CN104039447A - 含钴加氢催化剂和制备其的方法 - Google Patents

含钴加氢催化剂和制备其的方法 Download PDF

Info

Publication number
CN104039447A
CN104039447A CN201280066040.5A CN201280066040A CN104039447A CN 104039447 A CN104039447 A CN 104039447A CN 201280066040 A CN201280066040 A CN 201280066040A CN 104039447 A CN104039447 A CN 104039447A
Authority
CN
China
Prior art keywords
catalyst
metal
cobalt
acetic acid
ethanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280066040.5A
Other languages
English (en)
Inventor
周振华
D·库玛
屠晓燕
H·韦内尔
R·沃尔拉布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celanese International Corp
Original Assignee
Celanese International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celanese International Corp filed Critical Celanese International Corp
Publication of CN104039447A publication Critical patent/CN104039447A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8986Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/898Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8993Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/96Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及催化剂,涉及制备催化剂的方法和涉及使用所述催化剂的化学过程。催化剂优选用于将乙酸转化为乙醇。该催化剂包含改性载体上的钴、贵金属和一种或多种活性金属。

Description

含钴加氢催化剂和制备其的方法
优先权要求
本申请要求于2012年1月6日提交的美国临时申请No.61/583,922,的优先权,通过援引将其全部并入本文。
发明领域
本发明涉及催化剂,涉及制备催化剂的方法,和涉及在本发明催化剂存在下从包含羧酸和/或其酯的进料流产生乙醇的方法。在一种实施方式中,催化剂包含在改性载体上的钴。
发明背景
用于工业用途的乙醇按照常规由石油化工原料例如油、天然气或煤生产,由原料中间体例如合成气生产,或者由淀粉质材料或纤维素材料例如玉米(corn)或甘蔗生产。由石油化工原料以及由纤维素材料生产乙醇的常规方法包括乙烯的酸催化水合、甲醇同系化、直接醇合成和费-托合成。石油化工原料价格的不稳定性促使按照常规生产的乙醇成本波动,在原料价格升高时使对乙醇生产的替代来源的需要比以往更大。淀粉质材料以及纤维素材料通过发酵转化为乙醇。然而,发酵通常用于适合于燃料或人类消费的乙醇的消费性生产。此外,淀粉质或纤维素类材料的发酵与食品来源构成竞争并且对用于工业用途所可生产的乙醇的量施加了限制。
通过链烷酸和/或其它含羰基化合物的还原生产乙醇已得到广泛研究,在文献中提及了催化剂、载体和操作条件的各种组合。EP0175558和美国专利号4,398,039已经提出各种羧酸在金属氧化物上的还原。Yokoyama等人的"Carboxylic acids and derivatives"in:Fine ChemicalsThrough Heterogeneous Catalysis,2001,370-379中提供了用于转化各种羧酸的加氢催化剂的一些发展成果的概要。
美国专利号8,080,694描述用于使烷酸加氢的方法,包括将气相中的包含氢和烷酸的气流通过加氢催化剂,所述催化剂包含:硅质载体上的选自铂、钯、铼及其混合物的铂族金属;和选自锡、铼及其混合物的金属助催化剂,所述硅质载体用选自WO3;MoO3;Fe2O3和Cr2O3的氧化还原助催化剂进行促进。
美国专利号7,608,744描述用于选择性产生乙醇的方法:在约250℃的温度在加氢催化剂组合物上进行乙酸的气相反应,所述催化剂组合物是负载于石墨上的钴和钯或者负载于二氧化硅上的钴和铂,其选择性地产生乙醇。
美国专利6,495,730号描述了用于使用催化剂使羧酸加氢的方法,该催化剂包含负载含钌和锡的活性金属物质的活性碳。美国专利6,204,417号描述了用于在包含Pt和Re的催化剂存在下使脂族羧酸或酸酐或其酯或内酯加氢从而制备脂肪醇的另一方法。美国专利5,149,680号描述了用于在催化剂存在下使羧酸和它们的酸酐催化加氢为醇和/或酯的方法,该催化剂包含VIII族金属,例如钯,能与VIII族金属合金化的金属,和金属铼、钨或钼中的至少一种。美国专利4,777,303号描述了用于在催化剂存在下通过使羧酸加氢从而生产醇的方法,该催化剂包含高表面积石墨化碳上的为钼或钨的第一组分和为VIII族贵金属的第二组分。美国专利4,804,791号描述了用于在催化剂存在下通过使羧酸加氢从而生产醇的另一方法,该催化剂包含VIII族贵金属和铼。美国专利4,517,391号描述了通过使用主要含钴的催化剂的方法在高于大气压的压力下和在升高的温度时使乙酸加氢从而制备乙醇。
现有方法遭受到阻碍商业可行性的各种问题,包括:(i)催化剂不具有对乙醇的必要选择性;(ii)催化剂有可能过于昂贵和/或对乙醇的生成呈非选择性并且产生不需要的副产物;(iii)过度的所需操作温度和压力;(iv)不足的催化剂寿命;以及/或者(v)所需的对乙酸乙酯和乙酸两者的活性。
发明概述
本发明一般地涉及催化剂,涉及用于形成催化剂的方法和涉及在加氢过程中应用催化剂的方法。在一种实施方式中,本发明涉及催化剂,包含在改性载体上的第一、第二和第三金属,其中所述第一金属是贵金属,且条件是所述第二或第三金属中至少一种是钴,并且其中所述改性载体包含选自钨、钼、钒、铌和钽的载体改性剂金属。
在第一实施方式中,本发明涉及包含在改性载体上的钴、贵金属和至少一种活性金属的催化剂,其中所述贵金属选自铑、铼、钌、铂、钯、锇、铱和金;其中所述至少一种活性金属选自铜、铁、镍、钛、锌、铬、锡、镧、铈和锰;而其中所述改性载体包含(i)载体材料;(ii)包含选自钨、钼、钒、铌和钽的金属的载体改性剂。在一种实施方式中,载体改性剂是钨、钼、或其混合物的氧化物。在又一实施方式中,改性载体是钒、铌、钽或其混合物的氧化物。在一种实施方式中,改性载体基本上不含钴和/或活性金属。应理解的是,尽管改性载体不含钴和/或活性金属,但是这些金属与贵金属一起位于改性载体上。
例如,催化剂可以包含0.1至5wt.%的量的贵金属,0.5至20wt.%、例如优选4.1至20wt.%的量的钴,和0.5至20wt.%、例如优选0.5至3.5wt.%的量的锡。在一方面,贵金属是钯,而一种或多种活性金属包含钴和锡;在又一方面,贵金属是铂,而一种或多种活性金属包含钴和锡。
载体本身优选是硅质载体例如二氧化硅、或碳载体例如炭黑或活性碳,但是可以使用各种其它载体中的任意种。在各种实施方式中,例如,载体可以选自二氧化硅,氧化铝,二氧化钛,二氧化硅/氧化铝,偏硅酸钙,热解二氧化硅,硅胶,高纯度二氧化硅,氧化锆,碳,沸石及其混合物。载体改性剂可以包含各种形式的钨,比如钨氧化物形式。
在第二实施方式中,本发明涉及催化剂,包含:包含硅质载体材料和载体改性剂的改性载体,所述载体改性剂包含选自钨、钼、铌、钒和钽的载体改性剂金属,和在改性载体上的第一金属、第二金属和第三金属,其中所述第一金属是贵金属,和其中所述第一金属以0.1至5wt.%的量存在,所述第二金属以0.5至20wt.%的量存在而所述第三金属以0.5至20wt.%的量存在,基于催化剂总重量,条件是第二或第三金属中至少一种是钴。第二或第三金属优选是不同的并且可以是选自钴、铜、铁、镍、钛、锌、铬、锡、镧、铈和锰的活性金属。
在又一实施方式中,本发明涉及用于形成催化剂的方法,所述方法包括下述步骤:(a)将载体用载体改性剂前体浸渍以形成第一浸渍载体,其中所述载体改性剂前体包含选自钨、钼、铌、钒和钽的载体改性剂金属;(b)将第一浸渍载体加热至第一温度以形成改性载体;(c)将改性载体用第二混合前体浸渍以形成第二浸渍载体,其中所述第二混合前体包含第一金属前体、第二金属前体和第三金属前体,条件是第二金属前体或第三金属前体之一包含钴;和(d)将第二浸渍载体加热至第二温度以形成所述催化剂。第二最大温度优选小于第一最大温度,例如比第一最大温度低至少50℃,或比第一最大温度低至少100℃。
在又一实施方式中,本发明涉及用于产生乙醇的方法,包括在上述催化剂中任意种存在下,在有效形成乙醇的条件下,在反应器中于升高的温度使包含乙酸和/或乙酸乙酯的进料流和氢接触。进料流任选地还包含大于5wt.%的量的乙酸乙酯。乙酸转化率任选地大于20%,例如大于50%、大于80%或大于90%,而乙酸乙酯转化率任选地大于5%,大于10%或大于15%。乙酸对乙醇的选择性任选地大于80%或大于90%。在优选方面中,所述方法形成包含乙醇和乙酸乙酯的粗产物,并且该粗产物具有0.1至40wt.%例如0.1至20wt.%或0.1至10wt.%的乙酸乙酯稳态浓度。加氢任选地在气相(vapor phase)中于125℃至350℃的温度、10kPa至3000kPa的压力和大于4:1的氢气与乙酸摩尔比下进行。乙酸任选地衍生自选自油、煤、天然气和生物质的含碳物质。
在第三实施方式中,本发明涉及包含在改性载体上的钴、贵金属和至少一种活性金属的加氢催化剂,所述改性载体包含钨氧化物,并且在煅烧之后具有基本上如表4所示的X射线衍射图谱。优选,贵金属选自铑、铼、钌、铂、钯、锇、铱和金而至少一种活性金属选自铜、铁、镍、钛、锌、铬、锡、镧、铈和锰。
在第四实施方式中,本发明涉及包含在改性载体上的钴、贵金属和至少一种活性金属的催化剂,所述改性载体包含钨氧化物,并且在煅烧之后具有X射线衍射图谱,其中在2θ=10°以上存在局部最大值,其在下述各位置具有特征的半峰全宽:23.54至24.60°范围的2θ值;27.81至28.13°范围的2θ值;33.52至34.56°范围的2θ值;41.62至42.42°范围的2θ值;54.70至55.66°范围的2θ值;60.18至61.32°范围的2θ值。优选,贵金属选自铑、铼、钌、铂、钯、锇、铱和金而至少一种活性金属选自铜、铁、镍、钛、锌、铬、锡、镧、铈和锰。
