1:0~1加入pH值为4~6,浓度为0.1mol/L的K2HPO4-KH2PO4缓冲溶液中,搅拌得到环糊精聚合液,聚合液的质量浓度0.2~10mg/mL,通入10~20分钟高纯氮气;
步骤4:电聚合环糊精修饰层的制备:以修饰了纳米金的玻碳电极为工作电极,以铂柱电极为对电极,以银/氯化银电极为参比电极构筑三电极系统,采用循环伏安法在环糊精聚合液中进行扫描,扫描范围-1.4V~1.0V,扫描圈数2~50圈,扫描速率0.05~0.5V/s,制得有电聚合环糊精修饰层与纳米金修饰层的玻碳电极,即为环糊精与纳米金修饰玻碳电极。
所述步骤2中超纯水的电阻为18.2MΩ。
有益效果
本发明提出的一种环糊精与纳米金修饰玻碳电极的制备方法,采用电沉积与电聚合法分别制备纳米金与环糊精修饰层是提高电极催化性能最简单的方法,在金纳米粒子修饰层上电聚合环糊精修饰层,进一步提高了电极的稳定性,线性范围,减小了电极的检出限。存放2周催化峰电流下降小于95%,线性范围达到4~5个数量级,检出限低于1μmol/L。本发明的电极能满足作为葡萄糖传感器中使用的电极对葡萄糖检测的要求。
附图说明
图1:为本发明的修饰层制备示意图;
1为玻碳电极;
图2:为本发明涉及的电极在修饰电聚合环糊精前后,对葡萄糖检测的线性范围的对比图:曲线1为修饰电聚合环糊精前,曲线2为修饰电聚合环糊精后。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施实例1:反应流程图如图1所示。
a纳米金沉积液的制备:将氯金酸配成10mg/mL的溶液,取该溶液3μL加入10ml的pH值为8,浓度为0.1mol/L的K2HPO4-KH2PO4缓冲溶液中,再按重量比1:0:0加入羧甲基β-环糊精,氨基β-环糊精与β-环糊精共5mg,搅拌均匀即得到纳米金沉积液,通入10分钟氮气,备用;
b电沉积纳米金修饰层的制备:取一根洁净的玻碳电极,以玻碳电极为工作电极,铂柱电极为对电极,银/氯化银电极为参比电极构筑三电极系统,用循环伏安法在步骤a得到的溶液中进行扫描,扫描范围-1.4~0.6V,扫描速率0.1V/s,扫描圈数4圈,扫描结束后即得到修饰了纳米金的玻碳电极,将该电极保存在超纯水(电阻18.2MΩ)中备用;
c环糊精聚合液的制备:将羧甲基β-环糊精,氨基β-环糊精与β-环糊精的按重量比1:1:1加入pH值为6,浓度为0.1mol/L的K2HPO4-KH2PO4缓冲溶液中,三种环糊精总质量浓度0.5mg/mL搅拌均匀即得到环糊精聚合液,通入10分钟高纯氮气,备用;
d电聚合环糊精修饰层的制备:用步骤b得到的电极作为工作电极,铂柱电极为对电极,银/氯化银电极为参比电极构筑三电极系统,用循环伏安法在步骤c得到的溶液中进行扫描,扫描范围-1.4V~1.0V,扫描圈数5圈,扫描速率0.1V/s,扫描完毕后即制得有电聚合环糊精修饰层与纳米金修饰层的玻碳电极,即环糊精与纳米金修饰玻碳电极。
实施实例2:
a纳米金沉积液的制备:将氯金酸配成10mg/mL的溶液,取该溶液60μL加入10ml的pH值为9,浓度为0.1mol/L的K2HPO4-KH2PO4缓冲溶液中,再按重量比0:1:1加入羧甲基β-环糊精,氨基β-环糊精与β-环糊精共10mg,搅拌均匀即得到纳米金沉积液,通入15分钟氮气,备用;
b电沉积纳米金修饰层的制备:取一根洁净的玻碳电极,以玻碳电极为工作电极,铂柱电极为对电极,银/氯化银电极为参比电极构筑三电极系统,用循环伏安法在步骤a得到的溶液中进行扫描,扫描范围-1.4~0.6V,扫描速率0.3V/s,扫描圈数8圈,扫描结束后即得到修饰了纳米金的玻碳电极,将该电极保存在超纯水(电阻18.2MΩ)中备用;
c环糊精聚合液的制备:将羧甲基β-环糊精,氨基β-环糊精与β-环糊精的按重量比1:1:1加入pH值为6,浓度为0.1mol/L的K2HPO4-KH2PO4缓冲溶液中,三种环糊精总质量浓度0.2~10mg/mL搅拌均匀即得到环糊精聚合液,通入15分钟高纯氮气,备用;
d电聚合环糊精修饰层的制备:用步骤b得到的电极作为工作电极,铂柱电极为对电极,银/氯化银电极为参比电极构筑三电极系统,用循环伏安法在步骤c得到的溶液中进行扫描,扫描范围-1.4V~1.0V,扫描圈数10圈,扫描速率0.3V/s,扫描完毕后即制得有电聚合环糊精修饰层与纳米金修饰层的玻碳电极,即环糊精与纳米金修饰玻碳电极。
实施实例3:
a纳米金沉积液的制备:将氯金酸配成10mg/mL的溶液,取该溶液90μL加入10ml的pH值为12,浓度为0.1mol/L的K2HPO4-KH2PO4缓冲溶液中,再按重量比0:0:1加入羧甲基β-环糊精,氨基β-环糊精与β-环糊精共50mg,搅拌均匀即得到纳米金沉积液,通入20分钟氮气,备用;
b电沉积纳米金修饰层的制备:取一根洁净的玻碳电极,以玻碳电极为工作电极,铂柱电极为对电极,银/氯化银电极为参比电极构筑三电极系统,用循环伏安法在步骤a得到的溶液中进行扫描,扫描范围-1.4~0.6V,扫描速率0.7V/s,扫描圈数10圈,扫描结束后即得到修饰了纳米金的玻碳电极,将该电极保存在超纯水(电阻18.2MΩ)中备用;
c环糊精聚合液的制备:将羧甲基β-环糊精,氨基β-环糊精与β-环糊精的按重量比0:1:1加入pH值为6,浓度为0.1mol/L的K2HPO4-KH2PO4缓冲溶液中,三种环糊精总质量浓度10mg/mL搅拌均匀即得到环糊精聚合液,通入20分钟高纯氮气,备用;
d电聚合环糊精修饰层的制备:用步骤b得到的电极作为工作电极,铂柱电极为对电极,银/氯化银电极为参比电极构筑三电极系统,用循环伏安法在步骤c得到的溶液中进行扫描,扫描范围-1.4V~1.0V,扫描圈数50圈,扫描速率0.5V/s,扫描完毕后即制得有电聚合环糊精修饰层与纳米金修饰层的玻碳电极,即环糊精与纳米金修饰玻碳电极。

