CN104032142B - 一种用于电子束冷床炉垂直浇铸小钛方坯的方法 - Google Patents

一种用于电子束冷床炉垂直浇铸小钛方坯的方法 Download PDF

Info

Publication number
CN104032142B
CN104032142B CN201410238794.5A CN201410238794A CN104032142B CN 104032142 B CN104032142 B CN 104032142B CN 201410238794 A CN201410238794 A CN 201410238794A CN 104032142 B CN104032142 B CN 104032142B
Authority
CN
China
Prior art keywords
ingot
district
guiding head
crystallizer
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410238794.5A
Other languages
English (en)
Other versions
CN104032142A (zh
Inventor
黄海广
丁辉
刘路
曹占元
李志敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Titanium Industry Co Ltd
Original Assignee
Yunnan Titanium Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Titanium Industry Co Ltd filed Critical Yunnan Titanium Industry Co Ltd
Priority to CN201410238794.5A priority Critical patent/CN104032142B/zh
Publication of CN104032142A publication Critical patent/CN104032142A/zh
Application granted granted Critical
Publication of CN104032142B publication Critical patent/CN104032142B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Continuous Casting (AREA)

Abstract

本发明公开了一种用于电子束冷床炉垂直浇铸小钛方坯的方法,该方法包括以下步骤:(1)制备结晶器主体(4)模型,用紫铜液对模具进行浇铸,获得实体结晶器主体(4),结晶器主体(4)内部尺寸规格为(600~1300mm)×(105~240mm)×600mm,并在长度均分为五区,每区均由相同的连体隔板(14)隔开,形成五个单独小区,分别为1区、2区、3区、4区、5区,每小区横截面均为正方形,正方形的边长尺寸为105~240mm;等等。本发明一种用于电子束冷床炉垂直浇铸小钛方坯的方法工艺简单、操作方便、使用效果好,能使生产流程大为缩短,提高成材率,大大降低生产成本,使产品获得良好的市场竞争能力。

Description

一种用于电子束冷床炉垂直浇铸小钛方坯的方法
技术领域
本发明属于用于电子束冷床炉垂直浇铸小钛方坯的方法技术领域。
背景技术
钛合金因其具有密度低、比强高、耐高温、耐腐蚀,机械性能和工艺性能好等优点而被广泛应用于航空航天及石油化工行业。世界各国经济发展表明,先进的钛工业是综合国力的重要标志。为此,大力发展钛工业对国防和国民经济建设具有极其重大的战略意义。
由于采用传统方法冶炼钛合金(VAR熔炼、真空粉末冶金)在合金铸锭中经常出现晶粒过大,成分偏析,孔洞,裂纹,高密度夹杂和低密度夹杂等冶金缺陷。为了增强其的抗疲劳度,提高其使用寿命,须生产优质高结的钛合金材料。
在20世纪80年代末,国际上引入了电子束冷床炉熔炼技术。电子束冷床炉熔炼技术不但能较好消除采有传统方法冶炼出现的晶粒粗大、高度和低密度夹杂等不足,还能大幅度降低钛合金产品的生产成本,还能回收残料,能100%利用残料作原料,能生产扁锭、空锭,减少板材与管材生产时的后续加工工艺流程,还较好解决了高密度夹杂(HDI)和低密度夹杂(LDI)等问题,因而在生产高洁钛合金得以广泛的应用。
鉴于国内外电子束冷床炉结晶器的原因,现国内外市场主要钛铸锭截面尺寸为以下五种规格:736mm、方210mm×1250mm、方210mm×1380mm、方270mm×1085mm、方370mm×1340mm。由此可看出,电子束冷床炉生产出来的铸锭经过铣面,切头,修磨后无需进行进行锻造即可进行卷板的轧制,而棒材、线材及型材的生产,还须进行分条、车面、倒角等工序后才可以进行。在这一系列的工艺过程中,造成巨大的人力、物力资源浪费。基于这个出发点制造特定的棒材、线材浇铸结晶器,实现用电子束冷床炉浇铸小钛方坯。能够减少在生产高洁钛合金的棒材、线材的生产流程,节约生产成本,大大提高生产率,能为企业带来良好的经济效益。
通过对现有技术文献的检索,关于用于电子束冷床炉垂直浇铸小钛方坯的方法,尚未发现相关报导。
发明内容
本发明所要解决的技术问题在于针对上述出现的不足,提供用于电子束冷床炉垂直浇铸小钛方坯的方法,该方法能减少小钛方坯的生产流程,无需购设新的分条及车面设备,实际生产中操作方便、生产出来的小方坯质量好,能大大缩短棒材、线材的生产流程,极大节约生产成本。
为了达到上述目的,本发明通过如下技术方案来实现。
一种用于电子束冷床炉垂直浇铸小钛方坯的方法,具体为以下步骤:
(1)制备结晶器主体模型,用紫铜液对模具进行浇铸,获得实体结晶器主体,结晶器主体内部尺寸规格为(600~1300mm)×(105~240mm)×600mm,并在长度均分为五区,每区均由相同的连体隔板隔开,形成五个单独小区,分别为1区、2区、3区、4区、5区,每小区横截面均为正方形,正方形的边长尺寸为105~240mm;
(2)将冷却后结晶器主体采取去模,采用深水钻床对1区与2区,2区与3区,3区与4区,4区与5区的隔板在竖直方向进行钻孔,每个隔孔直径为18~22mm,孔深为105~240mm,每隔10mm钻孔一个;钻孔完成后对分区连体隔板上部进行抛挖,使上部呈现为弧形,并且弧形最凹处至隔板顶部水平高度为10~25mm,形成凹槽;
(3)用纯铜浇铸成水冷外壳,并在其外缘打上密齿封,在其内缘装上密封橡胶圈,结晶器主体能够放置在其内部并紧密贴合;用条钢焊积成网状,并焊接在水冷外壳外面,形成支撑及压力抵抗层,水冷外壳外侧设有纵向散热板和横向散热板;
(4)将水冷下壳、水冷外壳及上浇道通过螺栓固定,并测试密封性能,然后进行通水试压测试,测试完成后将结晶器主体放置在水冷外壳的内部并紧密贴合,上浇道设在结晶器主体和水冷外壳的上部,上浇道的浇道口的高度略高于结晶器主体的高度,水冷下壳位于结晶器主体和水冷外壳的下部,构成结晶器,将整个结晶器装进电子束冷床炉引锭工位,将引锭头机构安装至升降工位;
(5)通过引锭头机构的升降工位来测试引锭头机构与结晶器的闭合性,并作出适量的调整,测试完闭合性后,将电子束冷床炉冷却水安装至结晶器及引锭头机构,并对水的漏点进行测试,测试完成后即可进行小钛方坯的生产。
本发明引锭头机构由主引锭头,设置在主引锭头一侧的侧引锭头、设置在主引锭头上的冷却水管和设置在主引锭头底部的基座构成;主引锭头和侧引锭头采用不平行组合,主引锭头起支撑作用,侧引锭头通过主引锭头上的螺杆在两边支撑,中部用螺丝来控制侧引锭头与主引锭头的开闭。
本发明上浇道的浇道口两斜边的倾角为42~47度,浇道口宽为18~22mm。
本发明步骤中浇铸的结晶器主体每个分区上的边角均在模具浇铸前进行倒角处理,倒角角度均为45度。
本发明步骤(1)中隔板的厚度为40mm。
本发明步骤(2)中隔板上部抛挖的角度为135度。
本发明步骤(4)中通水试压的压力为实际工作时水压压力0.45~0.5MPa,测试时间为360min以上。
本发明具有以下优点:
1、小方坯表面质量好;
2、操作简单,通用性强;
3、生产流程大大缩短;
4、生产成本比锻造的低;
5、生产周期短,生产率高;
6、成材率高,能获得明显的经济效益。
综上所述,本发明一种用于电子束冷床炉垂直浇铸小钛方坯的方法工艺简单、操作方便、使用效果好,能使生产流程大为缩短,提高成材率,大大降低生产成本,使产品获得良好的市场竞争能力。
附图说明
图1本发明结晶器主体内部结构图;
图2本发明的水冷外壳示意图;
图3本发明上浇道示意图;
图4本发明水冷下壳示意图;
图5本发明结晶器整体装配图;
图6本发明结晶器装置顺序图;
图7本发明侧引锭头示意图;
图8(a)是侧引锭头的主视图;
图8(b)是侧引锭头的侧视图;
图8(c)是侧引锭头的俯视图;
图8(d)是侧引锭头的等轴视图;
图9本发明主引锭头示意图;
图10本发明引锭头机构结构图。
图中:1、结晶器;2、引锭头机构;3、上浇道;4、结晶器主体;5、水冷外壳;6、水冷下壳;7、冷却水管;8、基座;9、纵向散热板;10、横向散热板;11、主引锭头;12、侧引锭头;13、浇道口;14、隔板;15、隔孔;16、凹槽。
具体实施方式
一种用于电子束冷床炉垂直浇铸小钛方坯的方法,具体为以下步骤:
(1)制备结晶器主体4模型,用紫铜液对模具进行浇铸,获得实体结晶器主体4,结晶器主体4内部尺寸规格为(600~1300mm)×(105~240mm)×600mm,并在长度均分为五区,每区均由相同的连体隔板14隔开,形成五个单独小区,分别为1区、2区、3区、4区、5区,每小区横截面均为正方形,正方形的边长尺寸为105~240mm;
(2)将冷却后结晶器主体4采取去模,采用深水钻床对1区与2区,2区与3区,3区与4区,4区与5区的隔板14在竖直方向进行钻孔,每个隔孔15直径为18~22mm,孔深为105~240mm,每隔10mm钻孔一个;钻孔完成后对分区连体隔板14上部进行抛挖,使上部呈现为弧形,并且弧形最凹处至隔板顶部水平高度为10~25mm,形成凹槽16;
(3)用纯铜浇铸成水冷外壳5,并在其外缘打上密齿封,在其内缘装上密封橡胶圈,结晶器主体4能够放置在其内部并紧密贴合;用条钢焊积成网状,并焊接在水冷外壳5外面,形成支撑及压力抵抗层,水冷外壳5外侧设有纵向散热板9和横向散热板10;
(4)将水冷下壳6、水冷外壳5及上浇道3通过螺栓固定,并测试密封性能,然后进行通水试压测试,测试完成后将结晶器主体4放置在水冷外壳5的内部并紧密贴合,上浇道3设在结晶器主体4和水冷外壳5的上部,上浇道3的浇道口13的高度略高于结晶器主体4的高度,水冷下壳6位于结晶器主体4和水冷外壳5的下部,构成结晶器1,将整个结晶器1装进电子束冷床炉引锭工位,将引锭头机构2安装至升降工位;
(5)通过引锭头机构2的升降工位来测试引锭头机构2与结晶器1的闭合性,并作出适量的调整,测试完闭合性后,将电子束冷床炉冷却水安装至结晶器1及引锭头机构2,并对水的漏点进行测试,测试完成后即可进行小钛方坯的生产。
本发明引锭头机构2由主引锭头11,设置在主引锭头11一侧的侧引锭头12、设置在主引锭头11上的冷却水管7和设置在主引锭头11底部的基座8构成;主引锭头11和侧引锭头12采用不平行组合,主引锭头11起支撑作用,侧引锭头12通过主引锭头11上的螺杆在两边支撑,中部用螺丝来控制侧引锭头12与主引锭头11的开闭。
本发明上浇道3的浇道口13两斜边的倾角为42~47度,浇道口13宽为18~22mm。
本发明步骤(1)中浇铸的结晶器主体4每个分区上的边角均在模具浇铸前进行倒角处理,倒角角度均为45度。
本发明步骤(1)中隔板14的厚度为40mm。
本发明步骤(2)中隔板14上部抛挖的角度为135度。
本发明步骤(4)中通水试压的压力为实际工作时水压压力0.45~0.5MPa,测试时间为360min以上。
实施例1
将特制好的结晶器及引锭头安装至工位,并确认引锭头与结晶器内壁平行、确认引锭头的开闭功能良好,将引锭头降至拉锭室3000mm处,关闭拉锭室外壳,采用真空系统对拉锭室进行抽真空,当真空达6.0×10-3hPa时,开启拉锭室与熔炼室的隔离阀,并将引锭头升至与结晶器内距上浇道200mm处,开启电子枪,将原料熔化成金属流体,当金属流体流进结晶器1区时,开启负责扫描结晶器的电子枪,补偿金属流体在流动过程中散失的热量,使金属流体保持液态,当流体金属填充满1区并流入2区时,开启负责扫描结晶器2区电子枪扫描图形,如此循环,直到结晶器5个区域均填满金属流体,金属流体液面开始上升时,开启拉锭系统进行拉锭,流体液面控制在同一线位上,拉锭速度为900kg/h,在达预定的长度后,对铸锭进行补缩工艺,补缩完成后,将铸锭方坯拉进拉锭室,将熔炼室与拉锭室的隔离阀关闭,对拉锭室进行冲氩冷却,冷却完成后即可获得小钛方坯。
实施例2
将特制好的结晶器及引锭头安装至工位,并确认引锭头与结晶器内壁平行、确认引锭头的开闭功能良好,将引锭头降至拉锭室3000mm处,关闭拉锭室外壳,采用真空系统对拉锭室进行抽真空,当真空达6.0×10-3hPa时,开启拉锭室与熔炼室的隔离阀,并将引锭头升至与结晶器内距上浇道200mm处,开启电子枪,将原料熔化成金属流体,当金属流体流进结晶器1区时,开启负责扫描结晶器的电子枪,补偿金属流体在流动过程中散失的热量,使金属流体保持液态,当流体金属填充满1区并流入2区时,开启负责扫描结晶器2区电子枪扫描图形,如此循环,直到结晶器5个区域均填满金属流体,金属流体液面开始上升时,开启拉锭系统进行拉锭,流体液面控制在同一线位上,拉锭速度为1000kg/h,在达预定的长度后,对铸锭进行补缩工艺,补缩完成后,将铸锭方坯拉进拉锭室,将熔炼室与拉锭室的隔离阀关闭,对拉锭室进行冲氩冷却,冷却完成后即可获得小钛方坯。
实施例3
将特制好的结晶器及引锭头安装至工位,并确认引锭头与结晶器内壁平行、确认引锭头的开闭功能良好,将引锭头降至拉锭室3000mm处,关闭拉锭室外壳,采用真空系统对拉锭室进行抽真空,当真空达6.0×10-3hPa时,开启拉锭室与熔炼室的隔离阀,并将引锭头升至与结晶器内距上浇道200mm处,开启电子枪,将原料熔化成金属流体,当金属流体流进结晶器1区时,开启负责扫描结晶器的电子枪,补偿金属流体在流动过程中散失的热量,使金属流体保持液态,当流体金属填充满1区并流入2区时,开启负责扫描结晶器2区电子枪扫描图形,如此循环,直到结晶器5个区域均填满金属流体,金属流体液面开始上升时,开启拉锭系统进行拉锭,流体液面控制在同一线位上,拉锭速度为1200kg/h,在达预定的长度后,对铸锭进行补缩工艺,补缩完成后,将铸锭方坯拉进拉锭室,将熔炼室与拉锭室的隔离阀关闭,对拉锭室进行冲氩冷却,冷却完成后即可获得小钛方坯。
以上所述,仅是本发明较佳的实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例进行简单的修改、变更以及等效结构的变化,均仍属于本发明技术方案的保护范围内。

Claims (7)

1.一种用于电子束冷床炉垂直浇铸小钛方坯的方法,包括以下步骤:
(1)制备结晶器主体(4)模型,用紫铜液对模具进行浇铸,获得实体结晶器主体(4),结晶器主体(4)内部尺寸规格为(600~1300mm)×(105~240mm)×600mm,并在长度均分为五区,每区均由相同的连体隔板(14)隔开,形成五个单独小区,分别为1区、2区、3区、4区、5区,每小区横截面均为正方形,正方形的边长尺寸为105~240mm;
(2)将冷却后结晶器主体(4)采取去模,采用深水钻床对1区与2区,2区与3区,3区与4区,4区与5区的隔板(14)在竖直方向进行钻孔,每个隔孔(15)直径为18~22mm,孔深为105~240mm,每隔10mm钻孔一个;钻孔完成后对分区连体隔板(14)上部进行抛挖,使上部呈现为弧形,并且弧形最凹处至隔板顶部水平高度为10~25mm,形成凹槽(16);
(3)用纯铜浇铸成水冷外壳(5),并在其外缘打上密齿封,在其内缘装上密封橡胶圈,结晶器主体(4)能够放置在其内部并紧密贴合;用条钢焊积成网状,并焊接在水冷外壳(5)外面,形成支撑及压力抵抗层,水冷外壳(5)外侧设有纵向散热板(9)和横向散热板(10);
(4)将水冷下壳(6)、水冷外壳(5)及上浇道(3)通过螺栓固定,并测试密封性能,然后进行通水试压测试,测试完成后将结晶器主体(4)放置在水冷外壳(5)的内部并紧密贴合,上浇道(3)设在结晶器主体(4)和水冷外壳(5)的上部,上浇道(3)的浇道口(13)的高度略高于结晶器主体(4)的高度,水冷下壳(6)位于结晶器主体(4)和水冷外壳(5)的下部,构成结晶器(1),将整个结晶器(1)装进电子束冷床炉引锭工位,将引锭头机构(2)安装至升降工位;
(5)通过引锭头机构(2)的升降工位来测试引锭头机构(2)与结晶器(1)的闭合性,并作出适量的调整,测试完闭合性后,将电子束冷床炉冷却水安装至结晶器(1)及引锭头机构(2),并对水的漏点进行测试,测试完成后即可进行小钛方坯的生产。
2.按权利要求1所述的一种用于电子束冷床炉垂直浇铸小钛方坯的方法,其特征在于,引锭头机构(2)由主引锭头(11),设置在主引锭头(11)一侧的侧引锭头(12)、设置在主引锭头(11)上的冷却水管(7)和设置在主引锭头(11)底部的基座(8)构成;主引锭头(11)和侧引锭头(12)采用不平行组合,主引锭头(11)起支撑作用,侧引锭头(12)通过主引锭头(11)上的螺杆在两边支撑,中部用螺丝来控制侧引锭头(12)与主引锭头(11)的开闭。
3.按权利要求1所述的一种用于电子束冷床炉垂直浇铸小钛方坯的方法,其特征在于,上浇道(3)的浇道口(13)两斜边的倾角为42~47度,浇道口(13)宽为18~22mm。
4.按权利要求1所述的一种用于电子束冷床炉垂直浇铸小钛方坯的方法,其特征在于,步骤(1)中浇铸的结晶器主体(4)每个分区上的边角均在模具浇铸前进行倒角处理,倒角角度均为45度。
5.按权利要求1所述的一种用于电子束冷床炉垂直浇铸小钛方坯的方法,其特征在于,步骤(1)中隔板(14)的厚度为40mm。
6.按权利要求1或5所述的一种用于电子束冷床炉垂直浇铸小钛方坯的方法,其特征在于,步骤(2)中隔板(14)上部抛挖的角度为135度。
7.按权利要求1所述的一种用于电子束冷床炉垂直浇铸小钛方坯的方法,其特征在于,步骤(4)中通水试压的压力为实际工作时水压压力0.45~0.5MPa,测试时间为360min以上。
CN201410238794.5A 2014-05-30 2014-05-30 一种用于电子束冷床炉垂直浇铸小钛方坯的方法 Active CN104032142B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410238794.5A CN104032142B (zh) 2014-05-30 2014-05-30 一种用于电子束冷床炉垂直浇铸小钛方坯的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410238794.5A CN104032142B (zh) 2014-05-30 2014-05-30 一种用于电子束冷床炉垂直浇铸小钛方坯的方法

Publications (2)

Publication Number Publication Date
CN104032142A CN104032142A (zh) 2014-09-10
CN104032142B true CN104032142B (zh) 2016-03-30

Family

ID=51463135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410238794.5A Active CN104032142B (zh) 2014-05-30 2014-05-30 一种用于电子束冷床炉垂直浇铸小钛方坯的方法

Country Status (1)

Country Link
CN (1) CN104032142B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108941487A (zh) * 2018-06-20 2018-12-07 昆明理工大学 一种电子束冷床炉水冷铜结晶器及钛合金制备方法
CN112501457A (zh) * 2020-10-28 2021-03-16 攀枝花云钛实业有限公司 电子束冷床熔炼钛或钛合金方坯的方法
CN112708774B (zh) * 2020-12-17 2022-11-22 云南昆钢电子信息科技有限公司 大型电子束冷床炉双拉锭装置及控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20012066U1 (de) * 2000-03-01 2000-09-21 Tur Oleksandr Oleksijovich Anlage zur Gewinnung von verkaufsfertigen Barren aus einer Legierung
CN101586197A (zh) * 2009-06-26 2009-11-25 西北有色金属研究院 一种电子束冷床炉采用常规原材料制备钛合金铸锭的方法
CN203320082U (zh) * 2013-06-26 2013-12-04 江油市重鑫特冶制品有限公司 一种无锥度电渣重熔板坯结晶器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20012066U1 (de) * 2000-03-01 2000-09-21 Tur Oleksandr Oleksijovich Anlage zur Gewinnung von verkaufsfertigen Barren aus einer Legierung
CN101586197A (zh) * 2009-06-26 2009-11-25 西北有色金属研究院 一种电子束冷床炉采用常规原材料制备钛合金铸锭的方法
CN203320082U (zh) * 2013-06-26 2013-12-04 江油市重鑫特冶制品有限公司 一种无锥度电渣重熔板坯结晶器

Also Published As

Publication number Publication date
CN104032142A (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
CN106077507B (zh) 一种汽车水冷电机壳铸件的铸造模及铸造工艺
CN104032142B (zh) 一种用于电子束冷床炉垂直浇铸小钛方坯的方法
CN101439348A (zh) 一种生产特厚板的工艺方法
CN103924030B (zh) 一种超低氧纯净钢的冶炼方法
CN110512123A (zh) 一种高强度可溶铝合金及其制备方法与应用
CN106424662B (zh) 一种反重力真空吸铸制备钴基合金焊丝的设备及方法
CN103882185A (zh) 高压底吹精炼铸造装置以及用其冶炼高氮钢的方法
CN109082509A (zh) 一种40CrNi2MoV造高风压潜孔钻头的热处理方法及潜孔钻头
CN105671280B (zh) 一种深海采油树关键部件用钢锻件的制造方法
CN104174819A (zh) 一种海洋平台爬升机三级行星架的铸造工艺
CN103938002B (zh) 一种铜铬锆合金铸棒降低偏析的真空熔炼工艺
CN109877281A (zh) 一种金属液凝固装置及其保温方法
CN103710626A (zh) Cr-Mo系ASTM A387 Gr22CL2压力容器钢及生产方法
CN105057671A (zh) 一种利用热等静压焊接工艺制备中子吸收板的方法
CN110819809B (zh) 一种废储氢合金粉末回收方法
CN103624238B (zh) 一种铁包镁的等通道转角挤压方法
CN203923336U (zh) 一种用于电子束冷床炉垂直浇铸小钛方坯的结晶器机构
CN105081517A (zh) 一种大型铸钢件材质疏松类缺陷的挖除方法
CN202316969U (zh) 低压铸造升液管
KR20150107588A (ko) 주조봉/주조관 제조 장치 및 그 장치에 의해 얻어지는 금속 재료
CN204939581U (zh) 一种对开式电渣重熔宽板坯结晶器
CN103341594B (zh) 一种刹车壳铸造方法
CN103100695A (zh) 低压铸造升液管
CN106563780A (zh) 一种中高碳中高合金工具钢大圆坯的连铸方法
CN107287527A (zh) 一种优良低温韧性的160mm特厚钢板及其生产方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant