CN104038944B - 一种基于随机矩阵的认知无线电频谱感知方法 - Google Patents

一种基于随机矩阵的认知无线电频谱感知方法 Download PDF

Info

Publication number
CN104038944B
CN104038944B CN201410293452.3A CN201410293452A CN104038944B CN 104038944 B CN104038944 B CN 104038944B CN 201410293452 A CN201410293452 A CN 201410293452A CN 104038944 B CN104038944 B CN 104038944B
Authority
CN
China
Prior art keywords
matrix
signal
singular value
random
sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410293452.3A
Other languages
English (en)
Other versions
CN104038944A (zh
Inventor
高玉龙
李然
陈艳平
刘佳鑫
马永奎
朱尤祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201410293452.3A priority Critical patent/CN104038944B/zh
Publication of CN104038944A publication Critical patent/CN104038944A/zh
Application granted granted Critical
Publication of CN104038944B publication Critical patent/CN104038944B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

一种基于随机矩阵的认知无线电频谱感知方法,本发明涉及认知无线电频谱感知技术。本发明是要解决在低信噪比条件下检测性能低远不能满足实际应用的需要的问题,而提供了一种基于随机矩阵的认知无线电频谱感知方法。步骤一、采用多天线对要进行感知的信号进行接收;步骤二、将接收到的信号数据根据随机矩阵理论利用采样矩阵进行表示;步骤三、求解采样矩阵的奇异值,找出其中最大奇异值和最小奇异值,确定检验统计量;步骤四、根据无线频谱感知方法将检验统计量与判决门限进行比较,根据检验统计量与判决门限的比较结果进行判决。本发明应用于通信领域。

Description

一种基于随机矩阵的认知无线电频谱感知方法
技术领域
本发明涉及认知无线电频谱感知技术。
背景技术
1.频谱感知
就目前来看,频谱固定的分配方式导致正在使用的所有频段的使用效率低下。也就是说,在主用户并没有使用其所占有的频段时,认知用户也不能使用这个空闲的频段,这样一来使得频谱使用不合理,不充分。另一方面,不断增长的无线业务对无线频谱的需求日益增长,导致可用频谱资源更加紧缺。面对频谱危机,出现了“认知无线电”技术,它可以实现闲置频谱的充分利用。
认知无线电的基本思想是频谱复用和频谱共享,它允许认知用户在保证不影响主用户使用其频段的前提下利用主用户的空闲频段进行通信。要达到这一目的,认知用户就要不断地检测主用户信号是否正在使用其所占频段,这就是频谱感知。若检测到主用户存在,那么认知用户就不能使用该频段进行通信,相反则可以进行通信。
频谱感知的要求是检测要准确,包括两个方面:
(1)主用户信号存在时一定要检测出来,即不能影响主用户的正常使用,这也是最重要的;
(2)主用户信号不存在时要尽量检测到,这样可以尽可能充分地利用频谱资源,但它相比(1)显得没有那么紧迫。
如果上述中(1)做得不好,后果就是影响主用户的正常使用,这是万万不可的;如果上述中(2)做得不好,那么频谱就没有得到充分的利用,也就失去了频谱感知的意义,频谱资源紧张的问题就无法很好的解决,所以频谱感知对主用户信号的检测的“准确”二字体现在以上两个方面。这两个方面,相应地对应着两种错误(虚警和漏警),进而对应两种错误概率(虚警概率和漏警概率)。
漏警:主用户信号存在,即主用户正在使用其所占频段,但认知用户进行频谱感知时没有检测到主用户信号的存在,因而认知用户利用此频段,与主用户发生冲突,影响主用户的使用,对应上述的1)。
虚警:主用户信号不存在,即没有使用其所占频段,但认知用户进行频谱感知时检测到主用户信号存在,因而无法利用此频段,使得此频段空闲,对应上述的2)。
对于不同的通信系统,对漏警概率和虚警概率的要求是不同的。就这两种错误来看,漏警在频谱感知中造成的后果比虚警要严重,因为它直接影响了主用户对于其占有频段的使用,违背了最根本的原则。而虚警只不过是有空闲的频段但却没能利用,相比前者没有什么严重的后果。因此,应该更加注重降低漏警概率,也就是努力提高检测概率(漏警概率+检测概率=1),这也是衡量频谱感知算法的优劣性的一个最重要的评价指标。本发明意在寻找一种使检测概率尽量高而错误概率(包括虚警和漏警)尽量低的检测算法,以实现频谱资源的充分利用。
认知无线电是从根本上提高无线通信的频谱效率、功率效率、系统容量的技术手段,能满足未来高速高质量信息服务对宽带无线通信的需求,是实现通信系统具有可扩展、可重构功能的技术之一。频谱感知技术是认知无线电的基础和核心,而随机矩阵理论是一套完备的、有说服力的理论体系,它描述了各个类型的矩阵在特定的条件下具有的特点与性能。同时,要进行感知的信号可以用矩阵的形式来表示,这样就建立起了频谱感知与随机矩阵理论之间的联系,这样可以更加清晰直观地对感知信号进行分析处理,以便更好地进行频谱感知。
2.随机矩阵理论
频谱感知技术在近几年始终是国际上的研究热点,而已有的检测算法大致分为以下三类:
1)常规检测法:它需要事先知道信号和噪声的功率信息。如:似然比检测法,匹配滤波检测法,循环平稳检测法等。
2)半盲检测法:它只需要事先知道噪声的功率信息。如:能量检测,基于小波的检测等。
3)盲检测法:它不需要事先知道信号和噪声的功率信息。如:基于协方差的感知,盲组合能量检测,基于特征值的感知等。
上述算法各有优缺点和适用条件,但它们共同存在一个问题:在低信噪比条件下(如低于-20dB),检测性能远不能满足实际应用的需要。为了探索低信噪比条件下具备高性能且真正切实可行的频谱感知新方法,慢慢地出现了一种新的思想,它就是随机矩阵理论。
随机矩阵理论原本是一种处理大维数据的有效方法,在数字通信、核物理以及金融数学等领域均有广泛的应用。众所周知,当前的一个客观事实是,各行各业的科技人员都不得不面对日益庞大的数据。过去人们常常采用降维的方法,但这样做会丧失包含在原始数据里的很多信息。随机矩阵理论则不同,如果数据满足随机矩阵渐近收敛的条件,其收敛率可以将人们关心的数据特性完整地保留下来。
另外,随机矩阵理论可根据数据的维数分为渐近随机矩阵理论(无限维)和非渐近随机矩阵理论(有限维),其中非渐近随机矩阵理论是最新的研究成果,它将随机矩阵理论从无穷维理论分析推向了有限维实际应用,这样使得随机矩阵理论更加贴近生活实际。
要了解随机矩阵理论,首先必须要了解随机矩阵。随机矩阵的理论基础是概率论和数理统计,随机过程和矩阵论。随机矩阵是指一个以随机变量为元素的矩阵,如果随机矩阵中行和列的维数都趋于无穷,则称之为大维随机矩阵。所有经典极限理论都假设数据的维数是固定的,但由于其自身的局限,经典的极限理论不再适用于大维数据。前面已经提到,常用的降维处理会丢失包含在原始数据里的重要信息。因此,在上世纪30年代Wishart等人提出了随机矩阵的概念,并对此进行了大量的研究。后来人们慢慢发现了一些定律,如50年代Wigner发现的半圆律等等。