Claims (1)

1.一种环糊精与纳米金修饰玻碳电极的制备方法,其特征在于步骤如下:
步骤1:纳米金沉积液的制备:将氯金酸配成10mg/mL的溶液,取该溶液3~100μL加入10ml的pH值为8~12,浓度为0.1mol/L的K2HPO4-KH2PO4缓冲溶液中,再按重量比0~1:0~1:0~1加入羧甲基β-环糊精,氨基β-环糊精与β-环糊精共5~100mg,搅拌得到纳米金沉积液,通入10~20分钟氮气,备用;
步骤2:电沉积纳米金修饰层的制备:以玻碳电极为工作电极,以铂柱电极为对电极,以银/氯化银电极为参比电极构筑三电极系统,采用循环伏安法在纳米金沉积液中进行扫描,扫描范围-1.4~0.6V,扫描速率0.05~1.0V/s,扫描圈数2~10圈,得到修饰了纳米金的玻碳电极,将该电极保存在超纯水中;
步骤3:环糊精聚合液的制备:将羧甲基β-环糊精,氨基β-环糊精与β-环糊精的按重量比0~1:0~1:0~1加入pH值为4~6,浓度为0.1mol/L的K2HPO4-KH2PO4缓冲溶液中,搅拌得到环糊精聚合液,聚合液的质量浓度0.2~10mg/mL,通入10~20分钟高纯氮气;
步骤4:电聚合环糊精修饰层的制备:以修饰了纳米金的玻碳电极为工作电极,以铂柱电极为对电极,以银/氯化银电极为参比电极构筑三电极系统,采用循环伏安法在环糊精聚合液中进行扫描,扫描范围-1.4V~1.0V,扫描圈数2~50圈,扫描速率0.05~0.5V/s,制得有电聚合环糊精修饰层与纳米金修饰层的玻碳电极,即为环糊精与纳米金修饰玻碳电极;
所述步骤2中超纯水的电阻为18.2MΩ。
CN201410282808.3A 2014-06-23 2014-06-23 一种环糊精与纳米金修饰玻碳电极的制备方法 Expired - Fee Related CN104049012B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410282808.3A CN104049012B (zh) 2014-06-23 2014-06-23 一种环糊精与纳米金修饰玻碳电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410282808.3A CN104049012B (zh) 2014-06-23 2014-06-23 一种环糊精与纳米金修饰玻碳电极的制备方法