附图说明
参照所附非限制性图将更佳地理解本发明,其中:
图1提供用于形成根据本发明的一种实施方式的催化剂的方法的非限制性流程图。
图2是图,显示在标准运行条件下实施例5催化剂的效能。
图3是图,显示在标准运行条件下比较催化剂的效能。
图4是实施例5-7催化剂的XRD图。
发明详述
催化剂组合物
本发明涉及优选适宜用作加氢催化剂的催化剂组合物,涉及用于形成所述催化剂的方法,和涉及使用所述催化剂的化学过程。催化剂优选包含在载体优选改性载体上的一种或多种活性金属和尤其是钴,并且可以适宜地用于催化加氢羧酸例如乙酸和/或其酯例如乙酸乙酯,生成相应的醇例如乙醇。
在一种实施方式中,本发明催化剂包含在改性载体上的钴、贵金属和至少一种活性金属。优选地,载体是包含载体材料和载体改性剂的改性载体,其中所述载体改性剂包含选自钨、钼、钒、铌和钽的金属。在一方面,改性载体基本上不含钴和/或活性金属。应理解的是,尽管改性载体不含钴和/或活性金属,在载体改性剂煅烧在载体材料上之后,这些金属与贵金属一起可以加载于改性载体上。
现在已发现这样的催化剂作为能够在加氢条件下将羧酸例如乙酸及其酯如乙酸乙酯都转化为它们相应的醇例如乙醇的多功能加氢催化剂特别有效。从而,在又一实施方式中,本发明催化剂包含在改性载体上的贵金属和活性金属,其中所述催化剂有效地用于提供大于20%、大于75%或大于90%的乙酸转化率,和大于0%、大于10%或大于20%的乙酸乙酯转化率。
贵金属和活性金属
除钴外,本发明的催化剂还优选包括浸渍在催化剂载体上的至少一种贵金属。贵金属可以选自例如铑、铼、钌、铂、钯、锇、铱和金。用于本发明催化剂的优选贵金属包括钯、铂和铑。贵金属优选是在羧酸和/或其酯加氢生成相应的(一种或多种)醇中有催化活性的。贵金属可以为单质形式或为分子形式例如贵金属氧化物。优选的是,催化剂包含小于5wt.%,例如小于3wt.%,小于2wt.%,小于1wt.%或小于0.5wt.%的量的所述贵金属。在范围方面,催化剂可以包含0.05至10wt.%,例如0.1至5wt.%,或0.1至3wt.%的量的贵金属,基于催化剂总重量。在某些实施方式中,贵金属的金属载量可以小于钴或者一种或多种活性金属的金属载量。
催化剂也包括浸渍在载体上的至少一种活性金属。在多种活性金属的情况下,活性金属中的至少一种是钴。如本文所用,活性金属是指改善催化剂的转化率、选择性和/或生产能力的催化活性金属并且可以包括贵金属或非贵金属的活性金属。从而,包含贵金属和活性金属的催化剂可以包括:(i)一种(或多种)贵金属和一种(或多种)非贵金属的活性金属,或(ii)可以包含两种(或多种)贵金属。从而,贵金属作为示范性活性金属包括在本文当中。此外,应理解用术语"活性金属"指代本发明催化剂中的某些金属的用途并不意在表示也包括在本发明催化剂中的贵金属不是催化活性的。
在一种实施方式中,包括在催化剂中的一种或多种活性金属选自铜、铁、镍、钛、锌、铬、锡、镧、铈和锰,或选自前述贵金属中的任意种。在使用多种活性金属的情况下,活性金属还可以包括钴。然而优选的是,一种或多种活性金属不包括任意贵金属。更优选,一种或多种活性金属选自铜、铁、镍、锌、铬和锡。一种或多种活性金属可以呈单质形式或分子形式,例如活性金属的氧化物或其组合。
存在于催化剂中的包括贵金属、活性金属和钴的全部催化金属的总重量优选是0.1至25wt.%,例如0.5至15wt.%,或1.0至10wt.%。在一种实施方式中,催化剂可以包含0.5至20wt.%,例如优选4.1至20wt.%的量的钴,和0.5至20wt.%,例如优选0.5至3.5wt.%的量的锡。出于本发明意图,活性金属可以布置在改性载体上并且不是改性载体的一部分。就本说明书而言,除非另外指明,重量百分数是基于包括金属和载体在内的催化剂的总重量计。
在某些实施方式中,催化剂除了贵金属之外还含有至少两种活性金属,条件是活性金属之一是钴。这至少两种活性金属可以选自上文所确定的任意活性金属,只要它们与贵金属不同或彼此不同。额外的活性金属还可以用于某些实施方式中。从而,在某些实施方式中,在载体上除了贵金属之外,还可以存在多种活性金属。
示范性三元组合可以包括钴/铑/铜,钴/铑/铁,钴/铑/镍,钴/铑/铬,钴/铑/锡,钴/铼/铜,钴/铼/镍,钴/铼/锡,钴/钌/铜,钴/钌/镍,钴/钌/锡,钴/铂/铜,钴/铂/铁,钴/铂/镍,钴/铂/铬,钴/铂/锡,钴/铂/锌,钴/铂/钛,钴/钯/铜,钴/钯/铁,钴/钯/镍,钴/钯/铬,钴/钯/锡,钴/锇/铜,钴/锇/镍,钴/锇/锡,钴/铱/铜,钴/铱/镍,钴/铱/锡,钴/金/铜,钴/金/镍,和钴/金/锡。
在一种优选实施方式中,三元组合包含钴和锡。在某些实施方式中,催化剂可以包含在载体上的多于三种金属。
在催化剂包含在载体上的贵金属、钴和活性金属,活性金属以0.1至20wt.%,例如0.1至10wt.%,或0.1至7.5wt.%的量存在。钴可以以4.1至20wt.%,例如4.1至10wt.%或4.1至7.5wt.%的量存在。在催化剂除了贵金属之外还包含两种或更多种活性金属的情况下,则第一活性金属可以以0.05至20wt.%,例如0.1至10wt.%,或0.5至7.5wt.%的量存在于催化剂中。如果催化剂还包含第二或第三活性金属,则可以以0.05至20wt.%,例如0.1至10wt.%,或0.5至7.5wt.%的量存在。活性金属可以允许彼此合金化或者可以构成非合金化的金属溶液、金属混合物或者以一种或多种金属氧化物存在。
优选的金属比可以取决于催化剂中所用活性金属而稍加变动。在某些实施方式中,贵金属与一种或多种活性金属的摩尔比是10:1至1:10,例如4:1至1:4,2:1至1:2或1.5:1至1:1.5。在又一实施方式中,贵金属可以以0.1至5wt.%的量存在,钴以0.5至20wt.%的量存在而第二活性金属以0.5至20wt.%的量存在,基于催化剂总重量。在又一实施方式中,贵金属以0.1至5wt.%的量存在,钴以0.5至7.5wt.%的量存在而活性金属以0.5至7.5wt.%的量存在。
在一种实施方式中,第一和第二活性金属作为钴和锡存在,而在一起加至催化剂并一起煅烧的情况下,以6:1至1:6或3:1至1:3的钴:锡摩尔比存在。在一起加至催化剂并煅烧一起的情况下,钴和锡可以以基本等摩尔量存在。在又一实施方式中,在最初将钴加至载体材料并作为改性载体的一部分煅烧,随后将锡加至改性载体的情况下,优选具有大于4:1,例如大于6:1或大于11:1的钴:锡摩尔比。不受理论所限,基于相对锡的摩尔量的过量钴,可以改善催化剂的多功能性。
载体材料
本发明的催化剂包含任何合适的载体材料,优选改性载体材料。在一个实施方案中,载体材料可以是无机氧化物。在一个实施方案中,载体材料可以选自二氧化硅、氧化铝、氧化钛、二氧化硅/氧化铝、热解二氧化硅、高纯度二氧化硅、氧化锆、碳(例如炭黑和活性炭)、沸石和它们的混合物。优选,载体材料包含硅质载体材料比如二氧化硅,热解二氧化硅,或高纯度二氧化硅。在一种实施方式中,硅质载体材料基本上不含碱土金属比如镁和钙。在优选的实施方案中,载体材料以基于催化剂总重量计25wt.%至99wt.%,例如30wt.%至98wt.%或35wt.%至95wt.%的量存在。
在优选实施方案中,载体材料包含具有至少50m2/g例如至少100m2/g、至少150m2/g的表面积的含硅载体材料,例如二氧化硅。就范围而言,含硅载体材料优选具有50至600m2/g,例如100至500m2/g或100至300m2/g的表面积。如本申请通篇所使用的,高表面积二氧化硅是指具有至少250m2/g的表面积的二氧化硅。就本说明书而言,表面积是指BET氮气表面积,指的是通过ASTM D6556-04(通过引用将其全文并入本文)测定的表面积。
优选的含硅载体材料还优选具有如通过压汞孔隙测量法(mercuryintrusion porosimetry)测定的5至100nm,例如5至30nm、5至25nm或5至10nm的平均孔径,以及如通过压汞孔隙测量法测定的0.5至2.0cm3/g,例如0.7至1.5cm3/g或0.8至1.3cm3/g的平均孔体积。
载体材料和由此所得的催化剂组合物的形态可以宽泛地变化。在一些示例性实施方案中,载体材料和/或催化剂组合物的形态可以是丸粒、挤出物、球、喷雾干燥的微球、环、五辐轮状物(pentaring)、三叶形物、四叶形物、多叶形物或薄片,尽管优选圆柱形丸粒。优选地,含硅载体材料具有允许堆积密度为0.1至1.0g/cm3,例如0.2至0.9g/cm3或0.3至0.8g/cm3的形态。就尺寸而言,二氧化硅载体材料优选具有0.01至1.0cm,例如0.1至0.7cm或0.2至0.5cm的平均粒径,平均粒径是指球形颗粒的平均直径或非球形颗粒的平均最长尺寸。由于位于载体上的贵金属和一种或多种活性金属通常为相对于载体的尺寸而言非常小的金属(或金属氧化物)颗粒或晶粒的形式,这些金属应该基本上不影响整个催化剂颗粒的尺寸。因此,上述粒径通常适用于载体尺寸以及最终催化剂颗粒,尽管优选将催化剂颗粒进行加工以形成大得多的催化剂颗粒,例如挤出形成催化剂丸粒。
载体改性剂
载体材料优选包含载体改性剂。载体改性剂可以调节载体材料的酸度。在另一个实施方案中,载体改性剂可以是具有低挥发性或无挥发性的碱性改性剂。在一种实施方式中,载体改性剂以0.1wt.%至50wt.%,例如0.2wt.%至25wt.%,0.5wt.%至20wt.%,或1wt.%至15wt.%的量存在,基于催化剂总重量。在载体改性剂包含钨、钼和钒的情况下,载体改性剂可以以0.1至40wt.%,例如0.1至30wt.%或10至25wt.%的量存在,基于催化剂总重量。载体改性剂可以基本上不含钴和活性金属,比如锡。
如所示,载体改性剂可以调节载体的酸度。例如,载体材料上的酸位如酸位或Lewis酸位可以通过载体改性剂进行调节以在乙酸和/或其酯加氢期间有利于对乙醇的选择性。可以通过使载体材料的表面酸度最优化来调节载体材料的酸度。载体材料还可以通过使载体改性剂改变载体材料的pKa来进行调节。除非上下文另外指明,其上的表面酸度或酸位数量可以通过F.Delannay编辑,"Characterization ofHeterogeneous Catalysts";Chapter III:Measurement of Acidity ofSurfaces,370-404页;Marcel Dekker,Inc.,N.Y.1984中所描述的技术进行测定,通过引用将其全文并入本文。一般而言,可以基于送至加氢工艺的进料流的组成调节载体的表面酸度以使醇产量,例如乙醇产量最大化。
在一些实施方案中,载体改性剂可以是提高催化剂酸度的酸性改性剂。合适的酸性改性剂可以选自IVB族金属的氧化物、VB族金属的氧化物、VIB族金属的氧化物、VIIB族金属的氧化物、VIII族金属的氧化物、铝氧化物和它们的混合物。在一种实施方式中,载体改性剂包含选自钨、钼、钒、铌和钽的金属。
在一种实施方式中,酸性改性剂还可以包括选自WO3,MoO3,V2O5,VO2,V2O3,Nb2O5,Ta2O5、Al2O3、B2O3、P2O5和Sb2O3和Bi2O3的那些。还可以使用还原的钨氧化物或钼氧化物比如W20O58,WO2,W49O119,W50O148,W18O49,Mo9O26,Mo8O23,Mo5O14,Mo17O47,Mo4O11或MoO2中的一种或多种。在一种实施方式中,钨氧化物可以是立方或单斜氧化钨(H0.5WO3)。现出人意料且意想不到地发现将这些金属氧化物载体改性剂与贵金属、钴和一种或多种活性金属组合使用可以产生具有多功能性的催化剂,并且该催化剂可以适合于在加氢条件下将羧酸例如乙酸,以及其相应的酯例如乙酸乙酯转化为一种或多种加氢产物例如乙醇。
在一个实施方案中,催化剂包含在二氧化硅或二氧化硅-氧化铝载体材料上的0.25至1.25wt.%铂、1至10wt.%钴和1至10wt.%锡。所述载体材料可以包含5至15wt.%酸性载体改性剂,例如H0.5WO3、WO3、V2O5和/或MoO3
催化剂的制备方法
本发明还涉及用于制备催化剂的方法。不受理论限制,该催化剂制备方法可以改善乙酸转化率、酯转化率、乙醇选择性和总产率中的一个或多个。在一个实施方案中,将载体用一种或多种载体改性剂进行改性,随后用贵金属、钴和活性金属浸渍所得改性载体以形成催化剂组合物。例如,可以将载体用包含载体改性剂前体且任选包含一种或多种活性金属前体的载体改性剂溶液进行浸渍以形成改性载体。在干燥和煅烧后,将所得改性载体用包含贵金属前体且任选包含活性金属前体中的一种或多种的第二溶液进行浸渍,接着进行干燥和煅烧以形成最终催化剂。
在一些实施方案中,可以将载体改性剂以颗粒物加入到载体材料上。例如,可以通过将载体改性剂颗粒与载体材料混合,优选在水中,将一种或多种载体改性剂前体(如果需要)加入到载体材料中。在混合的情况下,对某些载体改性剂优选的是使用载体改性剂的粉末状物质。如果使用粉末状物质,则可以在将载体改性剂加入到载体中之前将其进行造粒、压碎和筛分。
如所指出的,在大多数实施方案中,优选通过湿浸步骤加入载体改性剂。优选地,可以使用可变为载体改性剂的载体改性剂前体。一些示例性载体改性剂前体包括碱金属氧化物,碱土金属氧化物,IIB族金属氧化物,IIIB族金属氧化物,IVB族金属氧化物,VB族金属氧化物,VIB族金属氧化物,VIIB族金属氧化物,和/或VIII族金属氧化物,以及优选它们的水性盐。
虽然金属氧化物和多氧离子(polyoxoion)盐绝大多数是不溶的,或者具有较差定义或有限的溶液化学,但是前过渡元素的同多和杂多氧阴离子类别构成重要的例外(exception)。这些络合物可以由如下通式表示:
[MmOy]p- 同多阴离子
[XxMmOy]q- (x≤m)杂多阴离子
其中M选自钨、钼、钒、铌、钽和它们的混合物,处于它们的最高(d0,d1)氧化态。这样的多金属氧酸盐阴离子绝大多数(不唯一)基于准八面体配位的金属原子而形成结构上截然不同的络合物类别。杂多或同多阴离子中可起附加物原子作用的元素即M可限于兼具有有利的离子半径和电荷组合以及形成dπ-pπM-O键能力的那些。然而对杂原子即X存在很少限制,所述杂原子可以选自实际上除稀有气体外的任何元素。参见例如M.T.Pope,Heteropoly and Isopoly Oxometalates,SpringerVerlag,Berlin,1983,180;Chapt.38,Comprehensive CoordinationChemistry,Vol.3,1028-58,Pergamon Press,Oxford,1987,通过引用将它们全文并入本文。
多金属氧酸盐(POM)和它们相应的杂多酸(HPA)具有若干优点从而使它们在经济和环境上受到关注。第一,HPA具有接近超酸范围(region)的非常强的布朗斯台德(Bronsted)酸度。此外,它们是在相当温和条件下表现出快速可逆多电子氧化还原转变的有效氧化剂。不同于沸石和金属氧化物,固体HPA还具有不连续的离子结构,包含相当灵活(mobile)的碱性结构单元例如杂多阴离子和抗衡阳离子(H+、H3O+、H5O2 +等)。
鉴于上文所述,在某些实施方式中,载体改性剂前体包含POM,其优选包含选自钨、钼、铌、钒和钽的金属。在一些实施方案中,POM包含杂POM。适宜POM的非限制性列表包括磷钨酸(H-PW12)(H3PW12O40·nH2O),偏钨酸铵(AMT)((NH4)6H2W12O40·H2O),七钼酸铵四水合物,(AHM)((NH4)6Mo7O24·4H2O),硅钨酸水合物(H-SiW12)(H4SiW12O40·H2O),硅钼酸(H-SiMo12)(H4SiMo12O40·nH2O),和磷钼酸(H-PMo12)(H3PMo12O40·nH2O)。
本发明催化剂组合物中POM衍生的载体改性剂的使用目前出人意料且意想不到地显示出提供双-或多功能性的催化剂功能度,从而理想地获得乙酸和副产物酯例如乙酸乙酯的转化率,由此使它们适合于催化包含例如乙酸和乙酸乙酯的混合进料。
将钴、贵金属和一种或多种活性金属浸渍到载体例如改性载体上可以同时(共浸渍)或相继进行。在同时浸渍时,将两种或更多种金属前体混合在一起并将其一起加入到载体,优选改性载体中,接着进行干燥和煅烧以形成最终催化剂组合物。对于同时浸渍,如果所述两种前体与所期望的溶剂例如水不相容,则可以期望使用分散剂、表面活性剂、或者增溶剂例如草酸铵、或者酸例如乙酸或硝酸以促进第一、第二和/或任选的第三金属前体的分散或溶解。
在相继浸渍时,可以首先将第一金属前体加入到载体中,接着进行干燥和煅烧,然后可以用第二金属前体浸渍所得材料,接着进行另外的干燥和随后的煅烧步骤以形成最终催化剂组合物。另外的金属前体(例如第三金属前体)可以与第一和/或第二金属前体一起加入或者在单独的第三浸渍步骤中加入,接着进行干燥和煅烧。当然,视需要可以采用连续浸渍和同时浸渍的组合。
在载体改性步骤中例如将载体改性剂前体浸渍到载体材料上,优选使用溶剂,例如水、冰乙酸,强酸如盐酸、硝酸或硫酸,或有机溶剂。载体改性剂溶液包含溶剂,优选水,载体改性剂前体,并且优选包含一种或多种活性金属前体。搅拌该溶液并使用例如始润浸渍技术将其与载体材料合并,在所述始润浸渍技术中将载体改性剂前体加入到孔体积与该溶液体积相同的载体材料中。通过将含有载体改性剂和/或活性金属中任一者或其二者的前体的溶液加入(任选滴加)到干燥的载体材料中来进行浸渍。然后毛细管作用将载体改性剂吸入载体材料的孔隙中。然后可通过干燥(任选在真空下)以去除载体混合物内的溶剂和任何挥发性组分并使载体改性剂沉积在载体材料之上或之内来形成浸渍的载体。干燥可以例如在50℃至300℃,例如100℃至200℃或约120℃的温度下进行任选1至24小时,例如3至15小时或6至12小时的时段。可以将经干燥的载体任选以斜线上升加热的方式,例如在300℃至900℃如400℃至750℃、500℃至600℃的温度或在约550℃下煅烧任选1至12小时例如2至10小时、4至8小时或约6小时的时段,以形成最终的改性载体。在加热和/或施加真空时,前体的金属优选分解为它们的氧化物或单质形式。在一些情形中,在催化剂投入使用和煅烧例如经受在操作期间遭遇的高温之前,可以不完成溶剂的去除。在煅烧步骤期间,或者至少在使用催化剂的初始阶段期间,使这些化合物转化为金属的催化活性形式或其催化活性氧化物。
一旦形成,改性载体可以成型为具有所需尺寸分布的颗粒,例如形成平均粒径为0.2至0.4cm的颗粒。可以将载体进行挤出、造粒、压片、压制、压碎或筛分为所需尺寸分布。可使用将载体材料成型为所需尺寸分布的任何已知方法。替代地,可以使用载体丸粒作为用于制备改性载体和最后制备最终催化剂的起始材料。
在一种实施方式中,本发明催化剂可以用本体催化剂(bulk catalyst)技术制备。本体催化剂可以形成如下:将前体沉淀至载体改性剂和一种或多种活性金属。沉淀可以通过改变温度、压力和/或pH来加以控制。在某些实施方式中,本体催化剂制备可以采用粘合剂。载体材料可以不用于本体催化剂过程中。一旦沉淀,本体催化剂可以通过喷雾干燥、制球、造粒、压片、制珠或制丸来造型。适宜的本体催化剂技术可以使用比如描述于Krijn P.de Jong,ed.,Synthesis of Solid Catalysts,Wiley,(2009),pg.308的那些,通过援引将其整个内容和公开并入。
在一个实施方案中,将钴、贵金属和一种或多种活性金属浸渍到载体上,任选浸渍到任意上述改性载体上。贵金属的前体优选用于金属浸渍步骤,所述前体例如包括有关贵金属的水溶性化合物或水可分散性化合物/络合物。类似地,还可以将钴和一种或多种活性金属的前体浸渍到载体,优选改性载体中。取决于所使用的金属前体,可以优选使用例如水、冰乙酸、硝酸或有机溶剂的溶剂以有助于使一种或多种金属前体溶解。
在一个实施方案中,形成金属前体的分别的溶液,随后在浸渍在载体上之前将它们进行混和。例如,可以形成包含第一金属前体的第一溶液,和可以形成包含第二金属前体和任选第三金属前体的第二溶液。金属前体中的至少一种是钴前体,和优选又一金属前体是贵金属前体,而其它优选是活性金属前体。任一种或这两种溶液优选包含溶剂,例如水、冰乙酸、盐酸、硝酸或有机溶剂。
在一个示例性实施方案中,制备包含第一金属卤化物的第一溶液。第一金属卤化物任选包含卤化锡例如氯化锡,如氯化锡(II)和/或氯化锡(IV)。任选地,将第二金属前体(作为固体或作为单独的溶液)与第一溶液合并以形成合并的溶液。第二金属前体(如果使用)优选包含第二金属草酸盐、乙酸盐、卤化物或硝酸盐例如硝酸钴。第一金属前体包含钴,而第二金属前体包含又一活性金属,比如铜、铁、镍、钛、锌、铬、锡、镧、铈和锰。还制备包含贵金属前体的第二溶液,在该实施方案中所述贵金属前体优选为贵金属卤化物,例如铑、铼、钌、铂或钯的卤化物。取决于是否需要第二金属前体,将第二溶液与第一溶液或所述合并的溶液合并以形成混合金属前体溶液。然后可以将所得混合金属前体溶液加入到载体,任选改性载体,接着进行干燥和煅烧以形成如上所述的最终催化剂组合物。所得催化剂在最终煅烧步骤之后可以洗涤或不洗涤。由于使一些前体溶解中的困难,可能期望降低第一和/或第二溶液的pH,例如通过使用酸例如乙酸、盐酸或硝酸如6-10M HNO3
在又一方面,制备包含第一金属草酸盐比如钴、铜、铁、镍、钛、锌、铬、锡、镧、铈和锰的草酸盐的第一溶液。在该实施方案中,第一溶液优选还包含酸例如乙酸、盐酸、磷酸或硝酸如6-10M HNO3。任选地,将第二金属前体(作为固体或作为单独的溶液)与第一溶液合并以形成合并的溶液。第二金属前体(如果使用)优选包含第二金属草酸盐、乙酸盐、卤化物或硝酸盐,和优选包含活性金属,也任选包含钴、铜、铁、镍、钛、锌、铬、锡、镧、铈和锰。也形成包含贵金属草酸盐,例如铑、铼、钌、铂或钯的草酸盐的第二溶液,该第二溶液任选还包含酸例如乙酸、盐酸、磷酸或硝酸如6-10M HNO3。取决于是否需要第二金属前体,将第二溶液与第一溶液或所述合并的溶液合并以形成混合金属前体溶液。然后可以将所得混合金属前体溶液加入到载体,任选改性载体,接着进行干燥和煅烧以形成如上所述的最终催化剂组合物。所得催化剂在最终煅烧步骤之后可以洗涤或不洗涤。
在一个实施方案中,将浸渍载体,任选浸渍的改性载体在100℃至140℃、110℃至130℃或约120℃的温度干燥任选1至12小时例如2至10小时、4至8小时或约6小时。如果需要煅烧,优选该步骤中使用的煅烧温度小于上述所论述的改性载体形成中所使用的煅烧温度。例如可以在比第一煅烧步骤,即用于形成改性载体的煅烧步骤低至少50℃、至少100℃、至少150℃或至少200℃的温度下进行第二煅烧步骤。例如,可以将浸渍的催化剂在200℃至500℃、300℃至400℃或约350℃的温度煅烧任选1至12小时例如2至10小时、4至8小时或约6小时的时段。
在一个实施方案中,如US Pat.No.8,211,821中所描述的(通过引用将其全文并入本文),使用草酸铵来促进溶解金属前体中的至少一种,例如锡前体。在该方面,第一金属前体任选包含贵金属,例如铑、钯、或铂的草酸盐,第二金属前体任选包含草酸锡。钴金属前体包含硝酸盐,卤化物,乙酸盐或草酸盐。在该方面,可以在作为增溶剂的草酸铵存在下制备第二金属前体的溶液,并且可以向其加入任选作为固体或单独溶液的第一金属前体。如果使用,可以将第三金属前体与包含第一和第二金属前体的溶液合并,或者可以在加入第一金属前体之前将其与任选作为固体或单独溶液的第二金属前体合并。在其它实施方案中,酸例如乙酸、盐酸或硝酸可以替代草酸铵来促进草酸锡的溶解。然后可以将所得混合金属前体溶液加入到载体,任选改性载体,接着进行干燥和煅烧以形成如上所述的最终催化剂组合物。
用于本发明各个实施方案的具体前体可以宽泛地变动。合适的金属前体可以包括例如金属卤化物、胺增溶的金属氢氧化物、金属硝酸盐或金属草酸盐。例如,铂前体和钯前体的合适化合物包括氯铂酸、氯铂酸铵、胺增溶的氢氧化铂、硝酸铂、四氨合硝酸铂、氯化铂、草酸铂、硝酸钯、四氨合硝酸钯、氯化钯、草酸钯、氯化钠钯、氯化钠铂、硝酸铂铵、Pt(NH3)4(NO4)2。通常,从经济学和环境方面的观点同时来看,优选铂和钯的可溶性化合物的水溶液。在一种实施方式中,贵金属前体不是金属卤化物并且基本上不含金属卤化物,而在其它实施方式中,如上文描述,贵金属前体是卤化物。
作为又一实例,SiO2上的PtSnCo/WO3可以制备如下:首先将WO3的前体浸渍在SiO2上,优选将WO3的POM前体浸渍在SiO2上,随后与氯铂酸、氯化锡(IV)和硝酸钴共浸渍。此外,每个浸渍步骤后接着可以是干燥和煅烧步骤,其中第二煅烧温度优选低于第一煅烧温度。可以优选在单个浸渍步骤中将所得改性载体用包括钴的第一、第二和第三金属中的一种或多种进行浸渍,接着进行第二次干燥和煅烧步骤。任选地,钨酸钴可以形成于改性载体上。尽管载体改性剂可以包含锡,但是载体改性剂不包含钨酸锡。此外,第二煅烧步骤的温度优选小于第一煅烧步骤的温度。
催化剂使乙酸加氢的用途
本发明催化剂的一个优点是该催化剂用于生产乙醇的稳定性或活性。因此,可认识到的是,本发明的催化剂完全能够用于乙酸加氢的商业规模工业应用,特别是乙醇生产。特别地,能够获得这样的稳定性程度,该稳定性程度使得催化剂活性可具有每100小时的催化剂使用小于6%,例如每100小时小于3%或每100小时小于1.5%的产率下降速率。优选地,一旦催化剂实现稳态状态,就测定产率下降速率。
在完成催化剂的洗涤、干燥和煅烧之后,可以还原催化剂以便将其活化。还原在还原性气体优选氢存在下进行。于初始环境温度(其增至多达400℃)下,将还原性气体任选地连续地通过催化剂。在一种实施方式中,在催化剂已加载于反应容器中之后进行还原,所述加氢于反应容器中进行。
在一个实施方案中,本发明涉及通过在任意上述催化剂存在下将包含选自乙酸、乙酸乙酯和它们的混合物的化合物的进料流加氢生产乙醇的方法。一个特别优选的反应是由乙酸制备乙醇。该加氢反应可以按如下表示:
HOAc+2H2→EtOH+H2O
在一些实施方案中,该催化剂可以称作双功能催化剂,其原因在于该催化剂有效催化乙酸加氢为乙醇以及乙酸乙酯向一种或多种产物、优选乙醇的转化。
有关本发明方法所使用的给进到反应器的原料、乙酸和氢气可以衍生自任何合适的来源,包括天然气、石油、煤、生物质等。作为实例,可以通过甲醇羰基化、乙醛氧化、乙烷氧化、氧化发酵和厌氧发酵生产乙酸。适合于乙酸生产的甲醇羰基化方法描述于美国专利No.7,208,624、7,115,772、7,005,541、6,657,078、6,627,770、6,143,930、5,599,976、5,144,068、5,026,908、5,001,259和4,994,608中,它们的全部公开内容通过引用并入本文。任选地,可以将乙醇生产与这种甲醇羰基化方法进行整合。
由于石油和天然气价格波动,或多或少变得昂贵,所以由其它碳源生产乙酸和中间体例如甲醇和一氧化碳的方法已逐渐引起关注。特别地,当石油相对昂贵时,由衍生自较为可用的碳源的合成气体("合成气")生产乙酸可能变得有利。例如,美国专利No.6,232,352(通过引用将其全文并入本文)教导了改造甲醇装置用以制造乙酸的方法。通过改造甲醇装置,对于新的乙酸装置,与CO产生有关的大量资金费用得到显著降低或在很大程度上消除。使所有或部分合成气从甲醇合成环路进行分流并供给到分离器单元以回收CO,然后将其用于生产乙酸。以类似方式,用于加氢步骤的氢气可以由合成气供给。
在一些实施方案中,用于上述乙酸加氢方法的一些或所有原料可以部分或全部衍生自合成气。例如,乙酸可以由甲醇和一氧化碳形成,甲醇和一氧化碳均可以衍生自合成气。合成气可以通过部分氧化重整或蒸汽重整形成,并且可以将一氧化碳从合成气分离出。类似地,可以将用于乙酸加氢形成粗乙醇产物步骤的氢气从合成气分离出。进而,合成气可以衍生自多种碳源。碳源例如可以选自天然气、油、石油、煤、生物质和它们的组合。合成气或氢气还可以得自生物衍生的甲烷气体,例如由垃圾填埋场废物(landfill waste)或农业废物产生的生物衍生的甲烷气体。
生物质衍生的合成气,与化石燃料比如煤或天然气相比,具有可检测的14C同位素含量。地球大气在恒定形成与恒定降解之间中达到平衡,从而地球大气的14C原子核在碳中的比例在长时间内是恒定的。活有机体中建立起与周围气氛相同的分布比率n14C:n12C比率,其在死亡时停止且14C分解的半衰期是约6000年。形成自生物质衍生的合成气的甲醇、乙酸和/或乙醇会期望具有基本上类似活有机体的14C含量。例如,甲醇、乙酸和/或乙醇的14C:12C比率可以是活有机体的14C:12C比率的1/2至约1倍。在其它实施方式中,本文描述的合成气、甲醇、乙酸和/或乙醇完全衍生自化石燃料,也即60,000多年前产生的碳源可以具有不可检测的14C含量。
在另一个实施方案中,用于加氢步骤的乙酸可以由生物质发酵形成。发酵方法优选利用产乙酸(acetogenic)方法或同型产乙酸的微生物使糖类发酵得到乙酸并产生很少(如果有的话)二氧化碳作为副产物。与通常具有约67%碳效率的常规酵母法相比,所述发酵方法的碳效率优选大于70%、大于80%或大于90%。任选地,发酵过程中使用的微生物为选自如下的属:梭菌属(Clostridium)、乳杆菌属(Lactobacillus)、穆尔氏菌属(Moorella)、热厌氧杆菌属(Thermoanaerobacter)、丙酸杆菌属(Propionibacterium)、丙酸螺菌属(Propionispera)、厌氧螺菌属(Anaerobiospirillum)和拟杆菌属(Bacteriodes),特别是选自如下的物质:蚁酸醋酸梭菌(Clostridium formicoaceticum)、丁酸梭菌(Clostridiumbutyricum)、热醋穆尔氏菌(Moorella thermoacetica)、凯伍热厌氧菌(Thermoanaerobacter kivui)、德氏乳杆菌(Lactobacillus delbrukii)、产丙酸丙酸杆菌(Propionibacterium acidipropionici)、栖树丙酸螺菌(Propionispera arboris)、产琥珀酸厌氧螺菌(Anaerobiospirillumsuccinicproducens)、嗜淀粉拟杆菌(Bacteriodes amylophilus)和栖瘤胃拟杆菌(Bacteriodes ruminicola)。任选地,在该过程中,可以将全部或部分的来自生物质的未发酵残余物例如木脂体气化以形成可用于本发明加氢步骤的氢气。用于形成乙酸的示范性发酵过程公开于美国专利号6,509,180,和美国公开号2008/0193989和2009/0281354,通过援引将其整体并入本文。
生物质的实例包括但不限于农业废弃物、林业产品、草和其它纤维素材料、木材采伐剩余物、软木材碎片、硬木材碎片、树枝、树根、叶子、树皮、锯屑、不合格纸浆、玉米(corn)、玉米秸秆、麦秸秆、稻杆、甘蔗渣、软枝草、芒草、动物粪便、市政垃圾、市政污泥(municipalsewage)、商业废物、葡萄皮渣、杏核壳、山核桃壳、椰壳、咖啡渣、草粒、干草粒、木质颗粒、纸板、纸、塑料和布。又一生物质来源是黑液(black liquor),其是木质素残余物、半纤维素和无机化学品的水溶液。
美国专利No.RE35,377(也通过引用将其并入本文)提供了一种通过使含碳材料例如油、煤、天然气和生物质材料转化生产甲醇的方法。该方法包括使固体和/或液体含碳材料加氢气化以获得工艺气体,用另外的天然气将该工艺气体蒸汽热解以形成合成气。将该合成气转化为可以羰基化为乙酸的甲醇。该方法同样产生如上述有关本发明所可使用的氢气。美国专利No.5,821,111公开了一种将废生物质通过气化转化为合成气的方法,以及美国专利No.6,685,754公开了生产含氢气体组合物例如包含氢气和一氧化碳的合成气的方法,通过引用将它们全文并入本文。
给进到加氢反应器的乙酸还可以包含其它羧酸和酸酐,以及醛和/或酮例如乙醛和丙酮。优选,进料流包含乙酸和乙酸乙酯。合适的乙酸进料流包含一种或多种选自乙酸、乙酸酐、乙醛、乙酸乙酯、乙缩醛、二乙醚和它们的混合物的化合物。在本发明的方法中还可以将这些其它化合物加氢。在一些实施方案中,在丙醇生产中羧酸例如丙酸或其醛的存在会是有益的。乙酸进料中还可以存在水。
或者,可以直接从美国专利No.6,657,078(通过引用将其全文并入本文)中所描述的一类甲醇羰基化单元的闪蒸器取出蒸气形式的乙酸作为粗产物。例如,可以将粗蒸气产物直接给进到加氢反应器而不需要冷凝乙酸和轻馏分或者除去水,从而节省总体工艺费用。
可以使乙酸在反应温度下气化,然后可以将气化的乙酸随同未稀释状态或用相对惰性的载气例如氮气、氩气、氦气、二氧化碳等稀释的氢气一起给进。为使反应在气相中运行,应控制系统中的温度使得其不下降到低于乙酸的露点。在一个实施方案中,可以在特定压力下使乙酸在乙酸沸点气化,然后可以将气化的乙酸进一步加热到反应器入口温度。在另一个实施方案中,将乙酸在气化前与其它气体混合,接着将混合蒸气一直加热到反应器入口温度。优选地,通过使氢气和/或循环气穿过处于或低于125℃的温度下的乙酸而使乙酸转变为蒸气状态,接着将合并的气态料流加热到反应器入口温度。
在一些实施方案中反应器可以包括使用固定床反应器或流化床反应器的各种构造。在本发明的许多实施方案中,可以使用"绝热"反应器;即,具有很少或不需要穿过反应区的内部管道装置(plumbing)来加入或除去热。在其它实施方案中,可以使用径向流动的一个反应器或多个反应器作为反应器,或者可以使用具有或不具有热交换、急冷或引入另外进料的系列反应器。或者,可以使用配设有热传递介质的壳管式反应器。在许多情形中,反应区可以容纳在单个容器中或之间具有换热器的系列容器中。
在优选的实施方案中,催化剂在例如管道或导管形状的固定床反应器中使用,其中典型地为蒸气形式的反应物穿过或通过所述催化剂。可使用其它反应器,例如流化床或沸腾床反应器。在一些情形中,加氢催化剂可以与惰性材料结合使用以调节反应物料流通过催化剂床的压降和反应物化合物与催化剂颗粒的接触时间。在一些实施方案中,在同一反应器中或者在例如串联的不同反应器中使用多个催化剂床。例如,在一个实施方案中,第一催化剂在第一催化剂级段中起到用于将羧酸例如乙酸加氢为其相应的醇例如乙醇的催化剂的作用,在第二级段中使用第二双功能催化剂将未反应的乙酸转化为乙醇以及将副产物酯例如乙酸乙酯转化为另外的产物,优选转化为乙醇。可以在这样的反应系统的第一和/或第二级段中的任一个或其二者中使用本发明的催化剂。
反应器中的加氢可以在液相或气相中进行。优选地,在气相中于如下条件下进行该反应。反应温度可以为125℃至350℃,例如200℃至325℃、225℃至300℃或250℃至300℃。压力可以为10kPa至3000kPa,例如50kPa至2300kPa或100kPa至2000kPa。可以将反应物以大于500hr-1,例如大于1000hr-1、大于2500hr-1或甚至大于5000hr-1的气时空速(GHSV)给进到反应器。就范围而言,GHSV可以为50hr-1至50,000hr-1,例如500hr-1至30,000hr-1、1000hr-1至10,000hr-1或1000hr-1至6500hr-1
任选在刚刚足以克服穿过催化床的压降的压力下以所选择的GHSV进行加氢,尽管不限制使用较高的压力,但应理解,在高的空速例如5000hr-1或6,500hr-1下可能经历通过反应器床的相当大的压降。
虽然该反应每摩尔乙酸消耗2摩尔氢气从而产生1摩尔乙醇,但进料流中氢气与乙酸的实际摩尔比可以为约100:1至1:100,例如50:1至1:50、20:1至1:2或18:1至2:1。最优选地,氢气与乙酸摩尔比大于2:1,例如大于4:1或大于8:1。对于混合的进料流,氢气与乙酸乙酯的摩尔比可以大于5:1,例如大于10:1或大于15:1。
接触或停留时间也可以宽泛地变化,这些取决于如进料流(乙酸和/或乙酸乙酯)的量、催化剂、反应器、温度和压力的变量。当使用除固定床外的催化剂系统时,典型的接触时间为几分之一秒到大于若干小时,至少对于气相反应,优选的接触时间为0.1至100秒,例如0.3至80秒或0.4至30秒。
特别地,通过使用本发明的催化剂,乙酸和/或乙酸乙酯的加氢可以在反应器中获得向乙醇的有利的转化以及有利的选择性和产率。出于本发明意图,术语"转化率"是指以任意指定的乙酸或乙酸乙酯分别转化为并非乙酸或乙酸乙酯的化合物的量。转化率以基于进料中乙酸或乙酸乙酯计的百分数表示。乙酸转化率可以是至少20%,更优选至少60%,至少75%,至少80%,至少90%,至少95%或至少99%。
在乙酸加氢期间,可以产生作为副产物的乙酸乙酯。在没有从混合气相反应物消耗任何乙酸乙酯的情况下,乙酸乙酯的转化率可被认为是负的。本文描述的某些催化剂属性是单功能的,并且有效地用于将乙酸转化为乙醇,但是并不用于转化乙酸乙酯。单功能催化剂的使用可以引起在系统中不希望的乙酸乙酯积累,尤其是对于采用含有乙酸乙酯的一个或多个至反应器的循环流的系统。
然而,本发明的优选催化剂为多功能的,其原因在于它们有效催化乙酸向乙醇的转化以及乙酸烷基酯例如乙酸乙酯向除乙酸烷基酯以外的一种或多种产物的转化。多功能催化剂优选对以足够大的速率消耗乙酸乙酯是有效的以便至少抵消乙酸乙酯产生的速率,从而获得非负乙酸乙酯转化率,即实现乙酸乙酯不净增加。这样的催化剂的使用可以例如产生有效地(effectively)为0%或大于0%的乙酸乙酯转化率。在某些实施方式中,本发明催化剂有效地提供至少0%,例如至少5%,至少10%,至少15%,至少20%或至少35%的乙酸乙酯转化率。
在连续工艺中,在所述工艺达到平衡后,加入(例如再循环)到加氢反应器的乙酸乙酯和在粗产物中离开反应器的乙酸乙酯优选接近一定水平。催化乙酸乙酯以及乙酸转化的多功能催化剂的使用致使较低量的乙酸乙酯被加入到反应器中并且产生相对单功能催化剂较少的乙酸乙酯。在优选实施方案中,在实现平衡后,混合进料和粗产物中乙酸乙酯的浓度小于40wt.%、小于25wt.%或小于15wt.%。在优选实施方案中,所述工艺形成包含乙醇和乙酸乙酯的粗产物,并且该粗产物具有0.1至40wt.%例如0.1至20wt.%或0.1至15wt.%的乙酸乙酯稳态浓度。
虽然期望具有高的乙酸转化率例如至少60%的催化剂,但是在一些实施方案中在乙醇的选择性高时低的转化率也可以接受。当然,应充分理解,在许多情形中,可通过适当的再循环料流或者使用较大的反应器来弥补转化率,但却较难于弥补差的选择性。
选择性按基于转化的乙酸和/或乙酸乙酯的摩尔百分数表示。应理解由乙酸和/或乙酸乙酯转化的每种化合物具有独立的选择性并且该选择性不依赖于转化率。例如,如果所转化的乙酸的60摩尔%转化为乙醇,则乙醇选择性为60%。就本发明而言,总选择性是基于总的所转化的乙酸和乙酸乙酯计。优选地,乙醇的总选择性为至少60%,例如至少70%,至少80%,至少85%,或至少88%。该加氢过程的优选实施方案还具有对不期望的产物例如甲烷、乙烷和二氧化碳的低选择性。对这些不期望的产物的选择性优选小于4%,例如小于2%或小于1%。更优选地,这些不期望的产物以检测不到的量存在。烷烃的形成可以是低的,理想地,穿过催化剂的乙酸小于2%、小于1%或小于0.5%转化为烷烃,该烷烃除作为燃料外具有很小价值。
如本文中所使用的术语"产率"是指加氢期间基于所用催化剂的千克计每小时所形成的规定产物例如乙醇的克数。优选的产率为每千克催化剂每小时至少100克乙醇,例如每千克催化剂每小时至少400克乙醇为或每千克催化剂每小时至少600克乙醇。就范围而言,所述产率优选为每千克催化剂每小时100至3,000克乙醇,例如400至2,500克乙醇每千克催化剂每小时或600至2,000克乙醇每千克催化剂每小时。
在本发明的各种实施方案中,由反应器产生的粗乙醇产物,在任何随后处理例如纯化和分离之前,将典型地包含未反应的乙酸、乙醇和水。在表1中提供了粗乙醇产物的示例性组成范围。表1中所确定的"其它"可以包括例如酯、醚、醛、酮、烷烃和二氧化碳。
在一个实施方案中,粗乙醇产物可以包含小于20wt.%,例如小于15wt.%、小于10wt.%或小于5wt.%的量的乙酸。就范围而言,表1的乙酸浓度可以包含0.1wt.%至20wt.%,例如0.1wt.%至15wt.%、0.1wt.%至10wt.%或0.1wt.%至5wt.%。在具有较低乙酸量的实施方案中,乙酸的转化率优选大于75%,例如大于85%或大于90%。此外,乙醇选择性也优选是高的,大于75%,例如大于85%或大于90%。
可以使用若干不同的技术从使用本发明催化剂时反应器产生的粗乙醇产物回收乙醇产物。
乙醇产品可以是工业级乙醇,包含基于该乙醇产品总重量计75至96重量%乙醇,例如80至96重量%或85至96重量%乙醇。工业级乙醇可以具有小于12wt.%例如小于8wt.%或小于3wt.%的水的水浓度。在一些实施方案中,当进一步使用水分离时,乙醇产物优选含有大于96wt.%,例如大于98wt.%或大于99.5wt.%的量的乙醇。具有进一步水分离的乙醇产品优选包含小于3wt.%例如小于2wt.%或小于0.5wt.%的水。
由本发明实施方案生产的成品乙醇组合物可以用于各种应用,包括燃料、溶剂、化学原料、药物产品、清洁剂、消毒杀菌剂、氢转化或消费。在燃料应用中,可以使该成品乙醇组合物与汽油调合用于机动车辆例如汽车、船只和小型活塞发动机飞机。在非燃料应用中,该成品乙醇组合物可以用作化妆品和化妆品制剂的溶剂、清净剂、消毒剂、涂料、油墨和药品。该成品乙醇组合物还可以在药用产品、食品制剂、染料、光化学和乳胶处理的制造过程中用作处理溶剂。
该成品乙醇组合物还可以用作化学原料以制备其它化学品例如醋、丙烯酸乙酯、乙酸乙酯、乙烯、二醇醚、乙胺、乙苯、醛、丁二烯和高级醇,特别是丁醇。在乙酸乙酯的制备中,可以将该成品乙醇组合物用乙酸酯化。在另一个应用中,可以使该成品乙醇组合物脱水以生产乙烯。可使用任何已知的脱水催化剂,例如沸石催化剂或磷钨酸催化剂,使乙醇脱水,所述脱水催化剂例如在美国公开号2010/0030002和2010/0030001和WO2010146332中所描述,在此通过引用将它们的全部内容和公开内容并入本文。
催化剂再生
本发明催化剂是特别耐用的(robust)和具有长催化剂寿命。虽然如此,在长期使用的时段内,本发明催化剂的活性还是可以逐渐降低。相应地,在本发明的又一实施方式中,本发明涉及用于再生废加氢催化剂的方法,包括,在有效形成加氢产品和废加氢催化剂的条件下,将加氢反应器中的羧酸和氢与加氢催化剂接触;并且在大于200℃、任选300℃至600℃的温度,在有效形成具有比废加氢催化剂更高的催化活性的再生的加氢催化剂的条件下,用再生介质处理废加氢催化剂,其中所述加氢催化剂包含在载体上的贵金属和一种或多种活性金属。在该上下文中,"废(spent)"意指,与早先使用时段的相同催化剂相比,具有降低的转化率和/或降低的对希望产品例如乙醇的选择性的催化剂,其中所述降低选择性和/或转化率不能通过增加反应器温度多至设计限制来恢复。
在又一实施方式中,本发明涉及用于再生废催化剂的方法,包括(a)在有效形成加氢产品和废加氢催化剂的条件下,将加氢反应器中的羧酸和氢与加氢催化剂接触;和(b)在大于200℃、任选地300℃至600℃的温度,在有效形成具有比废加氢催化剂更高的催化活性的再生的加氢催化剂的条件下,用再生介质处理废加氢催化剂,其中所述加氢催化剂包含在载体上的贵金属和一种或多种活性金属。处理可以在加氢反应器内或在加氢反应器外发生。例如,处理可以在再生设备中发生,其中所述方法还包括将废加氢催化剂从加氢反应器引导至再生设备的步骤,以及将再生的加氢催化剂从再生设备引导至加氢反应器的步骤。
再生介质可以取决于是否希望仅仅从催化剂"剥离(strip)"例如含碳物质,或者希望完全再生而变化。取决于废催化剂的条件,再生介质可以选自蒸汽,氧(任选为空气、稀释的空气或在再生处理期间任选具有可变O2/N2比率的氧/氮混合物的形式),或氢。优选,再生介质基本上不含羧酸反应物,任选地包含小于10wt.%羧酸,小于5wt.%羧酸,或小于1wt.%羧酸,例如乙酸。处理步骤可以例如在0.5至10巴,例如0.8至8巴或0.9至4巴范围的压力发生。再生可以例如在10至200小时,例如20至150小时或50至100小时范围的时段发生。优选,处理步骤中所用的条件足以将所得再生的加氢催化剂的羧酸转化率例如乙酸转化率,和/或乙醇选择性,相对废催化剂的转化率和选择性增加至少25%,例如至少50%或至少75%。在又一方面,废催化剂具有相对新鲜催化剂降低或损失的乙醇选择性,而再生的催化剂恢复消失的乙醇选择性的至少25%,至少50%或至少75%。类似地,废催化剂可以具有相对新鲜催化剂降低或损失的乙酸转化率,而再生的催化剂恢复损失的乙酸转化率的至少25%,至少50%或至少75%。
如果蒸汽被用作再生介质,可以希望的是将再生的加氢催化剂干燥,随后将再生的加氢催化剂用于主要的加氢过程当中。任选地在10至350℃例如50至250℃、70至180℃或80至130℃的温度,和任选地0.5至5巴例如0.8至2巴或0.9至1.5巴的绝对压力,和任选地在10至50小时例如10至20小时的时段内进行干燥,如美国公开No.2011/0144398中所描述,通过援引将其全部并入本文。
以下实施例描述本发明的催化剂和方法。
实施例
催化剂制备方案的概要提供于图1中。如下所示,采用不同钨氧化物负载来制备3种改性钨氧化物负载型催化剂。
实施例1:SiO2-WO3(8)。
为了获得含有8.0wt.%WO3的100g改性二氧化硅载体,将8.50g偏钨酸铵水合物(AMT)溶于101mL DI-H2O。将AMT水溶液浸渍于92.00g二氧化硅载体上。经浸渍的物质在旋蒸仪中干燥2小时,然后置于在120℃预热的炉中持续12小时,并在煅烧炉中于550℃煅烧6小时。
实施例2:SiO2-WO3(12)。
为了获得含有12.0wt.%WO3的45.45g改性二氧化硅载体,将5.79g AMT溶于45mL DI-H2O。将AMT水溶液浸渍于40.00g二氧化硅载体上。经浸渍的物质在旋蒸仪中干燥2小时,然后置于在120℃预热的炉中持续12小时,并在煅烧炉中于550℃煅烧6小时。
实施例3:SiO2-WO3(16)。
为了获得含有15.3wt.%WO3的119.05g改性二氧化硅载体,将19.30g AMT溶于112.50mL DI-H2O。将AMT水溶液浸渍于100.00g二氧化硅载体上。经浸渍的物质在旋蒸仪中干燥2小时,然后将其置于在120℃预热的炉中持续12小时,并在煅烧炉中于550℃煅烧6小时。
实施例4-8:WO3-改性载体上的催化剂
实施例9-11的含有钨氧化物改性载体的催化剂制备如下。
实施例4:Pt(1)Co(4.8)Sn(4.1)/SiO2-WO3(8)。
溶液A制备如下:将9g8M HNO3加入4.3225g Co(NO3)2·6H2O盐。加入7g DI-H2O将溶液进一步稀释,加入1.3159g SnC2O4并完全溶解。
溶液B制备如下:将2.0002g10wt.%Pt草酸盐溶液置于烧杯中,加入6g DI-H2O。
在搅拌下,将溶液B滴加至溶液A,在加入之后将所得混合金属溶液搅拌5分钟。将合并的溶液加至16.55g SiO2-WO3(8)(来自实施例1),在旋蒸仪中干燥1小时,随后在预设温度120℃的炉中干燥12小时。在炉中进行煅烧,其温度程序为以3℃/min从室温缓变至160℃,在160℃保持2小时,随后以在3℃/min缓变至350℃,在350℃保持6小时。
实施例5:Pt(1)Co(4.8)Sn(4.1)/SiO2-WO3(12)。
溶液A制备如下:将9g8M HNO3滴加1.3157g SnC2O4。加入7g DI-H2O进一步稀释溶液。在搅拌下将4.3225g Co(NO3)2·6H2O盐缓慢地加入溶液。
溶液B形成如下:将2.0000g10wt.%Pt草酸盐溶液置于烧杯中,加入6g DI-H2O。
在搅拌下将溶液B滴加至溶液A。将所得混合前体溶液进一步再搅拌5分钟。将合并的溶液浸渍至16.55g SiO2-WO3(12)(来自实施例2),在旋蒸仪中干燥1小时,然后置于预设温度120℃的干燥炉中持续12小时。在炉中进行煅烧,温度程序为以3℃/min从室温缓变至160℃,在160℃保持2小时,随后以3℃/min缓变至350℃,在350℃保持6小时。
实施例6:Pt(1)Co(4.8)Sn(4.1)/SiO2-WO3(16)。
该催化剂以与实施例13催化剂很相似的方式制备,除了用SiO2-WO3(16)(来自实施例3)作为载体。
实施例7:Pt(1)Co(4.8)Sn(4.1)/SiO2-WO3(8)。
该催化剂以与实施例13催化剂很相似的方式制备,除了用SiO2-WO3(8)(来自实施例1)作为载体。
实施例8:Pt(1.09)Co(4.8)Sn(4.1)/SiO2-WO3(12)
制备金属浸渍溶液。锡盐溶液制备如下:将1.86g(5.31mmol)Sn(IV)Cl4·5H2O(固体)溶于9.00g DI-H2O。在搅拌下,将3.60g(12.36mmol)Co(NO3)2·6H2O固体加至溶液。铂盐溶液同时制备如下:将0.43g(0.83mmol Pt)H2PtCl6·XH2O(固体,Pt:38.2wt.%)溶于5.00g DI-H2O。将铂盐溶液加至上述Co/Sn溶液。在室温下于400rpm搅拌混合物5分钟。
然后,用始润浸渍技术将所得溶液加至在1升圆底烧瓶中的根据实施例2形成的13.51g WO3(12)/SiO2丸粒,以提供在载体上的均匀分布。在加入金属溶液之后,用旋蒸仪在80℃的浴温和于72毫巴的真空将物质排空至干2小时,随后在120℃在循环空气下干燥12小时,在350℃煅烧8小时。温度程序:以3℃/min缓变率从室温升至160℃,在160℃保持2小时,以3℃/min缓变率从160℃升至350℃,在350℃保持8小时。
实施例9
然后,如下所示,将实施例4-8的催化剂进料至实验设备。实验设备包括四个独立的管式固定床反应器系统,其具有共同的温控、压力以及气体和液体进料。反应器由3/8英寸(0.95cm)316SS管道构成,并且长度为121/8英寸(30.8cm)。气化器由3/8英寸(0.95cm)316SS管道构成,并且长度为123/8英寸(31.45cm)。反应器、气化器和它们各自的流出物转移管线是电热的(加热带)。
反应器流出物被导通至冷却的水冷凝器和气液分离罐。自动收集冷凝液体,然后视需要手工从气液分离罐排出。未冷凝的气体通过手工反压调节器(BPR),然后通过水洗涤,并通气至通风橱。对于各实施例,将15ml催化剂(3mm丸粒)加载入反应器中。反应器入口和出口均用玻璃珠(3mm)填充以形成固定床。对于催化剂筛选使用下述运行条件:T=275℃,P=300psig(2068kPag),[进料速率]=0.138ml/min(泵速率),和[H2]=513sccm,气体-时空速度(GHSV)=2246小时-1。用于测试的混合的原料组合物含有69.92wt.%乙酸,20.72wt.%乙酸乙酯,5.7wt.%乙醇,2.45wt.%乙缩醛(diethyl acetal),0.65wt.%水,和0.55wt.%乙醛。
然后,粗产物通过配有火焰离子化检测器的气相色谱(Agilent GC模型6850)加以分析。丙酮浓度小于0.1wt.%。除水外的液体产物流出物的GC分析结果提供于下表2中。
然后计算催化剂效能结果,并提供于下表3中。
短期寿命分析
在275℃,用10%H2(N2充当平衡气体)进行实施例5催化剂的线上还原30分钟。然后,如上所述,在标准运行条件下测试催化剂。在测试43小时之后,在普通关闭条件下关闭设备。在冷却至室温之后,重启设备,并将反应器温度增加至300℃。在该温度下用10%H2再次进行线上还原3小时。总结2种测试的结果并示于图2。
催化剂提供大于99%的乙酸转化率,大于90%的乙醇选择性和约40%的乙酸乙酯转化率。在133小时的实验之后,该催化剂并无失活迹象。还在标准运行条件下测试不同WO3负载的一系列催化剂,但时间较短。它们全都提供很良好的活性、选择性和短期稳定性。
在275℃用10%H2还原比较催化剂30分钟,并在如上所述的标准运行条件下测试,所述比较催化剂包含二氧化硅上的Pt(1)Co(4.8)Sn(4.1)但不含改性剂。该实验的结果示于图3。催化剂提供大于99%的乙酸转化率,大于90%的乙醇选择性和约17%的乙酸乙酯转化率。然而,催化剂显示能注意到的随运行时间而降低的乙酸乙酯转化率。
XRD表征
实施例5-7的催化剂也通过X射线衍射(XRD)加以表征。样品的XRD图谱用Rigaku D/Max Ultima II粉末X射线衍射仪获得,采用CuKa辐射。X射线管于40kV和40mA进行操作。如图4中所示,还原预处理的催化剂经鉴定含有立方钨氧化物(H0.5WO3;编目#:28691-ICSD)作为主要相。
X射线衍射图谱基本上如表4所示:
催化剂包含在改性载体上的钴、贵金属和至少一种活性金属,所述改性载体包含钨氧化物,其中所述催化剂具有X射线衍射图谱,其中在2θ=10°以上存在局部最大值,其在下述各位置具有特征的半峰全宽:23.54至24.60°范围的2θ值;27.81至28.13°范围的2θ值;33.52至34.56°范围的2θ值;41.62至42.42°范围的2θ值;54.70至55.66°范围的2θ值;60.18至61.32°范围的2θ值。
虽然详细描述了本发明,但在本发明的精神和范围内的各种修改对于本领域技术人员而言将是显而易见的。通过引用将上文论述的所有出版物和参考文献并入本文。此外,应理解引述的本发明的各个方面以及多个实施方案和多个特征的各个部分可以部分或全部地进行组合或者互换。在前述各个实施方案的描述中,如本领域技术人员所可认识到的,引用另一个实施方案的实施方案可以与其它实施方案适当地组合。此外,本领域技术人员将认识到前述描述仅仅是举例方式,并且不意欲限制本发明。

Claims (15)

1.一种催化剂,包含:
在改性载体上的钴、贵金属和至少一种活性金属,
其中所述贵金属选自铑、铼、钌、铂、钯、锇、铱和金;
其中所述至少一种活性金属选自铜、铁、镍、钛、锌、铬、锡、镧、铈和锰;和
其中所述改性载体包含(i)载体材料;(ii)包含选自钨、钼、钒、铌和钽的金属的载体改性剂。
2.权利要求1的催化剂,其中所述贵金属以0.1至5wt.%的量存在,钴以0.5至20wt.%的量存在而所述至少一种活性金属以0.5至20wt.%的量存在,基于催化剂总重量。
3.前述权利要求中任一项的催化剂,其中所述催化剂包含0.1至40wt.%的量的钨、钼或钒的氧化物。
4.前述权利要求中任一项的催化剂,其中所述载体改性剂包含钨氧化物。
5.前述权利要求中任一项的催化剂,其中所述载体改性剂基本上不含钴和/或所述至少一种活性金属。
6.前述权利要求中任一项的催化剂,其中所述至少一种活性金属选自铜、铁、镍、锌、铬和锡。
7.前述权利要求中任一项的催化剂,其中所述贵金属是钯和/或铂,而所述至少一种活性金属是锡。
8.前述权利要求中任一项的催化剂,其中所述载体材料选自二氧化硅,氧化铝,二氧化钛,二氧化硅/氧化铝,热解二氧化硅,高纯度二氧化硅,氧化锆,碳,沸石及其混合物。
9.前述权利要求中任一项的加氢催化剂,其中所述改性载体包含钨氧化物,并且在煅烧之后具有基本如下表所示的X射线衍射图谱:
10.前述权利要求中任一项的加氢催化剂,其中所述改性载体包含钨氧化物,并且在煅烧之后具有X射线衍射图谱,其中在2θ=10°以上存在局部最大值,其在下述各位置具有特征的半峰全宽:23.54至24.60°范围的2θ值;27.81至28.13°范围的2θ值;33.52至34.56°范围的2θ值;41.62至42.42°范围的2θ值;54.70至55.66°范围的2θ值;60.18至61.32°范围的2θ值。
11.用于产生乙醇的方法,包括在前述权利要求中任一项的催化剂存在下,在有效形成乙醇的条件下,在反应器中于升高的温度使包含乙酸的进料流和氢接触。
12.权利要求11的方法,其中所述进料流还包含大于5wt.%的量的乙酸乙酯,其中乙酸转化率大于20%,任选地大于80%而乙酸乙酯转化率大于5%。
13.权利要求11和12中任一项的方法,其中所述方法形成包含乙醇和乙酸乙酯的粗产物,和其中所述粗产物具有0.1至40wt.%的乙酸乙酯稳态浓度。
14.权利要求11、12和13中任一项的方法,其中乙酸形成自甲醇和一氧化碳,其中甲醇、一氧化碳和用于加氢步骤的氢各自衍生自合成气,而其中所述合成气衍生自选自天然气、油、石油、煤、生物质及其组合的碳源。
15.用于产生权利要求1的催化剂的合成方法,
(a)将载体材料用载体改性剂前体浸渍以形成第一浸渍载体,其中所述载体改性剂前体包含选自钨、钼、铌、钒和钽的载体改性剂金属;
(b)将第一浸渍载体加热至第一温度以形成改性载体;
(c)将改性载体用第二混合前体浸渍以形成第二浸渍载体,其中所述第二混合前体包含钴、所述贵金属和所述至少一种活性金属的前体;和
(d)将第二浸渍载体加热至第二温度以形成催化剂,其中所述第二温度小于第一温度。
CN201280066040.5A 2012-01-06 2012-08-27 含钴加氢催化剂和制备其的方法 Pending CN104039447A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261583922P 2012-01-06 2012-01-06
US61/583,922 2012-01-06
PCT/US2012/052508 WO2013103397A1 (en) 2012-01-06 2012-08-27 Cobalt-containing hydrogenation catalysts and processes for making same

Publications (1)

Publication Number Publication Date
CN104039447A true CN104039447A (zh) 2014-09-10

Family

ID=46939987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280066040.5A Pending CN104039447A (zh) 2012-01-06 2012-08-27 含钴加氢催化剂和制备其的方法

Country Status (9)

Country Link
US (1) US20130178663A1 (zh)
EP (1) EP2800624A1 (zh)
CN (1) CN104039447A (zh)
AU (1) AU2012363796A1 (zh)
BR (1) BR112014015580A8 (zh)
CA (1) CA2862562A1 (zh)
MX (1) MX2014008270A (zh)
SG (1) SG11201403768UA (zh)
WO (1) WO2013103397A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109304160A (zh) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 适于1,4-环己烷二甲酸的加氢催化剂
CN111298780A (zh) * 2018-12-12 2020-06-19 国家能源投资集团有限责任公司 复合粘结剂和载体及其制备方法和应用以及乙酸加氢制乙醇催化剂及其应用
CN111683747A (zh) * 2017-12-29 2020-09-18 韩华思路信株式会社 负载于碳涂覆二氧化硅-氧化铝载体上的贵金属-过渡金属复合催化剂及其制备方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PE20140360A1 (es) * 2011-02-09 2014-03-21 Sasol Tech Pty Ltd Catalizadores
US8841230B2 (en) 2012-01-06 2014-09-23 Celanese International Corporation Processes for making catalysts with metal halide precursors
US8937203B2 (en) 2012-01-06 2015-01-20 Celanese International Corporation Multifunctional hydrogenation catalysts
CN104039446B (zh) 2012-01-06 2016-12-28 国际人造丝公司 加氢催化剂
US8980789B2 (en) 2012-01-06 2015-03-17 Celanese International Corporation Modified catalyst supports
US8815768B2 (en) 2012-01-06 2014-08-26 Celanese International Corporation Processes for making catalysts with acidic precursors
US10155908B2 (en) * 2012-03-07 2018-12-18 Research Triangle Institute Catalyst compositions and use thereof in catalytic biomass pyrolysis
US9266095B2 (en) 2014-01-27 2016-02-23 Celanese International Corporation Hydrogenation catalysts with cobalt and alkaline-earth metal modified supports
US9353035B2 (en) 2014-04-28 2016-05-31 Celanese International Corporation Process for producing ethanol with zonal catalysts
US9382177B2 (en) 2014-04-28 2016-07-05 Celanese International Corporation Hydrogenation catalysts comprising a mixed oxide comprising a promoter metal
US9024088B1 (en) 2014-04-28 2015-05-05 Celanese International Corporation Hydrogenation catalysts comprising a mixed oxide comprising nickel
US9073815B1 (en) 2014-04-28 2015-07-07 Celanese International Corporation Hydrogenation catalysts comprising a mixed oxide and processes for producing ethanol
WO2015168021A1 (en) 2014-04-28 2015-11-05 Celanese International Corporation Process for producing ethanol with zonal catalysts
US9670120B2 (en) 2015-01-27 2017-06-06 Celanese International Corporation Process for producing ethanol using a solid catalyst
WO2016175747A1 (en) 2015-04-27 2016-11-03 Celanese International Corporation Hydrogenation catalysts comprising a mixed oxide having bismuth and process for producing ethanol
WO2016175745A1 (en) 2015-04-27 2016-11-03 Celanese International Corporation Ruthenium-bismuth mixed oxide hydrogenation catalysts and processes for producing ethanol
US9540297B2 (en) 2015-04-27 2017-01-10 Celanese International Corporation Ruthenium-bismuth mixed oxide hydrogenation catalysts and processes for producing ethanol
ES2962290T3 (es) * 2017-05-01 2024-03-18 Dsm Ip Assets Bv Catalizador metálico en polvo para procesos de hidrogenación
CN110773170B (zh) * 2018-07-31 2023-04-07 中国石油化工股份有限公司 一种甲烷重整催化剂及其制备方法和甲烷重整方法
CN114959788B (zh) * 2022-06-14 2024-01-30 安徽大学 一种亲氧金属掺杂的网络状PdH/C的制备及其在乙醇电催化氧化中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199438A (en) * 1978-05-15 1980-04-22 Uop Inc. Hydrocarbon conversion with an acidic multimetallic catalytic composite
US20110190117A1 (en) * 2010-02-01 2011-08-04 Celanese International Corporation Processes for making tin-containing catalysts
CN102271804A (zh) * 2009-10-26 2011-12-07 国际人造丝公司 由乙酸制备乙酸乙酯的方法
CN102300638A (zh) * 2009-10-26 2011-12-28 国际人造丝公司 由乙酸制备乙酸乙酯的催化剂

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4398039A (en) 1981-05-18 1983-08-09 The Standard Oil Company Hydrogenation of carboxylic acids
DE3221077A1 (de) 1982-06-04 1983-12-08 Basf Ag, 6700 Ludwigshafen Verfahren zur kontinuierlichen herstellung von ethanol
US5001259A (en) 1984-05-03 1991-03-19 Hoechst Celanese Corporation Methanol carbonylation process
US5144068A (en) 1984-05-03 1992-09-01 Hoechst Celanese Corporation Methanol carbonylation process
US5026908A (en) 1984-05-03 1991-06-25 Hoechst Celanese Corporation Methanol carbonylation process
EP0175558A1 (en) 1984-09-17 1986-03-26 EASTMAN KODAK COMPANY (a New Jersey corporation) Process for the vapor phase hydrogenation of carboxylic acids to esters and alcohols
GB8509530D0 (en) 1985-04-13 1985-05-15 Bp Chem Int Ltd Hydrogenation of carboxylic acids
CA1299195C (en) 1986-06-16 1992-04-21 G. Paull Torrence Addition of hydrogen to carbon monoxide feed gas in producing acetic acid by carbonylation of methanol
US5149680A (en) 1987-03-31 1992-09-22 The British Petroleum Company P.L.C. Platinum group metal alloy catalysts for hydrogenation of carboxylic acids and their anhydrides to alcohols and/or esters
US5821111A (en) 1994-03-31 1998-10-13 Bioengineering Resources, Inc. Bioconversion of waste biomass to useful products
USRE35377E (en) 1993-05-27 1996-11-12 Steinberg; Meyer Process and apparatus for the production of methanol from condensed carbonaceous material
US5599976A (en) 1995-04-07 1997-02-04 Hoechst Celanese Corporation Recovery of acetic acid from dilute aqueous streams formed during a carbonylation process
IN192600B (zh) 1996-10-18 2004-05-08 Hoechst Celanese Corp
DE19720657A1 (de) 1997-05-16 1998-11-19 Basf Ag Verfahren zur Herstellung von aliphatischen Alkoholen
BR0010379A (pt) 1999-03-11 2001-12-26 Dan Verser Processo para a produção de etanol
AU7318900A (en) 1999-09-21 2001-04-24 Asahi Kasei Kabushiki Kaisha Catalysts for hydrogenation of carboxylic acid
US6232352B1 (en) 1999-11-01 2001-05-15 Acetex Limited Methanol plant retrofit for acetic acid manufacture
US6627770B1 (en) 2000-08-24 2003-09-30 Celanese International Corporation Method and apparatus for sequesting entrained and volatile catalyst species in a carbonylation process
US6657078B2 (en) 2001-02-07 2003-12-02 Celanese International Corporation Low energy carbonylation process
US6685754B2 (en) 2001-03-06 2004-02-03 Alchemix Corporation Method for the production of hydrogen-containing gaseous mixtures
US7115772B2 (en) 2002-01-11 2006-10-03 Celanese International Corporation Integrated process for producing carbonylation acetic acid, acetic anhydride, or coproduction of each from a methyl acetate by-product stream
US7005541B2 (en) 2002-12-23 2006-02-28 Celanese International Corporation Low water methanol carbonylation process for high acetic acid production and for water balance control
US7208624B2 (en) 2004-03-02 2007-04-24 Celanese International Corporation Process for producing acetic acid
CN101646776A (zh) 2007-02-09 2010-02-10 齐凯姆公司 制造产物的高能效方法
US8329961B2 (en) * 2007-02-16 2012-12-11 Kao Corporation Catalyst for producing alcohol
WO2009137708A1 (en) 2008-05-07 2009-11-12 Zeachem Inc. Recovery of organic acids
US8680317B2 (en) * 2008-07-31 2014-03-25 Celanese International Corporation Processes for making ethyl acetate from acetic acid
US8309772B2 (en) 2008-07-31 2012-11-13 Celanese International Corporation Tunable catalyst gas phase hydrogenation of carboxylic acids
US8546622B2 (en) * 2008-07-31 2013-10-01 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
US7608744B1 (en) 2008-07-31 2009-10-27 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US20100030002A1 (en) 2008-07-31 2010-02-04 Johnston Victor J Ethylene production from acetic acid utilizing dual reaction zone process
US20100030001A1 (en) 2008-07-31 2010-02-04 Laiyuan Chen Process for catalytically producing ethylene directly from acetic acid in a single reaction zone
US20120165589A1 (en) 2009-06-19 2012-06-28 Bp P.L.C. A process for the dehydration of ethanol to produce ethene
US8680321B2 (en) * 2009-10-26 2014-03-25 Celanese International Corporation Processes for making ethanol from acetic acid using bimetallic catalysts
US20110144398A1 (en) 2009-12-11 2011-06-16 Basf Se Process for regenerating a ruthenium-containing supported hydrogenation catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199438A (en) * 1978-05-15 1980-04-22 Uop Inc. Hydrocarbon conversion with an acidic multimetallic catalytic composite
CN102271804A (zh) * 2009-10-26 2011-12-07 国际人造丝公司 由乙酸制备乙酸乙酯的方法
CN102300638A (zh) * 2009-10-26 2011-12-28 国际人造丝公司 由乙酸制备乙酸乙酯的催化剂
US20110190117A1 (en) * 2010-02-01 2011-08-04 Celanese International Corporation Processes for making tin-containing catalysts

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109304160A (zh) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 适于1,4-环己烷二甲酸的加氢催化剂
CN109304160B (zh) * 2017-07-28 2020-08-07 中国石油化工股份有限公司 适于1,4-环己烷二甲酸的加氢催化剂
CN111683747A (zh) * 2017-12-29 2020-09-18 韩华思路信株式会社 负载于碳涂覆二氧化硅-氧化铝载体上的贵金属-过渡金属复合催化剂及其制备方法
CN111683747B (zh) * 2017-12-29 2023-12-29 韩华思路信株式会社 负载于碳涂覆二氧化硅-氧化铝载体上的贵金属-过渡金属复合催化剂及其制备方法
CN111298780A (zh) * 2018-12-12 2020-06-19 国家能源投资集团有限责任公司 复合粘结剂和载体及其制备方法和应用以及乙酸加氢制乙醇催化剂及其应用

Also Published As

Publication number Publication date
SG11201403768UA (en) 2014-10-30
AU2012363796A1 (en) 2014-07-03
CA2862562A1 (en) 2013-07-11
BR112014015580A2 (pt) 2017-06-13
US20130178663A1 (en) 2013-07-11
WO2013103397A1 (en) 2013-07-11
EP2800624A1 (en) 2014-11-12
BR112014015580A8 (pt) 2017-07-04
MX2014008270A (es) 2014-10-06

Similar Documents

Publication Publication Date Title
CN104039446B (zh) 加氢催化剂
CN104039447A (zh) 含钴加氢催化剂和制备其的方法
CN104093484A (zh) 用于将包含乙酸和乙酸乙酯的混合物转化成乙醇的加氢催化剂
US8980789B2 (en) Modified catalyst supports
US8637714B2 (en) Process for producing ethanol over catalysts containing platinum and palladium
US8937203B2 (en) Multifunctional hydrogenation catalysts
US8802588B2 (en) Bismuth catalyst composition and process for manufacturing ethanol mixture
CN104039747A (zh) 用于生产乙醇的钴和锡催化剂
WO2013103396A1 (en) Processes for making catalysts with oxalate precursors
CN103874545B (zh) 利用由多金属氧酸盐前体制备的加氢催化剂生产乙醇的方法
US9073042B2 (en) Acetic acid hydrogenation over a group VIII metal calcined catalyst having a secondary promoter
CN104010727A (zh) 利用包含铂、锡和次要贵金属的催化剂用于生产乙醇的方法
WO2013103850A1 (en) Hydrogenation catalysts with acidic sites comprising modified silica support
WO2013137955A1 (en) Ethanol manufacturing process over catalyst having improved radial crush strength
WO2013122645A1 (en) Catalytic hydrogenation of acetic acid forming ethanol the catalyst comprising cesium and tungsten or oxides thereof
WO2013112228A1 (en) Process for manufacturing ethanol using a tin catalyst supported on titania
CN103282333A (zh) 使用具有无定形载体的加氢催化剂的乙醇方法
TW201315541A (zh) 從多金屬氧酸鹽前體所製備之氫化觸媒及使用此氫化觸媒生產乙醇之製程

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140910