随机矩阵的种类有很多,对于对称矩阵(厄尔米特矩阵)而言,不变系综和Wigner矩阵系综是经常研究的对象,Gauss系综是前两种系综的特例,也是最常见的。而对于不同的随机矩阵系综,基本的研究对象是极限谱分布,它是研究随机矩阵的出发点。对谱分布的充分理解有助于研究矩阵特征值更精细的性质,如特征值的涨落(即线性统计量的中心极限定理)、最大最小特征值的分布以及非方阵的最大最小奇异值的分布等等。
目前,随机矩阵理论在认知无线电领域的应用才刚刚起步,而且主要基于其中的渐近理论,它研究的是无穷维随机矩阵的渐近谱分布函数的收敛律。基于此理论出现了一些渐近算法,主要包括:基于渐近谱理论的协作频谱感知算法,该算法利用Marcenko-Pastur(M-P律)给出了大系统情况下的频谱感知算法。后来又出现了同样基于渐近谱理论的最大最小特征值算法,该算法考虑了采样数较小的情况(有限维),已经开始向非渐近方向发展。但是它只是利用了最大特征值的Tracy-Widom分布,对于最小特征值,仍然采用渐近收敛特性,所以它仍是一种渐近算法。对于样本数有限的情况,即非渐近算法,现在的研究还不成熟。
发明内容
本发明是要解决在低信噪比条件下检测性能低远不能满足实际应用的需要的问题,而提供了一种基于随机矩阵理论的认知无线电频谱感知方法。
一种基于随机矩阵的认知无线电频谱感知方法,它按以下步骤实现:
步骤一、采用多天线对要进行感知的信号进行接收;
步骤二、将接收到的信号数据利用采样矩阵进行表示;
步骤三、求解采样矩阵的奇异值,找出其中最大奇异值和最小奇异值,确定检验统计量;
步骤四、将检验统计量与判决门限进行比较,根据检验统计量与判决门限的比较结果进行判决,判决准则:检验统计量大于或等于判决门限时判决主用户信号存在,否则认为主用户信号不存在。
发明效果:
一种基于非渐近随机矩阵理论的频谱感知方法,本发明的基本思想是根据已有的非渐近随机矩阵理论,将接收到的要进行感知的信号表示为矩阵的形式,使它具备可以用随机矩阵理论进行处理的条件。之后根据理论中提出的在特定条件下矩阵所表现出来的性质,通过观察接收信号构成的采样矩阵是否满足理论中所述的性质来反推理论所要求的特定条件是否满足。具体来说,本发明所依据的理论中只有当矩阵是高斯随机矩阵时才能得到后面的结论不等式,那么就可以通过看结论不等式的成立与否来反过来得出该矩阵是否是高斯随机矩阵。若是,则说明主用户信号不存在,全是噪声,反之则主用户信号存在。
根据非渐近随机矩阵理论:对于一个N行n列的高斯随机矩阵A,其元素为相互独立的随机变量,则矩阵A的最大奇异值和最小奇异值满足下式:
注:非方阵A的奇异值表示由矩阵A的转置乘以A之后得到的方阵的特征值非负平方根。
这个定理并不是严格意义上的成立,定理成立的严格程度取决于高斯随机变量的方差。方差越大,高斯分布曲线越扁平,各个变量取值越均匀,奇异值的分布越集中,这样定理越严格。相反,方差越小,高斯分布曲线越尖锐,各个变量取值越集中,从而奇异值的分布越分散,这样定理越不严格。
1.检验统计量的选取
根据由接收到的数据组成的采样矩阵可以知道,其中每根天线接收信号时采样K次,占据矩阵每一行的所有列。第1根天线接收到的数据就是矩阵的第1行,第2根天线接收到的数据就是矩阵的第2行,以此类推,第M根天线接收到的数据就是矩阵的第M行。以此法构成的由接收到的信号组成的矩阵称为采样矩阵,也就是根据随机矩阵理论要进行处理的对象。
检验统计量选取采样矩阵的最大奇异值与最小奇异值的比值就是通过求取矩阵的所有奇异值并找出其中最大的和最小的来获得,称之为奇异值扩散度。
2.判决门限的选取
考虑通信系统处在高斯噪声的环境下。当主用户信号不存在时,多天线接收到的只有高斯噪声,那么采样矩阵是高斯随机矩阵,满足上述非渐近随机矩阵理论的前提条件,因而结论成立,即选取作为判决门限来区分主用户信号存在和不存在的两种判决。
这样选取的依据是:对于主用户信号存在与不存在两种情况,主用户信号存在时各个天线接收的数据相关性会强一些(相比主用户信号不存在时),信号越强则相关性就越强。根据矩阵的基本知识矩阵各个行向量的相关性越强矩阵的秩就越小这意味着矩阵会有0奇异值,这样矩阵的奇异值扩散度就越大。根据判决规则,主用户信号存在时采样矩阵的奇异值扩散度因比较大而容易超过判决门限,也就是说判决规则符合实际情况。
附图说明
图1是本发明频谱感知及判决流程图;
图2是本发明随机矩阵理论与频谱感知的结合;
图3是本发明多接收天线协作感知场景图;
图4是具体实施方式一和具体实施方式二中不同天线数量情况下的检测概率(采样次数n=10000,信噪比-20dB);
图5是具体实施方式三中不同信噪比情况下的检测概率(天线个数N=4,采样次数n=40000);
图6是具体实施方式四中不同信噪比情况下的虚警概率(天线个数N=4,采样次数n=40000)。
具体实施方式
具体实施方式一:本实施方式的一种基于随机矩阵的认知无线电频谱感知方法,它按以下步骤实现:
步骤一、采用多天线对要进行感知的信号进行接收;
步骤二、将接收到的信号数据利用采样矩阵进行表示;
步骤三、求解采样矩阵的奇异值,找出其中最大奇异值和最小奇异值,确定检验统计量;
步骤四、将检验统计量与判决门限进行比较,根据检验统计量与判决门限的比较结果进行判决,判决准则:检验统计量大于或等于判决门限时判决主用户信号存在,否则认为主用户信号不存在。