Publications (2)

Publication Number Publication Date
CN104049012A CN104049012A (zh) 2014-09-17
CN104049012B true CN104049012B (zh) 2016-08-24

Family

ID=51502123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410282808.3A Expired - Fee Related CN104049012B (zh) 2014-06-23 2014-06-23 一种环糊精与纳米金修饰玻碳电极的制备方法

Country Status (1)

Country Link
CN (1) CN104049012B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614421B (zh) * 2015-01-16 2017-06-23 济南大学 一种检测2,4,6‑三氯苯酚的电化学方法
CN105642915B (zh) * 2016-04-06 2017-11-28 南通大学 一种纳米金溶液的制备方法
CN106124593B (zh) * 2016-08-12 2019-02-05 浙江大学 一种用于测量葡萄糖浓度的复合材料修饰电极及应用
CN110501398B (zh) * 2019-08-30 2021-10-22 西安工程大学 一种β-环糊精修饰的石墨电极、制备方法及应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1304570A1 (en) * 2001-10-22 2003-04-23 Bioptik Technology, Inc. Electrochemical electrode test strip and process for preparation thereof
CN101487814A (zh) * 2009-02-10 2009-07-22 扬州大学 包合物为电子媒介体纳米金葡萄糖氧化酶传感器制备方法
JP2009265051A (ja) * 2008-04-30 2009-11-12 Shinshu Univ 基質感応膜素材及びそれを用いた非水系バイオセンサー
CN101963593A (zh) * 2010-09-14 2011-02-02 济南大学 β-CD-SBA15修饰电极及测定硝基酚同分异构体的方法
US8083926B2 (en) * 2006-04-19 2011-12-27 Chen Ellen T Nanopore structured electrochemical biosensors
CN102338765A (zh) * 2010-12-23 2012-02-01 深圳大学 血糖测试试纸
CN102776536A (zh) * 2011-05-12 2012-11-14 中国科学院合肥物质科学研究院 巯基-β-环糊精修饰的银纳米棒阵列及其制备方法和用途
CN103235019A (zh) * 2013-04-15 2013-08-07 湖北大学 一种环糊精/石墨烯纳米复合物修饰电极及其制备方法和用途
US8641876B2 (en) * 2006-04-19 2014-02-04 Ellen T. Chen Nanopore array structured devices for biosensing and energy storage

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1304570A1 (en) * 2001-10-22 2003-04-23 Bioptik Technology, Inc. Electrochemical electrode test strip and process for preparation thereof
US8083926B2 (en) * 2006-04-19 2011-12-27 Chen Ellen T Nanopore structured electrochemical biosensors
US8641876B2 (en) * 2006-04-19 2014-02-04 Ellen T. Chen Nanopore array structured devices for biosensing and energy storage
JP2009265051A (ja) * 2008-04-30 2009-11-12 Shinshu Univ 基質感応膜素材及びそれを用いた非水系バイオセンサー
CN101487814A (zh) * 2009-02-10 2009-07-22 扬州大学 包合物为电子媒介体纳米金葡萄糖氧化酶传感器制备方法
CN101963593A (zh) * 2010-09-14 2011-02-02 济南大学 β-CD-SBA15修饰电极及测定硝基酚同分异构体的方法
CN102338765A (zh) * 2010-12-23 2012-02-01 深圳大学 血糖测试试纸
CN102776536A (zh) * 2011-05-12 2012-11-14 中国科学院合肥物质科学研究院 巯基-β-环糊精修饰的银纳米棒阵列及其制备方法和用途
CN103235019A (zh) * 2013-04-15 2013-08-07 湖北大学 一种环糊精/石墨烯纳米复合物修饰电极及其制备方法和用途

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Ai-Jun Tong et al..Boronic Acid Fluorophore/&acirc *
-Cyclodextrin Complex Sensors for Selective Sugar Recognition in Water.《Anal. Chem.》.2001,第73卷 *
对巯基苯硼酸/纳米金修饰玻碳电极用于葡萄糖的识别;赵英曲等;《分析测试学报》;20090331;第28卷(第3期);第1.2、1.3节及图1 *

Also Published As

Publication number Publication date
CN104049012A (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
Shetti et al. Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications
Liu et al. Engineering of heterojunction-mediated biointerface for photoelectrochemical aptasensing: case of direct Z-scheme CdTe-Bi2S3 heterojunction with improved visible-light-driven photoelectrical conversion efficiency
Fu et al. Highly selective and sensitive photoelectrochemical sensing platform for VEGF165 assay based on the switching of photocurrent polarity of CdS QDs by porous Cu2O-CuO flower
Zhang et al. Fabrication of novel electrochemical biosensor based on graphene nanohybrid to detect H2O2 released from living cells with ultrahigh performance
Zeng et al. Photocurrent-polarity-switching photoelectrochemical biosensor for switching spatial distance electroactive tags
Muthusankar et al. Electrochemical synthesis of nitrogen-doped carbon quantum dots decorated copper oxide for the sensitive and selective detection of non-steroidal anti-inflammatory drug in berries
Wu et al. Construction of a zinc porphyrin–fullerene-derivative based nonenzymatic electrochemical sensor for sensitive sensing of hydrogen peroxide and nitrite
Wang et al. Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials
Chen et al. Three-dimensional Ni2P nanoarray: an efficient catalyst electrode for sensitive and selective nonenzymatic glucose sensing with high specificity
Safavi et al. Fabrication of a glucose sensor based on a novel nanocomposite electrode
Ahmad et al. Fabrication of highly sensitive uric acid biosensor based on directly grown ZnO nanosheets on electrode surface
Guo et al. Carbon nanotube/silica coaxial nanocable as a three-dimensional support for loading diverse ultra-high-density metal nanostructures: facile preparation and use as enhanced materials for electrochemical devices and SERS
Yang et al. ZnO nanotube arrays as biosensors for glucose
Yang et al. NiO/SiC nanocomposite prepared by atomic layer deposition used as a novel electrocatalyst for nonenzymatic glucose sensing
Hahn et al. Chemical and biological sensors based on metal oxide nanostructures
Zhang et al. Enhancement in analytical hydrazine based on gold nanoparticles deposited on ZnO-MWCNTs films
Zhang et al. Cerium oxide–graphene as the matrix for cholesterol sensor
Raoof et al. Electrochemical determination of dopamine using banana-MWCNTs modified carbon paste electrode
CN104049012B (zh) 一种环糊精与纳米金修饰玻碳电极的制备方法
Kim et al. Electrospun iridium oxide nanofibers for direct selective electrochemical detection of ascorbic acid
Jin et al. Photocatalytic fuel cell-assisted molecularly imprinted self-powered sensor: A flexible and sensitive tool for detecting aflatoxin B1
Huang et al. Cathode–anode spatial division photoelectrochemical platform based on a one-step DNA walker for monitoring of miRNA-21
Song et al. A dopamine-imprinted chitosan Film/Porous ZnO NPs@ carbon Nanospheres/Macroporous carbon for electrochemical sensing dopamine
CN107328839A (zh) 基于Nafion/血红蛋白/氮掺杂石墨烯量子点修饰电极的制备及其电催化性能研究
Gan et al. A review: nanomaterials applied in graphene-based electrochemical biosensors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160824

Termination date: 20170623