本实施方式的通信环境是单根接收天线的感知场景,此天线处在高斯随机噪声的环境中,主用户发来的信号为正弦信号,信噪比为-20dB,接收天线对数据进行等间隔采样,采样点数为10000。
具体实施方式二:本实施方式与具体实施方式一不同的是:所述步骤二中的把接收到的信号数据用采样矩阵表示具体为:
设认知用户有M根接收天线,每根接收天线都要对接收到的信号进行采样,设采样次数为K,占据矩阵每一行的所有列,第1根天线接收到的数据是矩阵的第1行,第2根天线接收到的数据是矩阵的第2行,以此类推,第M根天线接收到的数据是矩阵的第M行,构成由接收到的信号组成的矩阵称为采样矩阵,共有M*K个数据,将数据组成一个M*K的矩阵,称为采样矩阵,形式如下:
针对的通信环境是多接收天线之间的协作感知场景,其中认知用户有M根接收天线,同时对主用户信号进行检测,共同感知频段是否空闲可用。每根接收天线对接收到的数据采样K次,占据矩阵每一行的所有列,第1根天线接收到的数据是矩阵的第1行,第2根天线接收到的数据是矩阵的第2行,以此类推,第M根天线接收到的数据是矩阵的第M行。各根天线的分布情况随机,但要求它们之间保持一定距离,以保证互相不干扰。目的是研究不同天线个数情况下的检测概率变化。
具体实施方式一与具体实施方式二的结果如图4所示,参数设置为:信噪比-20dB,每根接收天线对接收的数据的采样次数为10000。横坐标表示天线的数量(从1到6),纵坐标表示检测概率(从0到1)。可以看出,多接收天线相比单接收天线可以提高检测概率,而且当天线数量达到4根及以上时,效果较明显。4根接收天线时,检测概率相比单天线提高了约1dB;5根接收天线时,检测概率相比单天线提高了约5dB;6根接收天线时,检测概率相比单天线提高了约11.5dB。这体现出了多天线的优势。
其它步骤及参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:所述步骤三中确定检验统计量具体为:
检验统计量选取采样矩阵的最大奇异值与最小奇异值的比值其中,A为一个N行n列的高斯随机矩阵。
尽管还是多天线,但是天线数量固定不变(N=4),而信噪比不再是固定的-20dB。目的是研究不同信噪比条件下的检测概率变化。
实施方式三的结果如图5所示,参数设置为:每根接收天线对接收的数据的采样次数为10000,接收天线数量为4根。横坐标表示主用户信号相对高斯随机噪声环境的信噪比,从-50dB到0dB,每隔10dB作为一组,纵坐标表示检测概率(从0到1)。通信系统中常把-20dB作为一个分界,低于-20dB可以认为是低信噪比的情况。-20dB时检测概率约为0.55,信噪比增加至-10dB之后,检测概率相比-20dB时提高了2.5dB。信噪比增加至0dB之后,检测概率相比-20dB时提高了2.6dB。
其它步骤及参数与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:所述步骤四中判决门限的选取:
假设当主用户信号不存在时,多天线接收到的只有高斯噪声,那么采样矩阵是高斯随机矩阵,满足非渐近随机矩阵理论的前提条件:根据非渐近随机矩阵理论:对于一个N行n列的高斯随机矩阵A,其元素为相互独立的随机变量,则矩阵A的最大奇异值smax(A)和最小奇异值smin(A)满足下式:
其中,非方阵A的奇异值表示由矩阵A的转置乘以A之后得到的方阵的特征值非负平方根,λ为矩阵A的特征值,因此,选取作为判决门限来区分主用户信号存在和不存在的两种判决。
不再是研究检测概率的变化,而是研究不同信噪比条件下的虚警概率的变化。
实施方式四的结果如图6所示,参数设置为:每根接收天线对接收的数据的采样次数为10000,接收天线数量为4根。横坐标表示主用户信号相对高斯随机噪声环境的信噪比,从-50dB到0dB,每隔10dB作为一组,纵坐标表示虚警概率(从0到1)。虚警概率维持在0.1到0.2之间,比较稳定,波动不大。
其它步骤及参数与具体实施方式一至三之一相同。
求出矩阵Y=XH X的特征值,其中XH表示矩阵X的共轭转置,矩阵Y是M阶方阵,记其中的非负特征值为λ,那么为矩阵X的奇异值,求出矩阵X的M个非负的奇异值,选出奇异值中的最大值和最小值;
方阵特征值的定义如下:对于n阶方阵A,若存在n维列向量x,使得Ax=λx成立(λ为常数),则称λ为矩阵A的特征值。
根据非渐近随机矩阵理论:对于一个N行n列的高斯随机矩阵A,其元素为相互独立的随机变量,则矩阵A的最大奇异值和最小奇异值满足下式:
其中,smin(A)和smax(A)分别表示矩阵A的所有奇异值中的最小值和最大值。这个理论实际上给出了高斯随机矩阵奇异值分布的特点,奇异值的分布规律与高斯随机矩阵的行数与列数有关。当主用户信号不存在即接收到的仅有高斯随机噪声时,采样矩阵是高斯随机矩阵,满足该理论的条件,因此结论不等式成立;当主用户信号存在时,采样矩阵因有信号的存在而不是高斯随机矩阵,不满足该理论的条件,因此结论不等式不成立。
如步骤四所述,将最大奇异值和最小奇异值的比值即奇异值扩散度与判决门限进行比较,根据比较结果进行判决。门限选择方面,将不等式两个边界的比值作为判决门限,来区分主用户信号存在/不存在的两种判决,实际上是通过观察理论的不等式结论是否成立来反推理论的条件是否满足。

Claims (1)

1.一种基于随机矩阵的认知无线电频谱感知方法,其特征在于按以下步骤实现:
步骤一、采用多天线对要进行感知的信号进行接收;
步骤二、将接收到的信号数据利用采样矩阵进行表示;
步骤三、求解采样矩阵的奇异值,找出其中最大奇异值和最小奇异值,确定检验统计量;
步骤四、将检验统计量与判决门限进行比较,根据检验统计量与判决门限的比较结果进行判决,判决准则:检验统计量大于或等于判决门限时判决主用户信号存在,否则认为主用户信号不存在;
所述步骤二中的把接收到的信号数据用采样矩阵表示具体为:
设认知用户有M根接收天线,每根接收天线都要对接收到的信号进行采样,设采样次数为K,占据矩阵每一行的所有列,第1根天线接收到的数据是矩阵的第1行,第2根天线接收到的数据是矩阵的第2行,以此类推,第M根天线接收到的数据是矩阵的第M行,构成由接收到的信号组成的矩阵称为采样矩阵,共有M*K个数据,将数据组成一个M*K的矩阵,称为采样矩阵,形式如下:
所述步骤三中确定检验统计量具体为:
检验统计量选取采样矩阵的最大奇异值与最小奇异值的比值,其中,A为一个N行n列的高斯随机矩阵;
所述步骤四中判决门限的选取:
假设当主用户信号不存在时,多天线接收到的只有高斯噪声,那么采样矩阵是高斯随机矩阵,满足非渐近随机矩阵理论的前提条件:根据非渐近随机矩阵理论:对于一个N行n列的高斯随机矩阵A,其元素为相互独立的随机变量,则矩阵A的最大奇异值smax(A)和最小奇异值smin(A)满足下式:
其中,非方阵A的奇异值表示由矩阵A的转置乘以A之后得到的方阵的特征值非负平方根,λ为矩阵A的特征值,因此,选取作为判决门限来区分主用户信号存在和不存在的两种判决。
CN201410293452.3A 2014-06-25 2014-06-25 一种基于随机矩阵的认知无线电频谱感知方法 Active CN104038944B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410293452.3A CN104038944B (zh) 2014-06-25 2014-06-25 一种基于随机矩阵的认知无线电频谱感知方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410293452.3A CN104038944B (zh) 2014-06-25 2014-06-25 一种基于随机矩阵的认知无线电频谱感知方法

Publications (2)

Publication Number Publication Date
CN104038944A CN104038944A (zh) 2014-09-10
CN104038944B true CN104038944B (zh) 2017-04-12

Family

ID=51469502

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410293452.3A Active CN104038944B (zh) 2014-06-25 2014-06-25 一种基于随机矩阵的认知无线电频谱感知方法

Country Status (1)

Country Link
CN (1) CN104038944B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105722092B (zh) * 2014-11-30 2019-01-04 中国科学院沈阳自动化研究所 一种基于置换群的多天线认知无线网络信道汇合方法
CN104601264B (zh) * 2015-02-27 2018-06-05 吉首大学 一种适用于高维有限样本条件的多天线频谱感知方法
CN105353256B (zh) * 2015-11-30 2018-05-25 上海交通大学 一种输变电设备状态异常检测方法
WO2018119943A1 (zh) * 2016-12-29 2018-07-05 深圳天珑无线科技有限公司 一种信道识别方法及装置
CN106972900B (zh) * 2017-05-16 2020-04-14 西安熠泽丰电子科技有限公司 基于广义t2统计量的盲频谱感知方法
CN108279415B (zh) * 2018-01-04 2020-11-24 浙江大学 一种基于空间压缩感知的实时微波隔墙成像方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101986583A (zh) * 2010-12-01 2011-03-16 东南大学 基于协方差匹配的多天线频谱感知方法
CN102253360A (zh) * 2011-04-14 2011-11-23 上海大学 阈值自动调整的循环平稳信号源个数估计方法
CN103391143A (zh) * 2013-07-29 2013-11-13 哈尔滨工业大学深圳研究生院 基于特征值的多天线盲频谱感知方法及系统
CN103795481A (zh) * 2014-01-28 2014-05-14 南京邮电大学 一种基于自由概率理论的协作频谱感知方法
CN103873170A (zh) * 2014-03-26 2014-06-18 哈尔滨工业大学 一种在盲稀疏条件下压缩感知的频谱检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101986583A (zh) * 2010-12-01 2011-03-16 东南大学 基于协方差匹配的多天线频谱感知方法
CN102253360A (zh) * 2011-04-14 2011-11-23 上海大学 阈值自动调整的循环平稳信号源个数估计方法
CN103391143A (zh) * 2013-07-29 2013-11-13 哈尔滨工业大学深圳研究生院 基于特征值的多天线盲频谱感知方法及系统
CN103795481A (zh) * 2014-01-28 2014-05-14 南京邮电大学 一种基于自由概率理论的协作频谱感知方法
CN103873170A (zh) * 2014-03-26 2014-06-18 哈尔滨工业大学 一种在盲稀疏条件下压缩感知的频谱检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Spectrum Sensing Algorithms via Finite Random Matrix Theory;Wensheng Zhang等;《IEEE》;20111231;全文 *
基于循环谱对称性的频谱感知算法;高玉龙等;《通信学报》;20111130;第32卷(第11期);第21-26,34页 *
基于随机矩阵理论的频谱感知技术研究综述;王磊等;《信号处理》;20111231;第27卷(第12期);第1889-1897页 *

Also Published As

Publication number Publication date
CN104038944A (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
CN104038944B (zh) 一种基于随机矩阵的认知无线电频谱感知方法
CN101557263B (zh) 无线电信号处理方法与装置
CN107395301A (zh) 一种基于k均值算法的频谱感知方法
CN104135327B (zh) 基于支持向量机的频谱感知方法
Guimarães Gini index inspired robust detector for spectrum sensing over Ricean channels
CN107733541A (zh) 频谱感知的方法、装置、设备以及计算机可读存储介质
De Vito A review of wideband spectrum sensing methods for cognitive radios
CN108029138B (zh) 用于对频谱的机会接入的方法
CN105978644B (zh) 基于布谷鸟搜索算法的星地认知系统频谱接入方法
CN108322277A (zh) 一种基于协方差矩阵反特征值的频谱感知方法
CN102088324A (zh) 一种认知无线电系统的频谱检测方法
CN102324959A (zh) 一种基于多天线系统协方差矩阵的频谱感知方法
CN104780006A (zh) 基于最小错误概率准则的频谱检测器软融合方法
CN103118394A (zh) 一种适用于宽带系统的多天线频谱感知方法及装置
CN102271022B (zh) 一种基于最大广义特征值的频谱感知方法
CN110932806A (zh) 一种alpha稳定噪声衰落信道下多天线频谱感知方法
CN104683050B (zh) 一种能有效对抗噪声不确定性的多天线全盲频谱感知方法
CN103228047A (zh) 无线信道自动配置方法和系统
CN109962745A (zh) 一种频谱感知方法、系统及装置
CN105141384B (zh) 一种认知无线电协作频谱感知方法
CN109600181B (zh) 一种用于多天线的频谱感知方法
CN108134703B (zh) 网络小区隐患故障预测分析方法及装置
CN106792728B (zh) 接近最优非参数化认知无线电循环平稳合作频谱感知方法
Jiang et al. Signal detection algorithm design based on stochastic resonance technology under low signal-to-noise ratio
Tong et al. Cooperative spectrum sensing based on a modified shuffled frog leaping algorithm in 5G network

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant