CN104022855B - 有关下行链路指配的方法和装置 - Google Patents

有关下行链路指配的方法和装置 Download PDF

Info

Publication number
CN104022855B
CN104022855B CN201410225023.2A CN201410225023A CN104022855B CN 104022855 B CN104022855 B CN 104022855B CN 201410225023 A CN201410225023 A CN 201410225023A CN 104022855 B CN104022855 B CN 104022855B
Authority
CN
China
Prior art keywords
subframe
communication device
downlink
assignment
designator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410225023.2A
Other languages
English (en)
Other versions
CN104022855A (zh
Inventor
D.阿斯特利
S.帕克瓦尔
R.巴尔德梅尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40497562&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN104022855(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Publication of CN104022855A publication Critical patent/CN104022855A/zh
Application granted granted Critical
Publication of CN104022855B publication Critical patent/CN104022855B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1635Cumulative acknowledgement, i.e. the acknowledgement message applying to all previous messages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

本发明涉及在通过无线电信道从第二通信装置接收控制信息的第一通信装置中的方法。第一通信装置通过无线电信道接收子帧,并通过读取子帧中的数据,确定子帧是否为带有打算送给第一通信装置的下行链路指配的下行链路子帧。如果情况是如此,则第一通信装置将子帧内的数据解码,并通过分析与数据中于帧关联的指示符,确定在该子帧前从第二通信装置发送的任何数据分组是否已缺失。指示符提供有关带有打算送给第一通信装置的下行链路指配的以前下行链路子帧的知识。

Description

有关下行链路指配的方法和装置
技术领域
本发明涉及通信网络中的方法和装置。具体地说,它涉及对缺失的下行链路指配的检测和处理。
背景技术
有关如3GPP中定义的无线电接入的长期演进(LTE)的关键要求是通过无线电链路在无线电基站与移动终端之间传输的频率灵活性。为此,在1.4MHz与20MHz之间的载波带宽得到支持,频分双工(FDD)和时分双工(TDD)也一样得到支持,因此,成对和非成对频谱均能使用。对于FDD,下行链路(DL)(即从基站到移动终端的链路)和上行链路(UL)(即从移动终端到基站的链路)使用所谓“成对频谱”的不同频率,并且因此能同时传送。对于TDD,上行链路和下行链路使用相同频率“未成对的频谱”,并且不能同时传送。然而,上行链路和下行链路能以灵活的方式共享时间,并且通过分配不同的时间量到上行链路和下行链路,诸如无线电帧的子帧数量,可能适应上行链路和下行链路中不对称的业务和资源需要。
上述不对称也导致FDD与TDD之间相当大的不同。在LTE中,将时间组织成10毫秒持续时间的无线电帧,并且每个无线电帧进一步分成10个各1毫秒的子帧。而对于FDD,在无线电帧期间相同数量的上行链路和下行链路子帧可用,对于TDD,上行链路和下行链路子帧的数量可以不同。这造成的许多结果之一是在FDD中移动终端能始终根据某个固定的处理延迟响应数据分组在上行链路子帧中发送反馈。换而言之,每个下行链路子帧能与用于反馈生成的特定的后面上行链路子帧相关联,其方式是此关联是一一对应的,即,每个上行链路子帧正好与一个下行链路子帧相关联。然而,对于TDD,由于在无线电帧期间上行链路和下行链路子帧的数量可以不同,因此,通常,不可能构建此类一一对应关联。对于下行链路子帧多于上行链路子帧的典型情况,反而是来自多个下行链路子帧的反馈需要在至少一个上行链路子帧中传送。
在演进通用地面无线电接入(E-UTRA)中,10毫秒持续时间的无线电帧分成十个子帧,其中每个子帧是1毫秒长。在TDD的情况下,子帧是如下所述的特殊子帧,或者指配给上行链路或下行链路,即,上行链路和下行链路传输不能同时发生。此外,每个10毫秒无线电帧分成两个5毫秒持续时间的半帧,其中,每个半帧由五个子帧组成。
无线电帧的第一个子帧始终分配到下行链路传输。第二个子帧是特殊子帧,并且它分成三个特殊字段:下行链路部分DwPTS、保护时段(GP)和上行链路部分UpPTS,其中总持续时间为1毫秒。
在如此配置时,UpPTS用于在上行链路中传输探测参考信号,并且在如此配置时,用于接收更短的随机访问前同步码。在UpPTS中不能传送数据或控制信令。
GP用于创建下行链路子帧的时段与上行链路子帧的时段之间的保护时段,并且可配置为具有不同长度以便避免在上行链路与下行链路传输之间的干扰。一般基于支持的小区半径来选择该长度。
DwPTS很像任何其它下行链路子帧,用于下行链路传输,主要的差别在于它具有更短的持续时间。
剩余子帧到上行链路和下行链路传输的不同分配都得到支持,不仅带有5毫秒周期性、其中第一和第二半帧具有相同结构的分配,而且带有10毫秒周期性、其半帧以不同方式组织的分配。对于某些配置,整个第二半帧被指配给下行链路传输。在5毫秒周期性的情况下,下行链路与上行链路之间的比率可以是例如2/3、3/2、4/1(视DwPTS为全标准下行链路子帧)等。在10毫秒周期性的情况下,下行链路与上行链路之间的比率可以是例如5/5、7/3、8/2、9/1等。
在E-UTRA的下行链路中,使用了带有15kHz的子载波间隔的OFDM,正交频分复用。视配置的循环前缀长度而定,1毫秒子帧在时间上包含12或14个OFDM符号。术语资源块也用于指半子帧、时隙内所有OFDM符号的二维结构乘以频率域中12个连续子载波。特殊子帧的下行链路部分DwPTS具有可变持续时间,并且对于正常循环前缀的情况能采用3、9、10、11或12个OFDM符号的长度,对于扩展循环前缀的情况可采用3、8、9或10个符号的长度。
在E-UTRA的上行链路中,使用了也称为离散傅立叶变换(DFT)预编码OFDM的SC-FDMA,单载波频分多址。基础二维(时间和频率)数字学在载波间隔、循环前缀长度和OFDM符号的数量方面相同。主要差别是要在某些OFDM符号中传送的调制的数据符号要进行DFT,并将DFT的输出映射到子载波。
为了在下行链路和上行链路方向上均改进传输的性能,LTE使用混合自动请求重发(HARQ)。下面论述用于下行链路传输的此机制的功能。
HARQ的基本构想是在下行链路子帧(一部分)中接收数据后,终端尝试将它解码,并随后向基站报告解码是成功(ACK,确认)还是不成功(NAK,否定确认)。在解码尝试不成功的情况下,基站因此在以后的上行链路子帧中收到NAK,并且能重新传送该错误接收的数据。
能够动态地调度下行链路传输,即,在每个下行链路子帧中,基站传送有关哪些终端要接收数据以及在当前下行链路子帧中的哪些资源上的控制信息。到终端的此类控制信息消息称为下行链路指配。下行链路指配因此包含该指配打算送给哪个终端的信息,也包含到预期终端的有关数据将在哪些资源中传送,例如,在多少和哪些资源块中传送的信息,以及也包括终端将随后的数据解码所需的信息,诸如调制和编码方案。此处资源包括资源块的某一集合。此控制信令在每个子帧中的前面1、2、3或4个OFDM符号中传送,并且数据在子帧的剩余部分中发送。在单个下行链路子帧中发送到终端的数据称为传输块,并且响应该传输而发送ACK/NAK。
终端因此将侦听下行链路子帧中的控制信道,并且如果它检测到寻址到它本身的下行链路指配,则它将尝试将随后的数据解码。视数据传输块是否被正确解码而定,它也将响应该传输而以ACK或NAK形式生成反馈。此外,从基站传送该指配所用的控制信道资源,终端能确定对应的上行链路控制信道资源。因此,下行链路控制信道与上行链路控制信道资源相关联,并且下行链路指配能在下行链路控制信道上传送。在每个DL子帧中,可传送多个控制信道,因此,多个用户能在上行链路和下行链路中获得指配的数据。另外,UE可侦听多个控制信道。
对于E-UTRAN FDD,终端将响应在子帧n中检测到的下行链路指配,尝试将子帧n中发送到终端的传输块解码,并且在上行链路子帧n+4中发送ACK/NAK报告。对于所谓多输入多输出(MIMO)多层传输的情况,两个传输块在单个下行链路子帧中传送,并且终端将通过在对应上行链路子帧中的两个ACK/NAK报告做出响应。
资源到终端的指配由调度器处理,调度器将业务和无线电条件考虑在内以便在也满足延迟和速率要求的同时高效地使用资源。调度和控制信令可在逐个子帧的基础上进行。一般情况下,独立于其它下行链路子帧地调度每个下行链路子帧。
如上所述,终端在下行链路子帧中从基站接收数据的第一步骤是检测下行链路子帧的控制字段中的下行链路指配。如果基站发送此类指配,但终端未能将它解码,则终端显然不能知道它已被调度,并因此将不在上行链路中通过ACK/NAK做出响应。这种情况称为缺失的下行链路指配。如果基站可检测到缺少ACK/NAK,则它能为随后的重新传输将此考虑在内。一般情况下,基站应至少重新传输缺失的分组,但它也可调整一些其它传输参数。
由于下行链路指配能跨下行链路子帧独立给出,因此,可在多个下行链路子帧中为终端指配下行链路传输,这些下行链路子帧全部要在单个上行链路子帧中确认。因此,上行链路控制信令需要在给定上行链路子帧中以某种方式支持来自终端的对多个下行链路子帧中下行链路传输的ACK/NAK的反馈。
一种方式是允许终端在单个上行链路子帧中传送多个单独的ACK/NAK比特(用于每个下行链路子帧中的每个下行链路传输)。然而,此类协议比一个或两个ACK/NAK报告的传输具有更差的覆盖。为改进控制信令覆盖和容量,可能执行ACK/NAK的某一形式的压缩或捆束(bundle),这称为ACK/NAK捆束。这意味着要在给定上行链路子帧中发送的所有ACK/NAK组合到更小数量的比特中,诸如单个ACK/NAK报告。例如,仅在所有下行链路子帧的传输块均被正确收到且因此要被确认时,终端才能传送ACK。在表示要为至少一个下行链路子帧传送NAK的任何其它情况下,为所有下行链路子帧发送组合的NAK。如上所述,对于TDD中的每个上行链路子帧,能关联下行链路子帧集合而不是如在FDD中关联单个子帧,要在给定上行链路子帧中为其下行链路传输给出ACK/NAK响应。在捆束的上下文中,此集合经常称为捆束窗口。
捆束的另一优点是如对于FDD一样,它允许再使用相同的控制信道信令格式,而与TDD上行链路/下行链路非对称性无关。缺点是下行链路效率方面可能有小的损失。如果基站接收NAK,则它不能知道多少和哪些下行链路子帧被错误地收到,哪些已正确收到。因此,它可能需要重新传送所有下行链路子帧。
ACK/NAK捆束有关的一个问题是终端可缺失下行链路指配,这可能未在捆束的响应中指示。例如,假设在两个连续的下行链路子帧中调度了该终端。在第一个子帧中,终端缺失调度的下行链路指配,并且将不知道它已被调度,而在第二个子帧中它确实成功收到该数据。因此,终端将传送ACK,而基站将认为适用两个子帧,包括终端未注意的子帧中的数据。因此,数据将丢失。丢失的数据需要由更高层协议处理,而更高层协议一般使用比HARQ重新传输更长的时间,并且效率更低。实际上,只有在终端缺失了与上行链路子帧相关联的捆束窗口内发送的每个下行链路指配时,它才不会在给定上行链路子帧中传送任何ACK/NAK。
因此,缺失的下行链路指配通常将导致需要更高层协议纠正的块错误,而这又对吞吐量和等待时间方面的性能有不利影响。此外,增大延迟将导致与基于TCP的应用的不合需要的交互。
发明内容
因此,本文中的实施例的一个目的是处理和/或允许检测缺失的下行链路指配。
本文中的实施例公开一种在第一通信装置中用于通过无线电信道从第二通信装置接收控制信息和数据的方法。第一通信装置通过无线电信道接收至少部分子帧,并检测该子帧是否为带有打算送给第一通信装置的下行链路指配的子帧。
如果情况是如此,则第一通信装置通过分析与子帧关联的指示符,确定在该子帧前从第二通信装置发送的数据的至少一个下行链路指配是否已缺失。指示符提供有关带有打算送给第一通信装置的下行链路指配的以前下行链路子帧的知识,例如,提供指示带有打算送给第一通信装置的下行链路指配的以前子帧的数量的信息。此外,第一通信装置也可将子帧内的数据解码,但如果第一通信装置检测到以前的子帧已缺失(或以前的子帧解码失败),则由于第一通信装置知道要生成的响应是NAK或者根本不响应,非连续传输DTX,因此,它可不需要尝试解码。
为执行该方法,第一通信装置提供用于通过无线电信道从第二通信装置接收控制信息和数据。第一通信装置包括适用于接收无线电帧的子帧的接收布置103和布置为确定该子帧是否为带有打算送给第一通信装置的下行链路指配的子帧的控制单元101。
如果情况是这样,则控制单元101还布置为通过分析与该子帧相关联的指示符,确定在该子帧之前在第二通信装置中已调度并且已从其中发送的数据的任何下行链路指配是否已缺失。指示符布置为提供带有打算送给第一通信装置的下行链路指配的以前子帧的知识。
一些实施例公开一种在第二通信装置中用于通过无线电信道在带有打算送给第一通信装置的下行链路指配的子帧中将控制信息和数据传送到所述第一通信装置的方法。
第二通信装置将指示符添加到该子帧,以在控制信息中提供有关带有打算送给第一通信装置的下行链路指配的以前子帧的知识,以及用该子帧将控制信息和数据传送到第一通信装置。
为执行该方法,第二通信装置提供用于用无线电帧的子帧将控制信息和数据通过无线电信道传送到第一通信装置,该子帧包括打算送给第一通信装置的下行链路指配。第二通信装置包括布置为添加指示符到该子帧的控制单元和布置为用该子帧将控制信息和数据传送到第一通信装置的传送布置,指示符布置为在控制信息中提供带有打算送给第一通信装置的下行链路指配的以前子帧的知识。
如果例如(移动)终端的第一通信装置缺失在也称为捆束窗口的、与相同上行链路子帧相关联的下行链路子帧集合内发送的下行链路指配,它将注意到此情况,这是因为在每个下行链路子帧中发信号通知的下行链路指配包括有关捆束窗口内以前子帧中指配的知识,即,缺失的下行链路指配的检测得以改进。而且,在一些实施例中,如果终端选择与带有检测到的指配的最后子帧相关联的控制信道资源,则它将以某种方式向基站发信号通知哪个是最后收到的DL子帧。这样,例如基站的第二通信装置能检测终端是否缺失最后的任何指配,这是因为终端将使用“错误”资源,即,与基站所知道的带有指配的最后子帧不关联的资源。实施例降低了在下行链路指配缺失的情况下,传输被确认为成功收到的概率。
附图说明
现在将参照附图,更详细地描述实施例,其中:
图1示出在E-UTRAN中的半个无线电帧,
图2示出带有使用5毫秒周期性的配置的无线电帧的示例,
图3示出带有使用10毫秒周期性的配置的无线电帧的示例,
图4示出将多个下行链路子帧与用于ACK/NAK反馈的单个上行链路子帧相关联的示例,
图5示出无线电信系统的示意图,
图6示出作为能如何定义捆束窗口的示例的不同上行链路(UL):下行链路(DL)分配,
图7示出指配的下行链路子帧的示例和有关以前指配的DL子帧的知识的信令,
图8示出对于不同指配,检测下行链路指配的示例,
图9示出组合信令和方法方案的示意图,
图10示出在第二通信装置中方法的示意图,
图11示出第二通信装置的示意图,
图12示出在第一通信装置中方法的示意图,以及
图13示出第一通信装置的示意图。
具体实施方式
简单地说,可以如下方式概括本发明:诸如eNodeB、NodeB和/或诸如此类等基站在将捆束窗口中包括的数据分组发送到移动终端时,同时将有关捆束窗口内已调度为要传送到该移动终端的以前子帧的知识,即信息提供到诸如移动终端和/或诸如此类等用户设备。这样,移动终端能确定在其中已检测到指配的子帧之前的任何子帧中的指配是否已缺失。由于终端可缺失在子帧末尾的指配,因此,它可选择其中已检测到指配的最后DL子帧相关联的控制信道资源。这使得基站可能检测终端是否已缺失在所谓的捆束窗口的末尾中的指配。
实施例涉及一种在第二通信装置中用于将与单个UL子帧相关联的子帧集合内以前调度指配有关的知识提供到第一通信装置的方法,并且第二通信装置适用于执行所述方法。实施例也涉及在第一通信装置中用于使用与其中检测到DL调度指配的最后DL子帧相关联的上行链路控制信道的方法,并且第一通信装置适用于执行所述方法。通过所述知识,第一通信装置适当地传送ACK/NAK。在上述示例中,如果第一通信装置在第二子帧中知道它原本应收到第一子帧中的数据,则它将在与第二子帧中控制信道相关联的资源上发信号通知NAK而不是ACK,或者可能根本不做响应以传达指配已缺失。在上述示例中,如果在两个连续子帧中为终端指配资源,并且缺失第二指配,则基站能检测到终端已缺失第二指配,这是因为终端在与第一子帧而不是与第二子帧相关联的资源上做出响应。
图1示出在E-UTRAN中的半个无线电帧。10毫秒持续时间的E-UTRAN的无线电帧分成10个子帧SF,其中每个子帧为1毫秒长。每个10毫秒无线电帧分成两个5毫秒持续时间的半帧,其中,每个半帧由五个子帧SF0-SF4组成。在使用TDD的情况下,子帧是特殊子帧,或者被指配给上行链路↑或下行链路↓,即,上行链路和下行链路传输不能同时发生。在所示半个无线电帧中,子帧SF2或SF2和SF3;或SF2、SF3和SF4能被指配用于上行链路传输。
第一个子帧SF0始终分配到DL传输。第二个子帧SF1是特殊子帧,它分成三个特殊字段:下行链路部分DwPTS、保护时段(GP)和上行链路部分UpPTS,总持续时间为1毫秒。
DwPTS很像任何其它下行链路子帧,用于下行链路传输,差别在于它具有更短的持续时间。在本发明的上下文中,特殊子帧的DwPTS可如正常一样被视为下行链路子帧。
GP用于创建下行链路与上行链路子帧的时段之间的保护时段,并且可配置为具有不同长度以便避免上行链路与下行链路传输之间的干扰并且其一般基于小区半径来选择。
UpPTS用于上行链路探测参考信号,并且在如此配置时,用于接收更短的随机访问前同步码。在UpPTS中不能传送数据或控制信令。
剩余子帧到上行链路和下行链路传输的不同分配得到支持,不仅带有5毫秒周期性、其中第一和第二半帧具有相同结构的分配,而且带有10毫秒周期性、其半帧以不同方式组织的分配。对于某些配置,整个第二半帧被指配给下行链路传输。当前支持的配置使用5毫秒或10毫秒周期性。
图2示出带有使用5毫秒周期性的配置的无线电帧的示例。RF1包括2DL(包括DwPTS)和3UL(忽略UpPTS)的配置,也就是说,在下行链路与上行链路之间的比率是2/3。类似地,RF2包括3DL和2UL的配置,也就是说,下行链路与上行链路之间的比率是3/2。RF3包括4DL和1UL的配置,也就是说,在下行链路与上行链路之间的比率是4/1。
图3示出带有使用10毫秒周期性的配置的无线电帧的示例。RF4包括5DL和5UL的配置,也就是说,下行链路与上行链路之间的比率是1/1。RF5包括7DL和3UL的配置,也就是说,下行链路与上行链路之间的比率是7/3。RF6包括8DL和2UL的配置,也就是说,下行链路与上行链路之间的比率是8/2。RF7包括9DL和1UL的配置,也就是说,下行链路与上行链路之间的比率是9/1。
图4示出将来自指配的DL子帧的ACK/NAK捆束到UL子帧中的单个ACK/NAK报告中的示例。如上所述,在子帧n+k中报告响应子帧n中下行链路指配的ACK/NAK,其中k>3。也就是说,在DL1-DL4的所示示例ACK/NAK中,报告了UL子帧在最早的子帧八。对于给定上行链路子帧,相关联下行链路子帧的数量取决于子帧到上行链路和下行链路的配置,并且对不同的上行链路子帧可以是不同的(如图6所示)。
由于下行链路指配能跨下行链路子帧独立给出,因此,可在多个下行链路子帧中为终端指配下行链路传输,这些下行链路子帧全部要在同一单个上行链路子帧中确认。因此,上行链路控制信令需要以某种方式在单个给定上行链路子帧中支持来自终端的、对多个DL子帧中下行链路传输的ACK/NAK反馈。
对于FDD,终端能始终在4个子帧的固定延迟后通过ACK/NAK响应下行链路数据传输,而对于TDD,通常在上行链路与下行链路子帧之间不存在一一对应关系。这在上面已论述。因此,终端不能始终在上行链路子帧n+4中发送响应子帧n中的下行链路指配的ACK/NAK,这是因为此子帧可能未分配到上行链路传输。相反,每个下行链路子帧可根据最小处理延迟而与某个上行链路子帧相关联,这表示在子帧n+k中报告响应子帧n中下行链路传输的ACK/NAK,其中k>3。此外,在无线电帧中,如果下行链路子帧的数量大于上行链路子帧的数量,则响应多个下行链路子帧中指配的数据传输的ACK/NAK可能需要在单个上行链路子帧中发送。对于给定上行链路子帧,相关联下行链路子帧的数量取决于子帧到上行链路和下行链路的配置,并且对不同的上行链路子帧可以是不同的。另外,对于FDD,在上行链路子帧中有能以一一对应方式与对应下行链路子帧中下行链路控制信道相关联的控制信道资源集合。对于TDD,反馈资源的类似集合需要为相关联子帧集合内的每个DL子帧预留。因此,对于TDD,因而在上行链路子帧中有更多的控制信道资源,并且每个下行链路子帧中的每个控制信道能以一一对应方式与上行链路控制信道资源相关联。
图5示出诸如E-UTRAN(也称为LTE)的无线电信系统1。电信系统1使用TDD,并且包括适用于通过无线电信道13相互通信的移动终端10(第一通信装置)和基站20(第二通信装置),在该无线电信道中,TDD用于将传输分开成两个方向。基站20可以是NodeB、eNodeB或能通过无线电信道与移动终端通信的任何其它网络单元。移动终端10可以是移动电话、个人数字助理(PDA)、用户设备(UE)或能通过使用TDD的无线电信道与基站通信的任何其它网络单元。然而,应理解的是,诸如基站和移动终端等术语应视为非限制性的,并且具体而言未暗示两者之间的某个层次关系;通常,“基站”能视为第一通信装置10,移动终端能视为第二通信装置20,并且这两个装置通过某一无线电信道相互通信。应理解的是,本发明不限于TDD,而是也可以是如TDD中一样类似的传输在其中可能的半双工FDD或FDD。
系统1为通过无线电信道在子帧中的数据传输块的传输使用HARQ和ACK/NAK捆束。与上行链路子帧相关联,可以是零个、一个或多于一个下行链路子帧。与上行链路子帧相关联的下行链路子帧集合称为捆束窗口,并且不同上行链路子帧可具有不同捆束窗口大小。在每个捆束窗口中,传输块形式的数据要在一个或多个下行链路子帧中传送到移动终端10。这些分组可存储在基站中的缓冲器中,并随后逐一传送到移动终端10。在基站20收到移动终端10已正确检测到特定数据分组并将其正确解码的确认前,或者在重新传输的最大次数被执行前,或预确定时段经过前,不从缓冲器中删除分组。如果未从移动终端10收到确认,则基站20一般重新传送未确认的数据分组直至它们已由移动终端10确认或直至预确定的时段期满,随后删除这些数据分组。
为实现在移动终端10检测缺失的DL指配的可能性,基站20向移动终端10发信号通知有关以前指配的知识,例如作为调度命令的一部分,它是DL指配。本发明也涉及使用其中检测到DL调度指配的最后子帧相关联的上行链路控制信道,来进一步实现在基站检测缺失的DL指配。用所述知识,移动终端10能适当地传送ACK/NAK或不传送任何内容。例如,如果移动终端10读取指配的DL的控制信息,指示它是第二个指配的DL,并且移动终端未检测到第一个DL指配,则移动终端可传送NAK或对指配的DL束(bundle of assigned DLs)根本不响应,以降低基站将该传输检测为成功确认的概率。
因此,如果移动终端缺失(未能检测到)捆束窗口内一个或多个下行链路指配,则它将能够通过查看它确实已检测到的指配来确定此缺失。只有在终端缺失捆束窗口内的每个下行链路指配时,该一个或多个缺失,或者在它缺失在捆束窗口末尾的指配时,终端才不会注意到此方面。此外,由于终端使用与其中检测到指配的最后子帧相关联的资源,基站能检测其中检测到指配的最后子帧后的任何子帧中,终端是否已缺失指配。
图6示出作为如何定义捆束窗口的示例的不同上行链路(UL):下行链路(DL)配置。图6中,用向上箭头示出上行链路子帧,用向下箭头示出下行链路子帧,并且DwPTS、GPUpPTS子帧包括向下箭头和向上箭头。在示例中,相关联下行链路子帧的数量K对不同的上行链路子帧及对不同的非对称性是不同的。第一无线电帧RF3示为包括十个子帧SF0-SF9,其中,以5毫秒周期性进行配置。对于无线电帧八RF3中的4DL:1UL配置,每个半帧中的上行链路子帧UL1与四个下行链路子帧(K=4)相关联,并且为在最后收到的子帧与该UL之间有至少3毫秒,DL SF4-SF6和SF8在分配到UL的SF2中报告。类似地,DL SF9、SF0、SF1和SF3在分配到UL的SF7中报告。
对于无线电帧八RF2中的3DL:2UL配置,每个半帧中的第一个上行链路子帧关联到两个下行链路子帧,(K=2),而第二个上行链路子帧与单个DL子帧相关联(K=1)。
参照图6,可在每个DL子帧中携带DL指配的每个DL控制信道与某个UL控制信道资源相关联。
考虑来自K个DL子帧的ACK/NAK要捆束到单个UL子帧中并且将DL子帧编号为1到m时的情况。在DL子帧n中,基站向终端发信号通知(作为调度命令的一部分)以前调度的DL子帧的数量。在DL子帧m中,以前调度的可能子帧的最大数量为m-1。
稍微更具体地说,在捆束窗口的第一DL子帧m=1中,可能没有任何以前调度的子帧。在捆束窗口的第二DL子帧m=2中,可能没有或有1个以前调度的子帧。在捆束窗口的第三个DL子帧m=3中,可能有0、1或2个以前调度的子帧,以此类推。备选,不发信号通知以前调度的DL子帧的数量,而是已调度到UE的最后子帧的编号。
子帧编号可以通过多种方式重新开始,诸如
·在无线电帧或半帧的开始处
·在称为捆束窗口的DL子帧的每个群组的开始处
对于带有D个DL子帧和U个UL子帧的情况,D个子帧分成称为捆束窗口的min(U,D)个群组。对于DL子帧多于UL子帧的情况,这意味着我们具有U个群组,每个群组包含Ku个DL子帧,这些DL子帧与UL子帧u相关联并且有编号,u=1,2,...Ku。编号随后可对相关联DL子帧的每个群组,即对于每个捆束窗口重新开始。
UE将尝试将每个DL子帧中的DL指配解码,并且因此能跟踪在DL子帧的群组期间检测到的DL指配的数量。对于它在其中收到DL指配的每个DL子帧,它可增大计数器,以对它已收到多少个DL指配计数。它还能比较发信号通知的以前调度的DL子帧的数量,将它与其收到的DL子帧的计数器进行比较。这样,UE检测到它是否已缺失任何DL指配。
随后,对于捆束的情况,移动终端采取适当的动作,诸如在它检测到它已缺失任何DL子帧的情况下发送NAK。
一种备选是终端根本不向基站发送任何报告。基站能检测到终端根本未传送任何反馈,并断定它缺失了一个或多个其指配。此终端反馈因而类似于终端缺失捆束窗口中所有下行链路指配的情况。
每个DL子帧中携带指配的每个DL控制信道与上行链路控制信道(PUCCH)上的ACK/NAK反馈资源相关联。移动终端将使用最后正确检测到的DL指配的反馈资源。在UE缺失在检测到的指配后的DL指配的情况下,它将使用与最后检测到的DL指配相关联的反馈资源。
基站可假定UE将接收所有指配,并且因此将先侦听与最后DL指配相关联的反馈资源,并且检测到未使用此资源传送任何内容,断定已缺失在捆束窗口末尾的至少一个指配,并采取适当的动作。它还能反向跟踪与前面的DL指配相关联的反馈资源,并查看UE是否在该资源上传送了内容,等诸如此类。然而,这是基站的可选步骤。
图7中给出了信令的一个示例。捆束窗口中DL子帧的数量在所示示例中取为2和3,即,K=2和K=3。箭头指向下方的带条纹子帧表示在其中为终端指配DL资源的DL子帧。每个指配的DL包括DL束内带有DL指配的以前的子帧的数量k的信息。也就是说,带有k=0的指配的DL子帧是带有DL指配的第一个子帧,k=1的DL子帧中的指配是带有DL指配的第二个子帧。因此,k指示DL捆束窗口内带有以前指配的指配的DL子帧的数量。
在三个DL,即K=3的示例中,带有DL指配的以前子帧的数量通过信息k指示,k=0-2,其中,例如k=2指示两个DL子帧以前已包括到移动终端的DL指配。
在图8中,示出了检测缺失的下行链路指配的示例的示意图。下行链路指配从诸如基站、eNodeB或诸如此类等第二通信装置传送到诸如UE、终端或诸如此类等第一通信装置。示例示出K=4时带有DL指配的DL子帧的以前数量的信令。
白色的DL子帧是不包含用于UE的指配的子帧。
带对角条纹的DL子帧是包含用于UE的DL指配的子帧,并且是UE已在其中检测到指配的子帧。
带水平条纹的DL子帧是包含用于UE的DL指配的子帧,并且是UE尚未在其中检测到任何指配的子帧。
在8A的情况下,UE在下行链路子帧DL1和DL3中检测到指配。由于DL3是最后收到的指配的DL,因此UE在DL3的UL资源上传送ACK。以前指配的DL子帧的值在DL3中表示为k=1。此处应注意的是,如果UE在解码期间在指配的DL子帧中的数据中检测到错误,则UE转而在与DL3相关联的UL资源上传送NAK。
在8B的情况下,UE缺失DL1中的指配,并且只在DL子帧DL3中检测到指配。在UE读取指示DL3是带有指配的第二个子帧的k值时,UE确定它缺失了前面DL子帧中的指配,并在DL3的UL资源上传送NAK,或者根本不传送任何内容,即所谓的非连续传输DTX。以前指配的DL的值在DL3中表示为k=1。
在8C的情况下,UE检测到指配的下行链路DL1和DL2。然而,UE未能在子帧DL3中检测到指配。由于DL2是UE在其中检测到DL指配的最后子帧,因此,UE在被指配给该束的上行链路子帧中DL2的资源上和与DL2相关联的资源上传送ACK或NAK。随后,基站检测到UE已缺失DL3,这是因为ACK或NAK是在DL2的UL资源上收到,并且基站可至少重新传送在DL3中指配的数据。此处也应注意的是,如果UE在解码期间在任何指配的DL子帧中检测到错误,则UE可转而在DL2的UL资源上传送NAK。以前指配的DL的值在DL2中表示为k=1,并且在DL3中表示为k=2。
在8D的情况下,UE检测到指配的下行链路DL1和DL2,k=0和k=1。然而,UE未能检测到指配的DL3。UE随后检测指配的下行链路DL4。UE在DL4中读取表示为k=3的以前指配的DL的值时,UE比较此值和以前收到的指配的DL,并且检测到这些值不同,即,UE预计k=2。也就是说,UE已收到带有DL指配的两个以前子帧,并且DL4的值指示在DL的束中三个DL子帧以前包含了到UE的DL指配。随后,UE可在DL4的UL资源上传送NAK,或者它可根本不会传送任何内容,DTX。
第二通信装置通过控制信道传送带有用于第一通信装置的下行链路指配的子帧的指示。通过添加调度/指配的带有指配的以前子帧数量的指示,终端随后可检测它在子帧中已缺失指配,因此,错误检测得以改进。指示例如包括下行链路子帧的编号次序,如“这是带有打算送给第一通信装置的下行链路指配的第三个子帧”、在捆束窗口中已包含打算送给第一通信装置的下行链路指配的以前子帧的数量、指示该束中序列的循环冗余校验CRC值、指示该束中子帧的序列的CRC多项式;和/或诸如此类。
指示以前调度的DL子帧的数量的一种不同方式是隐式发信号通知该数量(或最后调度的DL子帧的位置)而不是使用显式信令。
在将下行链路控制信道成功解码后,终端将物理下行链路共享信道PDSCH上指配的资源解码。为测试该解码是否成功,UE在解码后校验CRC(CRC在传输前附加到传输块)。成功的CRC校验以极高的可能性指示成功解码。
用于在物理下行链路信道PDSCH上生成CRC的多项式在LTE中对所有UE和小区是公共的,并且是24比特长。隐式发信号通知带有DL指配的以前子帧的数量(或带有DL指配的最后子帧的位置)的一种可能性是为不同编号的调度的DL子帧使用不同CRC多项式。例如,第一个调度的DL子帧具有通过附加到它的多项式1生成的CRC;第二个调度的DL子帧具有通过附加到它的多项式2生成的CRC,并以此类推。
也可能且优选是为所有子帧使用公共CRC多项式,但通过取决于以前调度的子帧的数量(或是最后调度的子帧的位置)的序列,将计算得出的CRC加扰或掩蔽。终端用所有可能CRC多项式(或所有可能加扰序列)计算CRC,并且从成功检验的CRC多项式(或加扰序列),能得出以前调度的子帧的数量(或最后调度的子帧的位置)。比较此信息和最近收到的DL子帧指示DL子帧是否已缺失。如果DL子帧已缺失,则能采取适当的动作,例如,在ACK/NAK捆束的情况下发送NAK。
不必检查所有DL子帧的所有CRC多项式或加扰序列。在DL子帧1中,只需检查一个CRC多项式或加扰序列,这是因为不存在以前的DL子帧;在DL子帧2中,只必须检查两个CRC多项式或加扰序列,并以此类推。
代替在PDSCH上使用多个CRC,也可能应用相同的原理到下行链路控制信道PDCCH。此处通过不同CRC多项式保护的是有效负载而不是控制信息,或者通过不同加扰序列将计算得出的CRC加扰。然而,在PDCCH上使用的CRC大小更短,并且错误通过CRC校验的增大可能性变得明显。
通过使用隐式发信号通知以前调度的DL子帧的数量,无需在下行链路控制信道中发信号通知更多额外的比特,从而不影响覆盖。
图9示出在第二通信装置与第一通信装置之间传送控制信息的组合信令和方法方案的示意图。
在所示示例中,第一通信装置包括用户设备UE10,并且第二通信装置包括eNodeB20。
在步骤S1中,eNodeB20确定无线电帧的下行链路子帧的至少一部分是否要被指配给UE10,该子帧可被指配给UE,和/或该子帧可与相同或另一无线电帧中的UL子帧相关联。确定/调度一般可在每子帧的基础上进行。eNodeB20和UE也确定如下上行链路子帧,即根据用于每个上行链路下行链路配置的预定义规则,在该上行链路子帧上多个下行链路子帧的接收反馈被捆束到单个消息中并被传送。
对于DL子帧集合内的每个DL子帧,由eNodeB中的调度器指配资源。eNodeB随后按顺序添加指示符到每个下行链路子帧,在控制信息中指示带有被指配给第一通信装置的以前DL指配的子帧的数量。
在步骤S2中,eNodeB20在例如共享信道、控制信道和/或诸如此类等物理下行链路信道上将包括带有指示符的下行链路的无线电帧传送到UE10。
步骤S1和S2为捆束窗口内的每个DL子帧重复进行。
在步骤S3中,UE10接收无线电帧的子帧,解码并分析子帧以检测带有DL指配的子帧。由于UE10能跟踪检测到的DL指配的数量,并被预计组合由解码对应传输块产生的ACK/NAK,因此,eNodeB20将信息提供到UE10,指示在相关联DL子帧集合内指配的DL子帧20的数量,这便已足够。更具体地说,在每个DL指配中,eNodeB20能提供有关带有DL指配的以前子帧的数量的信息。通过一般在包含检测到的DL指配的最后DL子帧后比较发信号通知的DL指配的数量和收到的检测到的DL指配的数量,UE10能检测到它已缺失一个或多个指配。一种开销稍微更高的备选是eNodeB20通知UE10在哪些DL子帧上以前已为它指配了资源。
通过显式使用作为控制信息的一部分的连续编号、不同的多项式CRC、不同加扰/掩蔽的CRC和/或诸如此类,可指示带有下行链路指配的以前子帧的历史。
此外,在步骤S4中,UE10根据解码和/或以前指配的DL子帧的读取数量,传送ACK/NAK。如果解码成功,并且以前指配的DL子帧的数量指示预计的顺序号,则在该UL子帧的资源上传送ACK。上行链路控制信道资源与在带有到UE10的检测到指配的多个下行链路子帧内、在其中检测到DL指配的最后DL子帧有关。
然而,如果解码失败和/或以前指配的DL子帧的数量不同于预计的顺序号,则在该UL子帧的资源上传送NAK或者根本不传送响应。
在步骤S5中,eNodeB20接收来自UE10的反馈ACK/NAK/DTX。eNodeB20至少检查与多个指配的DL子帧中带有DL指配的最后DL子帧有关的上行链路中的资源。
在步骤S6中,eNodeB可将数据重新传送到UE10。例如,如果收到ACK,eNodeB20继续将新数据传送到UE10。如果收到NAK,则eNodeB20重新发送多个DL子帧或无线电帧。
如果在与被指配给UE10的最后DL子帧有关的UL的资源中未收到反馈,则eNodeB20检查UL子帧中与最后指配的DL子帧以前的DL有关的下一资源。如果在此资源中收到ACK或NAK,则eNodeB知道UE10只已缺失最后指配的DL子帧并且只重新发送最后的DL子帧。如果未收到反馈,则eNodeB随后类似地检查UL子帧的以前资源,并以此类推。
在图10中,示出了在第二通信装置中方法的示意图。
该方法用于在带有打算送给第一通信装置的下行链路DL指配的子帧中传送控制信息和数据。包含至少一个下行链路子帧的无线电帧的子帧可通过无线电信道发送到第一通信装置。该方法可为带有打算送给第一通信装置的DL指配的每个子帧重复执行。
在步骤B2中,第二通信装置添加指示符到子帧,以在控制信息中提供有关在带有打算送给第一通信装置的DL指配的以前子帧的知识。在一些实施例中,提供包括与单个UL子帧相关联的DL子帧集合的捆束窗口,并且在控制信息中子帧的捆束窗口内包括子帧。
在一些实施例中,指示符指示带有打算送给第一通信装置的DL指配的以前子帧的数量,并且可包括至少一个比特,指示诸如连续编号和/或诸如此类等参考标号。例如,指示符可以是指示DL子帧是第二个指配的DL(序数)的数字,表示在捆束窗口内直到目前子帧为止的通过对应PDCCH的指配的PDSCH传输的累计数,指示一个以前指配的DL子帧的数字和/或诸如此类。由此,提供有关以前子帧的知识。
在步骤B4中,第二通信装置将带有指配的下行链路子帧的控制信息传送到第一通信装置。这可在每子帧的基础上执行。
在一些实施例中,第二通信装置将多个下行链路子帧指配给第一通信装置,形成捆束窗口,并且多个下行链路子帧的接收反馈布置为在第一通信装置捆束到单个ACK/NAK反馈消息中。
在可选步骤B6中,第二通信装置可随后通过检查被指配给多个指配的下行链路子帧的上行链路子帧的上行链路资源是否有单个ACK/NAK反馈消息接收反馈,确定是否已收到控制信息或数据。第一上行链路资源与多个指配的下行链路子帧的最后指配的下行链路子帧有关。
在可选步骤B8中,在最后指配的下行链路子帧的上行链路资源不包括接收反馈的情况下,第二通信装置检查最后指配的下行链路子帧前指配的下行链路子帧有关的第二上行链路资源是否有单个ACK/NAK反馈消息。这可继续通过多个指配的下行链路子帧,直至检测到接收反馈,或者未留有与指配的下行链路子帧有关的上行链路的资源。
在一些实施例中,如果在该上行链路资源上未检测到单个ACK/NAK反馈消息,则确定至少一个下行链路指配已缺失。因此,如果未检测到传输,则可确定尚未收到控制信息。
在一些实施例中,单个ACK/NAK反馈消息中的ACK指示适当收到的控制信息,并且NAK指示解码失败的子帧和/或缺失的下行链路指配。
步骤B6和B8的一个备选是检查与下行链路指配相关联的所有上行链路资源,以确定第一通信节点将最可能使用哪个资源,并随后检查在此资源上的ACK/NAK或DTX反馈。
在可选的B10中,第二通信装置基于上行链路子帧资源的检查结果,确定重新发送指配的下行链路子帧。
例如,如果第二通信装置通过在倒数第二个(the next to last)DL子帧相关联的资源中检测到ACK,检测到第一通信装置已缺失最后指配的DL子帧,则第二通信装置只重新发送最后指配的DL子帧。
在一些实施例中,指示符在多个子帧(捆束窗口)内指示在带有打算送给第一通信装置的下行链路指配的多个子帧中该子帧包括哪个编号,诸如序数、累计数和/或诸如此类。编号可在每多个子帧(捆束窗口)重新开始。
在一些实施例中,指示符通过包括至少一个比特,指示诸如连续编号和/或诸如此类等参考标号,指示带有打算送给第一通信装置的下行链路指配的以前子帧的数量。
在一些实施例中,指示符指示带有打算送给第一通信装置的指配的以前子帧的子帧编号。在此情况下,第一通信装置可检查它是否在所指示子帧中收到下行链路指配。
在一些实施例中,指示符布置为控制信道上下行链路指配的一部分。
在一些实施例中,通过使用多项式为诸如物理下行链路共享信道PDSCH、物理下行链路控制信道PDCCH和/或诸如此类等物理下行链路信道PDCH上的指配的子帧生成循环冗余校验CRC,指示符指示带有打算送给第一通信装置的下行链路指配的以前子帧的数量。
在一些实施例中,带有打算送给第一通信装置的下行链路指配的以前子帧的指示符包括从循环冗余校验CRC的扰码/掩码生成的循环冗余校验值。该CRC通过用于诸如物理下行链路共享信道PDSCH、物理下行链路控制信道PDCCH和/或诸如此类等物理下行链路信道PDCH上指配的子帧的多项式生成。扰码/掩码取决于以前调度的指配的子帧的数量,并且第一通信装置从解码数据中检索指示符。
例如,第一个调度的DL子帧具有通过附加到它的多项式1生成的CRC;第二个调度的DL子帧具有通过附加到它的多项式2生成的CRC,并以此类推。因此,将CRC解码的接收装置将知道生成了CRC的多项式,并且因此知道以前指配的DL子帧的数量。
为执行该方法,提供了第二通信装置。
在图11中,示出了第二通信装置20的示意图。
第二通信装置可包括基站、eNodeB、NodeB、UE和/或诸如此类。
第二通信装置20布置用于用无线电帧的子帧将控制信息和数据通过无线电信道传送到第一通信装置,该子帧带有打算送给第一通信装置的下行链路指配。
第二通信装置20包括布置为添加指示符到子帧的控制单元201,指示符布置为在控制信息中向第一通信装置提供带有打算送给第一通信装置的下行链路指配的以前子帧的知识。
在一些实施例中,指示符可通过包括至少一个比特,指示诸如连续编号和/或诸如此类等参考标号,来指示带有打算送给第一通信装置的下行链路指配的以前子帧的数量。指示符可以是诸如第一、第二、第三和/或诸如此类等序数。
在一些实施例中,指示符可隐式指示带有打算送给第一通信装置的下行链路指配的以前子帧的数量。这可通过使用多项式为诸如PDSCH、PDCCH和/或诸如此类等PDCH上指配的子帧生成CRC而完成。被指配给第一通信装置的以前子帧的指示符可包括从诸如PDSCH、PDCCH和/或诸如此类等PDCH上指配的子帧的多项式的扰码/掩码生成的循环冗余校验值。扰码/掩码取决于被指配给第一通信装置的以前子帧的数量,并由此隐式指示被指配给第一通信装置的以前子帧的数量。
第二通信装置20还包括布置为将指配的下行链路子帧的控制信息和数据传送到第一通信装置的传送布置205。
在一些实施例中,第二通信装置包括接收布置203,并且一个或多个无线电帧包括被指配给第一通信装置的多个下行链路子帧。多个下行链路子帧的接收反馈布置为在第一通信装置捆束到单个ACK/NAK消息中。因此,接收布置(203)布置为在被指配给多个指配的下行链路子帧的上行链路子帧的第一上行链路资源上,从第一通信装置接收包括单个ACK/NAK消息的接收反馈。第一上行链路资源与多个指配的下行链路子帧的最后指配的下行链路子帧有关。在一些实施例中,最后收到的检测到的指配的下行链路子帧关联的上行链路控制信道的上行链路资源和最后指配的下行链路子帧间隔至少三个子帧。
控制单元201可随后布置为通过检查被指配给多个指配的下行链路子帧的上行链路子帧的第一上行链路资源是否有接收反馈,来确定是否已收到控制信息和/或数据。
在一些实施例中,在最后指配的下行链路子帧的上行链路资源不包括反馈的情况下,控制单元201布置为检查与在最后指配的下行链路子帧之前指配的下行链路子帧有关的第二上行链路资源是否有接收反馈。
在一些实施例中,检查所有上行链路资源以确定使用的资源。
在一些实施例中,控制单元201布置为在单个消息包括否定确认NAK或者根本未收到反馈接收时确定分组已缺失或未成功解码。
在一些实施例中,控制单元201可布置为在单个消息包括与至少一个分组的该上行链路资源有关的肯定确认ACK时,确定已正确收到该至少一个分组。
在一些实施例中,第二通信装置包括布置为传送数据到核心网络和从核心网络接收数据的网络接口209和布置为具有应用程序和数据以执行在其上存储的方法的存储器单元207。
控制单元201可包括CPU、单个处理单元、多个处理单元和或诸如此类。
存储器单元207可包括单个存储器单元、多个存储器单元、外部和/或内部存储器单元。
在图12中,示出了在第一通信装置中用于通过无线电信道从第二通信装置接收控制信息和数据的方法的示意图。
在步骤C2中,第一通信装置通过无线电信道接收子帧的至少一部分。
应注意的是,子帧被逐一接收并且可被逐一处理。在一些实施例中,第一通信装置在一段时间内接收被指配给第一通信装置的DL子帧束。在每个子帧中,接收单个指配(控制信息)和指配的数据(传输块)。在一些实施例中,带有打算送给第一通信装置的指配的子帧束与要用于确认捆束子帧的接收/检测的上行链路的资源相关联。每个子帧中的每个指配与控制信道资源相关联,终端随后挑选这些资源之一。
在步骤C4中,例如通过读取子帧中的控制信息,第一通信装置检测子帧是否为带有打算送给第一通信装置的下行链路指配的子帧。包含打算送给第一通信装置的下行链路指配的子帧意味着目前子帧中部分资源包含用于第一通信装置的数据。
在可选步骤C6中,第一通信装置将子帧内的数据解码。此步骤也可在步骤C8后执行。
在步骤C8中,第一通信装置已检测到该子帧包括打算送给第一通信装置的下行链路指配,并通过分析与该子帧相关联的指示符,确定在该子帧前从第二通信装置发送的数据的至少一个下行链路指配是否已缺失;指示符提供有关带有打算送给第一通信装置的下行链路指配的以前下行链路子帧的知识。
在一些实施例中,第一通信接收多个子帧(逐个子帧),并检测带有打算送给第一通信装置的下行链路指配的多个子帧。
典型的应用是捆束,并且检查在捆束窗口中最后子帧后指配是否已缺失,在原则上是充分的。因此,不必检查每个收到DL子帧后是否有缺失的指配。然而,可在每个收到的DL子帧后进行检查,除非已经检测到缺失的DL子帧。
在可选的步骤C10中,第一通信装置随后响应收到的多个检测到子帧而生成接收的ACK/NAK反馈,其中,ACK/NAK反馈捆束到单个捆束的ACK/NAK反馈消息中,并且在与多个下行链路子帧关联的上行链路子帧的上行链路资源中传送单个捆束的ACK/NAK反馈消息,该上行链路资源与带有打算送给第一通信装置的下行链路指配的最后收到的检测到的子帧相关联。
对于捆束窗口(子帧束)内的每个DL子帧,第一通信装置可通过读取/解码一个或多个控制信道,确定是否有用于第一通信装置的下行链路指配。
在一些实施例中,与无线电帧中最后收到的检测到的指配的下行链路子帧相关联的上行链路控制信道的上行链路资源和最后指配的下行链路子帧间隔至少三个子帧以将延迟等考虑在内。
在一些实施例中,步骤C10在确定没有下行链路指配已缺失的情况下执行,以及在确定缺失了至少一个下行链路指配的情况下,未传送反馈。
在一些实施例中,当带有检测到的下行链路指配的至少一个收到子帧中数据的解码失败,和/或已确定下行链路指配缺失时,单个捆束的ACK/NAK反馈消息包括否定确认NAK。
在一些实施例中,当带有检测到的下行链路指配的所有收到子帧中数据的解码均成功并且确定第一通信装置未缺失任何下行链路指配时,单个捆束的ACK/NAK反馈消息包括肯定确认ACK。
换而言之,在没有缺失的指配的情况下,根据将传输块解码的结果,使用与在带有打算送给第一通信装置的指配的最后DL子帧中最后控制信道相关联的资源来发送ACK或NAK。一般情况下,所有传输块被正确解码时发送ACK,并且至少一个传输块失败时发送NAK。在检测到至少一个缺失的指配的情况下,为所有码字生成NAK,以便生成捆束的NAK(PUSCH上带有反馈的情况)或者不传送响应/DTX(PUCCH上带有反馈的情况)。
第二通信装置将注意是在与适当子帧还是不同子帧相关联的上行链路资源收到该确认并由此确定是否要重新发送分组。
因此,第二通信装置将检测到可由缺失的指配或由于解码失败造成的NAK(在传送了NAK时)。在第二通信装置未检测到传输时,它也可检测到至少一个指配已缺失,避免缺失的指配导致ACK的情况。
此处,应注意的是,步骤C6可在步骤C8后执行。也就是说,数据的解码可在确定打算送给第一通信装置的数据缺失后执行。因此,检测到子帧已缺失的第一通信装置不必将数据解码,而只是传送NAK或不进行任何操作(DTX)。
在一些实施例中,指示符指示在带有打算送给第一通信装置的下行链路指配的多个子帧中该子帧的编号,诸如序数、累计数和/或诸如此类。
在一些实施例中,指示符指示带有打算送给第一通信装置的下行链路指配的以前子帧的数量,并包括至少一个比特,指示诸如连续编号和/或诸如此类等参考标号。
在一些实施例中,指示符布置为控制信道上下行链路指配的一部分。
在一些实施例中,指示符指示带有打算送给第一通信装置的下行链路指配的以前子帧的数量并且包括用于为诸如物理下行链路共享信道PDSCH、物理下行链路控制信道PDCCH和/或诸如此类等物理下行链路信道PDCH上指配的子帧生成循环冗余校验CRC的多项式。第一通信装置在数据或控制信息的解码期间检索此多项式。
在一些实施例中,指示符指示带有打算送给第一通信装置的指配的以前子帧的数量,并且包括从循环冗余校验CRC的扰码/掩码生成的循环冗余校验值CRC,循环冗余校验CRC通过在诸如物理下行链路共享信道PDSCH、物理下行链路控制信道PDCCH和/或诸如此类等物理下行链路信道PDCH上指配的子帧的多项式生成。扰码/掩码取决于带有打算送给第一通信装置的下行链路指配的以前子帧的数量,并且第一通信装置从数据或控制信息的解码中检索指示符。
在一些实施例中,第一通信装置通过比较该指示符和指示符的预计值,确定下行链路指配是否已缺失。预计值可从计数器和/或诸如此类生成。例如,如果第一通信已收到以前指配的一个DL子帧,则以前指配的DL子帧的数量的预计值是“1”或下一指配的下行链路子帧的“第二个DL子帧”。指示符和/或预计值可以是序数、基数和/或诸如此类。
通过比较指示符和预计值,在捆束窗口内的每个或至少最后子帧后,第一通信装置检测至少一个或多个DL指配已缺失。
在一些实施例中,多个下行链路子帧由第二通信装置指配给第一通信装置,并且多个下行链路子帧的接收反馈被捆束到单个消息中。步骤C2-C8可为捆束窗口内的每个DL子帧重复进行。然而,步骤C8不必在每个DL子帧后执行,相反在一些实施例中,C8在捆束窗口中最后DL子帧后执行。因此,在这些实施例中,步骤C2-C6中的子帧包括捆束窗口中的最后子帧。
在一些实施例中,第一通信装置进行确定至少一个下行链路指配已缺失,至少对于在带有打算送给第一通信的下行链路指配的多个子帧的捆束窗口中的最后子帧或其中每个子帧后。
在一些实施例中,无线电信道包括时分双工方案。
在一些实施例中,在检测到已缺失带有打算送给第一通信装置的下行链路指配的子帧时,第一通信装置停止解码和/或接收捆束窗口内的更多子帧。
为执行该方法,提供了第一通信装置。
在图13中,示出了用于通过无线电信道从第二通信装置接收控制信息和数据的第一通信装置的示意图。
第一通信装置包括适用于接收无线电帧的子帧的接收布置103。无线电帧可包括至少一个下行链路子帧。
控制单元101还布置为通过分析与该子帧相关联的指示符,确定在该子帧之前在第二通信装置中已调度并且已从其中发送的数据的任何下行链路指配是否已缺失;指示符布置为提供带有打算送给第一通信装置的下行链路指配的以前子帧的知识。
第一通信装置还包括控制单元101,该单元布置为例如通过读取子帧中的控制信息,确定子帧是否包括打算送给第一通信装置的下行链路指配。如果情况是这样,则控制单元101还布置为通过分析与该子帧关联的指示符,确定在该子帧前从第二通信装置发送的数据的至少一个下行链路指配是否已缺失;指示符提供有关带有打算送给第一通信装置的下行链路指配的以前下行链路子帧的知识。
在一些实施例中,指示符布置为指示带有打算送给第一通信装置的DL指配的以前子帧的数量,并包括至少一个比特,指示诸如连续编号和/或诸如此类等参考标号。例如,在子帧内,表示直至目前子帧为止带有对应PDCCH的指配的PDSCH传输的累计数。
在一些实施例中,指示符布置为指示带有打算送给第一通信装置的DL指配的以前子帧的数量并且包括用于为诸如PDSCH、PDCCH和/或诸如此类等PDCH上指配的子帧生成CRC的多项式,并且第一通信装置布置为通过数据的解码检索多项式。
在一些实施例中,指示符布置为指示带有打算送给第一通信装置的DL指配的以前子帧的数量并且包括从诸如PDSCH、PDCCH和/或诸如此类等PDCH上指配的子帧的多项式的扰码/掩码生成的循环冗余校验值,其中,扰码/掩码取决于带有打算送给第一通信装置的指配的以前子帧的数量,并且第一通信装置布置为通过数据的解码检索指示符。
在一些实施例中,其中捆束窗口包括被指配给第一通信装置的多个下行链路子帧,控制单元101布置为将多个下行链路子帧的接收反馈捆束到单个ACK/NAK消息中。随后,控制单元101还布置为通过诸如天线或诸如此类等传送布置105,在上行链路资源中传送单个ACK/NAK消息,指示已检测到多个下行链路子帧的确认。与多个下行链路子帧相关联的上行链路子帧中,上行链路资源与无线电帧中最后收到的检测到指配的下行链路子帧相关联。在一些实施例中,与无线电帧中最后收到的检测到的指配的下行链路子帧相关联的上行链路控制信道的上行链路资源可以和最后指配的下行链路子帧间隔至少三个子帧。
在一些实施例中,在控制单元101未能将最后收到的检测到的指配的下行链路子帧中的数据解码,和/或已确定分组已缺失时,传送否定确认NAK。在一些实施例中,第一通信装置布置为忽略该传输以指示由于至少一个下行链路指配已缺失,携带数据的至少一个子帧需要从第二通信装置重新传送。
在一些实施例中,在控制单元101已确定解码已成功,并且第一通信装置在指配的下行链路子帧中已收到所有预期分组时,传送肯定确认ACK;“全部”根据第一通信装置。
在一些实施例中,第一通信装置包括存储器单元107,该单元布置为存储诸如多项式的扰码/掩码、多项式、序数、基数、子帧编号和/或诸如此类等隐式和显式指示符,其中,控制单元101布置为包括通过比较指示符和存储器107中存储的指示符的预计值,确定任何数据分组是否已缺失。可以从布置在第一通信装置中的计数器中检索预计值,该计数器对带有打算送给第一通信装置的下行链路指配的收到子帧计数。
控制单元101可包括CPU、单个处理单元、多个处理单元和/或诸如此类。
存储器单元107可包括单个存储器单元、多个存储器单元、外部和/或内部存储器单元。
在一些实施例中,第一通信装置包括诸如移动电话或诸如此类等用户设备,并且第一通信装置包括输入布置111和输出布置110以输入和输出数据。
在图形和说明书中,已公开了本发明的示范实施例。然而,在实质上不脱离本发明的原理的情况下,可对这些实施例进行许多变化和修改。相应地,虽然采用了特定的术语,但它们只是一般性和描述性地使用,并不是要进行限制,本发明的范围由随附权利要求定义。

Claims (16)

1.一种在第一通信装置中用于通过无线电信道从第二通信装置接收控制信息和数据的方法,所述第一通信装置是以TDD模式操作的终端,所述第二通信装置是以TDD模式操作的基站,所述方法包括以下步骤:
- 通过所述无线电信道在下行链路子帧中接收控制信道,
- 检测所述下行链路子帧是否为带有打算给所述第一通信装置的下行链路资源指配的子帧,而且,如果检测到打算给所述第一通信装置的下行链路资源指配,则将对应数据解码,
其中:
- 所述第一通信装置把来自下行链路子帧组内的所有接收的下行链路子帧的确认或否定确认捆束到单个上行链路子帧中;
- 当检测到下行链路子帧是带有打算给所述第一通信装置的下行链路资源指配的子帧时,通过分析与所述子帧关联的指示符,确定在所述下行链路子帧之前从所述第二通信装置发送的数据的至少一个下行链路资源指配是否已缺失,
所述指示符提供有关带有打算给所述第一通信装置的下行链路资源指配的以前下行链路子帧的信息,
所述信息提供有关打算给所述第一通信装置的以前下行链路资源指配的知识;
- 其中,所述第一通信装置把与所述组中最后检测的下行链路资源指配关联的上行链路控制信道资源用于传送所述捆束的确认或否定确认。
2.如权利要求1所述的方法,其中,所述指示符指示所述子帧是带有打算给所述第一通信装置的下行链路资源指配的所述多个子帧中哪个编号。
3.如权利要求2所述的方法,其中,所述指示所述子帧是带有打算给所述第一通信装置的下行链路资源指配的所述多个子帧中哪个编号包括:指示子帧的序数和/或累计数。
4.如权利要求1所述的方法,其中,所述指示符指示带有打算给所述第一通信装置的下行链路资源指配的以前子帧的数量,并且包括指示参考标号的至少一个比特。
5.如权利要求4所述的方法,其中,所述参考标号是连续号。
6.如权利要求1-5中任一项所述的方法,其中,所述指示符布置为所述控制信道上所述下行链路资源指配的一部分。
7.如权利要求1-5中任一项所述的方法,其中,所述指示符指示带有打算给所述第一通信装置的下行链路资源指配的以前子帧的数量,并且包括用于为物理下行链路信道PDCH上所指配的子帧生成循环冗余校验CRC的多项式,并且所述第一通信装置在所述数据或控制信息的解码期间检索此多项式。
8.如权利要求7所述的方法,其中,所述物理下行链路信道PDCH是物理下行链路共享信道PDSCH和/或物理下行链路控制信道PDCCH。
9.如权利要求1-5中任一项所述的方法,其中,所述指示符指示带有打算给所述第一通信装置的下行链路资源指配的以前子帧的数量,并且包括从循环冗余校验CRC的扰码或掩码生成的循环冗余校验值,通过用于物理下行链路信道PDCH上所指配的子帧的多项式生成所述循环冗余校验CRC,其中所述扰码或掩码取决于带有打算给所述第一通信装置的下行链路资源指配的以前子帧的数量,并且所述第一通信装置从所述数据或控制信息的解码中检索所述指示符。
10.如权利要求9所述的方法,其中,所述物理下行链路信道PDCH是物理下行链路共享信道PDSCH和/或物理下行链路控制信道PDCCH。
11.如权利要求1-5中任一项所述的方法,其中,下行链路资源指配是否已缺失的所述确定包括比较所述指示符和所述指示符的预计值。
12.如权利要求1-5中任一项所述的方法,其中,对于带有打算给所述第一通信装置的下行链路资源指配的多个子帧的捆束窗口中至少最后子帧或在所述捆束窗口中每个子帧之后,进行至少一个下行链路资源指配是否已缺失的所述确定步骤。
13.如权利要求1-5中任一项所述的方法,其中,如果检测到已缺失带有打算给所述第一通信装置的下行链路资源指配的子帧,则所述第一通信装置停止解码和/或接收捆束窗口内的更多子帧。
14.一种在第二通信装置中用于通过无线电信道在带有打算给第一通信装置的下行链路资源指配的下行链路子帧中将控制信息和数据传送到所述第一通信装置的方法,所述第一通信装置是以TDD模式操作的终端,所述第二通信装置是以TDD模式操作的基站,所述方法包括以下步骤:
- 添加指示符到所述下行链路子帧,在所述控制信息中提供有关下行链路子帧组内带有打算给所述第一通信装置的下行链路资源指配的以前下行链路子帧的数量的信息;以及
- 通过所述下行链路子帧在所指配资源上将所述控制信息和数据传送到所述第一通信装置;以及
- 从所述第一通信装置接收被捆束到单个上行链路子帧中的来自所述下行链路子帧组内由所述第一通信装置接收的所有下行链路子帧的确认或否定确认;
- 其中,所述第二通信装置侦听与所述下行链路子帧组内最后的下行链路资源指配关联的上行链路控制信道资源,并且如果它检测到在这个上行链路控制信道资源上什么都没传送,则采取适当行动。
15.一种用于通过无线电信道从第二通信装置接收控制信息和数据的第一通信装置(10),所述第一通信装置是以TDD模式操作的终端,所述第二通信装置是以TDD模式操作的基站,所述第一通信装置(10)包括:适用于通过所述无线电信道在下行链路子帧中接收控制信道的接收布置(103);和控制单元(101),所述控制单元(101)布置为检测所述下行链路子帧是否为带有打算给所述第一通信装置的下行链路资源指配的子帧,而且,如果检测到打算给所述第一通信装置的下行链路资源指配,则将对应数据解码,所述第一通信装置把来自下行链路子帧组内的所有接收的下行链路子帧的确认或否定确认捆束到单个上行链路子帧中,
其特征在于,
当检测到下行链路子帧是带有打算给所述第一通信装置的下行链路资源指配的子帧时,所述控制单元(101)还适用于通过分析与所述子帧关联的指示符,确定在所述下行链路子帧之前从所述第二通信装置发送的数据的至少一个下行链路资源指配是否已缺失,所述指示符提供有关带有打算给所述第一通信装置的下行链路资源指配的以前下行链路子帧的信息,所述信息提供有关打算给所述第一通信装置的以前下行链路资源指配的知识;
其中,所述控制单元布置成把与所述组中最后检测的下行链路资源指配关联的上行链路控制信道资源用于传送所述捆束的确认或否定确认。
16.一种第二通信装置(20),用于通过无线电信道在带有打算给第一通信装置(10)的下行链路资源指配的下行链路子帧中将控制信息和数据传送到所述第一通信装置,所述第一通信装置是以TDD模式操作的终端,所述第二通信装置是以TDD模式操作的基站,其特征在于,所述第二通信装置包括:
控制单元(201),布置成添加指示符到所述下行链路子帧,在所述控制信息中提供有关下行链路子帧组内带有打算给所述第一通信装置(10)的下行链路资源指配的以前下行链路子帧的数量的信息;以及
传送装置(205),布置成通过所述下行链路子帧在所指配资源上将所述控制信息和数据传送到所述第一通信装置;以及
接收装置(203),布置成从所述第一通信装置(10)接收被捆束到单个上行链路子帧中的来自所述下行链路子帧组内由所述第一通信装置接收的所有下行链路子帧的确认或否定确认;
其中,所述第二通信装置(20)侦听与所述下行链路子帧组内最后的下行链路资源指配关联的上行链路控制信道资源,并且如果它检测到在这个上行链路控制信道资源上什么都没传送,则采取适当行动。
CN201410225023.2A 2008-02-06 2009-02-05 有关下行链路指配的方法和装置 Active CN104022855B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US2660108P 2008-02-06 2008-02-06
US61/026,601 2008-02-06
US61/026601 2008-02-06
CN200980105013.2A CN101939939B (zh) 2008-02-06 2009-02-05 有关下行链路指配的方法和装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200980105013.2A Division CN101939939B (zh) 2008-02-06 2009-02-05 有关下行链路指配的方法和装置

Publications (2)

Publication Number Publication Date
CN104022855A CN104022855A (zh) 2014-09-03
CN104022855B true CN104022855B (zh) 2017-06-30

Family

ID=40497562

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201410225023.2A Active CN104022855B (zh) 2008-02-06 2009-02-05 有关下行链路指配的方法和装置
CN200980105013.2A Active CN101939939B (zh) 2008-02-06 2009-02-05 有关下行链路指配的方法和装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN200980105013.2A Active CN101939939B (zh) 2008-02-06 2009-02-05 有关下行链路指配的方法和装置

Country Status (12)

Country Link
US (2) US8072911B2 (zh)
EP (1) EP2291940B2 (zh)
JP (1) JP4886073B2 (zh)
CN (2) CN104022855B (zh)
AT (1) ATE537625T1 (zh)
CA (1) CA2713234C (zh)
DK (1) DK2291940T4 (zh)
ES (1) ES2377540T5 (zh)
HK (2) HK1152599A1 (zh)
NZ (1) NZ586363A (zh)
RU (1) RU2494551C2 (zh)
WO (1) WO2009099389A1 (zh)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035263A1 (en) * 2007-09-10 2009-03-19 Electronics And Telecommunications Research Institute Method for allocating resource and receiving data
WO2009099389A1 (en) 2008-02-06 2009-08-13 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices relating to downlink assignments
US8335165B2 (en) * 2008-03-04 2012-12-18 Texas Instruments Incorporated Transmission of multiple ACK/NAK bits with data
KR100905385B1 (ko) * 2008-03-16 2009-06-30 엘지전자 주식회사 무선통신 시스템에서 제어신호의 효율적인 전송방법
US8724636B2 (en) * 2008-03-31 2014-05-13 Qualcomm Incorporated Methods of reliably sending control signal
US8942080B2 (en) * 2008-04-17 2015-01-27 Texas Instruments Incorporated Transmission of bundled ACK/NAK bits
US20090285122A1 (en) * 2008-04-21 2009-11-19 Texas Instruments Incorporated Uplink control for time-division duplex with asymmetric assignment
US8634333B2 (en) * 2008-05-07 2014-01-21 Qualcomm Incorporated Bundling of ACK information in a wireless communication system
PL2849378T3 (pl) * 2008-06-23 2019-04-30 Beijing Xiaomi Mobile Software Co Ltd Sposób i urządzenie do zapewniania grupowania potwierdzeń
US9219591B2 (en) 2008-06-23 2015-12-22 Nokia Solutions And Networks Oy Method and apparatus for providing acknowledgement bundling
US8331215B2 (en) * 2008-07-14 2012-12-11 Texas Instruements Incorporated Concurrent transmission of multiple acknowledge/not acknowledge and scheduling request indicator in time division duplex uplink signaling
US8780817B2 (en) * 2008-09-22 2014-07-15 Qualcomm Incorporated Apparatus and method for reducing overhead for communications
KR20100066255A (ko) * 2008-12-09 2010-06-17 엘지전자 주식회사 다중안테나를 갖는 무선 통신 시스템에서 상향링크 기준 신호 전송 및 수신 방법
US20110164698A1 (en) * 2009-01-21 2011-07-07 Wu Jane Zhen Systems and methods with non symmetric OFDM modulation
US8767632B2 (en) * 2009-02-05 2014-07-01 Motorola Mobility Llc Method for uplink acknowledgement/non-acknowledgement messages in a wireless communication system
US8873463B2 (en) * 2009-02-19 2014-10-28 Lg Electronics Inc. Method and apparatus for transmitting/receiving data in a relay communication system
US8441976B2 (en) 2009-06-29 2013-05-14 Htc Corporation Method of managing multimedia broadcast multicast service reception and related communication device
US8756477B2 (en) * 2009-12-21 2014-06-17 Qualcomm Incorporated System, method and apparatus for early termination based on transport block fail for acknowledgment bundling in time division duplex
US8599708B2 (en) 2010-01-14 2013-12-03 Qualcomm Incorporated Channel feedback based on reference signal
WO2011100672A1 (en) * 2010-02-12 2011-08-18 Research In Motion Limited Reference signal for a coordinated multi-point network implementation
US8923203B2 (en) 2010-02-12 2014-12-30 Blackberry Limited Reference signal for a coordinated multi-point network implementation
US8305987B2 (en) * 2010-02-12 2012-11-06 Research In Motion Limited Reference signal for a coordinated multi-point network implementation
US9083501B2 (en) 2010-04-05 2015-07-14 Qualcomm Incorporated Feedback of control information for multiple carriers
US9295100B2 (en) 2010-04-12 2016-03-22 Qualcomm Incorporated Delayed acknowledgements for low-overhead communication in a network
CN103119861B (zh) 2010-04-30 2016-04-06 韩国电子通信研究院 无线通信系统中控制信道的收发方法
US9237583B2 (en) * 2010-05-03 2016-01-12 Qualcomm Incorporated Resource availability for PDSCH in relay backhaul transmissions
DK2584827T3 (en) 2010-06-21 2018-07-02 Sun Patent Trust TERMINAL DEVICE AND COMMUNICATION PROCEDURE
US9450707B2 (en) 2010-06-30 2016-09-20 Qualcomm Incorporated Limited duty cycle FDD system
JP5547572B2 (ja) * 2010-07-09 2014-07-16 京セラ株式会社 無線基地局および無線通信方法
JP5606836B2 (ja) * 2010-08-31 2014-10-15 株式会社Nttドコモ 無線通信システム及び移動端末装置
WO2012051750A1 (zh) * 2010-10-19 2012-04-26 富士通株式会社 传输上行响应信号的方法、终端设备和基站
PL2451223T3 (pl) 2010-11-03 2018-09-28 Samsung Electronics Co., Ltd. Generowanie informacji HARQ-ACK i sterowanie mocą sygnałów HARQ-ACK w systemach TDD o łączu pobierania z agregacją nośnych
US9949244B2 (en) * 2010-12-21 2018-04-17 Lg Electronics Inc. Method for mitigating inter cell interference and device therefor
CN102624507B (zh) 2011-02-01 2015-04-08 华为技术有限公司 上/下行调度信息发送方法和接收方法及装置
KR20130004846A (ko) * 2011-07-04 2013-01-14 주식회사 팬택 다중 요소반송파를 이용하는 tdd시스템에서의 제어정보의 전송방법 및 처리방법, 그 기지국, 그 단말
EP2742628A4 (en) * 2011-08-11 2015-05-20 Nokia Corp PDSCH ASSIGNMENT INDICATION FOR SCELL FDD ACK / NACK TRANSMISSION
CN103188062B (zh) * 2011-12-31 2018-08-17 中兴通讯股份有限公司 混合自动重传请求应答信息发送方法及装置
US9763239B2 (en) * 2012-01-29 2017-09-12 Lg Electronics Inc. Data transmission method and apparatus for half-duplex devices
KR101970684B1 (ko) * 2012-02-28 2019-04-19 삼성전자주식회사 무선통신시스템에서 피드백 정보 전송 장치 및 방법
US9832789B2 (en) 2012-02-29 2017-11-28 Samsung Electronics Co., Ltd. Method and apparatus for transceiving channel related to terminal that supports half duplex transmission in mobile communication system
CN103517421B (zh) * 2012-06-15 2017-06-27 华为技术有限公司 传输控制方法及相关装置和通信系统
WO2014007709A1 (en) * 2012-07-06 2014-01-09 Telefonaktiebolaget L M Ericsson (Publ) Method and network node for allocating resources of an uplink subframe
EP2893759B1 (en) * 2012-09-07 2020-12-30 Samsung Electronics Co., Ltd. Method and apparatus for signalling resource allocation information in an asymmetric multicarrier communication network
WO2014053885A1 (en) * 2012-10-05 2014-04-10 Broadcom Corporation Methods, apparatus and computer programs for half-duplex frequency division duplexing
RU2570813C1 (ru) * 2012-10-25 2015-12-10 Хуавэй Текнолоджиз Ко., Лтд. Способ и устройство восстановления при потере обнаружения канала управления
US9876615B2 (en) * 2012-11-13 2018-01-23 Lg Electronics Inc. Method and apparatus for transmitting and receiving data multiple times in consecutive subframes
CN108183778B (zh) 2013-01-21 2020-12-25 华为技术有限公司 上行反馈方法、用户设备及基站
CN104219023B (zh) * 2013-05-31 2019-05-31 上海朗帛通信技术有限公司 一种d2d系统中的通信方法和装置
WO2015018075A1 (en) 2013-08-09 2015-02-12 Mediatek Inc. Method to determine the starting subframe of data channel
CN104871469B (zh) * 2013-08-09 2019-11-08 寰发股份有限公司 确定数据信道起始子帧的用户设备和方法
EP3041306B1 (en) * 2013-09-27 2018-08-22 Huawei Technologies Co., Ltd. Method and user equipment for transmitting uplink data
US9621310B2 (en) * 2013-12-23 2017-04-11 Apple Inc. TTI bundling for downlink communication
CN105099631A (zh) * 2014-04-17 2015-11-25 北京三星通信技术研究有限公司 一种处理灵活双工的方法和设备
US10075973B2 (en) * 2014-07-31 2018-09-11 Microsoft Technology Licensing, Llc Scheduling assignment transmission timing for user equipment enabling device-to-device communication
CN105472744B (zh) * 2014-09-02 2020-07-31 中兴通讯股份有限公司 一种数据传输方法和装置
US10342012B2 (en) * 2015-03-15 2019-07-02 Qualcomm Incorporated Self-contained time division duplex (TDD) subframe structure
US9936519B2 (en) 2015-03-15 2018-04-03 Qualcomm Incorporated Self-contained time division duplex (TDD) subframe structure for wireless communications
KR102457282B1 (ko) 2015-11-20 2022-10-19 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 데이터 전송 방법, 단말기 및 기지국
CN109076502B (zh) * 2016-05-12 2020-12-15 华为技术有限公司 信息传输的方法及用户设备
RU2727176C1 (ru) 2016-09-30 2020-07-21 Телефонактиеболагет Лм Эрикссон (Пабл) Узел для сети радиосвязи и способ работы
GB2554649A (en) * 2016-09-30 2018-04-11 Tcl Communication Ltd Systems and methods for frequency division duplex communication
CN108206732B (zh) * 2016-12-19 2020-09-25 维沃移动通信有限公司 数据传输方法、资源指示信息的获取方法、终端及基站
CN108282881B (zh) 2017-01-06 2020-12-15 华为技术有限公司 一种资源配置方法及装置
US11742991B2 (en) * 2017-03-23 2023-08-29 Motorola Mobility Llc Indication for HARQ-ACK feedback
CN109286987B (zh) * 2017-05-04 2019-11-05 华为技术有限公司 一种信息发送、接收方法及相关设备
WO2019093823A1 (ko) * 2017-11-09 2019-05-16 엘지전자 주식회사 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2019098892A1 (en) * 2017-11-14 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Acknowledgement signaling processes for radio access networks
EP3764711B1 (en) * 2018-04-04 2022-09-28 Huawei Technologies Co., Ltd. Resource allocation method and apparatus
JP2020022167A (ja) * 2019-08-28 2020-02-06 オッポ広東移動通信有限公司 データ伝送方法、端末及び基地局

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091101A1 (en) * 2006-02-07 2007-08-16 Siemens Aktiengesellschaft Methof of signalling uplink information

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI105136B (fi) * 1997-04-21 2000-06-15 Nokia Mobile Phones Ltd Yleinen pakettiradiopalvelu
CN1312988A (zh) * 1998-08-07 2001-09-12 艾利森电话股份有限公司 分组通信系统中的群寻址
CA2314232C (en) * 1998-11-09 2004-05-11 Samsung Electronics Co., Ltd. Reservation multiple access in a cdma communications system
US6823191B2 (en) * 2001-01-08 2004-11-23 Lucent Technologies Inc. Apparatus and method for use in paging mode in wireless communications systems
KR100469711B1 (ko) 2001-01-18 2005-02-02 삼성전자주식회사 이동통신시스템에서 역방향 송신 제어 장치 및 방법
US7304995B2 (en) * 2001-08-29 2007-12-04 Texas Instruments Incorporated Systems and methods for packet flow control
US8089940B2 (en) 2001-10-05 2012-01-03 Qualcomm Incorporated Method and system for efficient and reliable data packet transmission
US20030128681A1 (en) * 2001-12-29 2003-07-10 Dennis Rauschmayer Method and apparatus for implementing an automatic repeat request ("ARQ") function in a fixed wireless communication system
KR100837351B1 (ko) 2002-04-06 2008-06-12 엘지전자 주식회사 이동통신 시스템의 무선링크 파라미터 갱신 방법
US7352722B2 (en) * 2002-05-13 2008-04-01 Qualcomm Incorporated Mitigation of link imbalance in a wireless communication system
US6901063B2 (en) * 2002-05-13 2005-05-31 Qualcomm, Incorporated Data delivery in conjunction with a hybrid automatic retransmission mechanism in CDMA communication systems
US7280527B2 (en) 2002-05-13 2007-10-09 International Business Machines Corporation Logically grouping physical ports into logical interfaces to expand bandwidth
US7420921B2 (en) * 2002-05-17 2008-09-02 Broadcom Corporation Aggregated fragment acknowledgement in local area network
US6961595B2 (en) * 2002-08-08 2005-11-01 Flarion Technologies, Inc. Methods and apparatus for operating mobile nodes in multiple states
US7116651B2 (en) * 2002-09-20 2006-10-03 Nokia Corporation Method and apparatus for HS-DPCCH signalling with activity information in HSDPA
US7062277B2 (en) * 2003-01-07 2006-06-13 Motorola, Inc. Multiple inbound channel granting method and apparatus
US7414989B2 (en) * 2003-05-07 2008-08-19 Motorola, Inc. ACK/NACK determination reliability for a communication device
WO2006079950A1 (en) * 2005-01-31 2006-08-03 Koninklijke Philips Electronics N.V. Method and apparatus using varying length training sequences in radio communication
US8503371B2 (en) * 2005-06-16 2013-08-06 Qualcomm Incorporated Link assignment messages in lieu of assignment acknowledgement messages
WO2007053124A1 (en) * 2005-11-07 2007-05-10 Agency For Science, Technology And Research Methods and device for transmitting data from a first communication device to a second communication device
US7684806B2 (en) * 2005-11-21 2010-03-23 Intel Corporation Device, system and method of point to multipoint communication
US7912471B2 (en) * 2006-01-04 2011-03-22 Wireless Technology Solutions Llc Initial connection establishment in a wireless communication system
US20070211657A1 (en) * 2006-03-09 2007-09-13 Motorola, Inc. Apparatus and Method for Assigning Time Domain Resources to a Receiver
WO2008038088A2 (en) * 2006-09-29 2008-04-03 Nokia Corporation Uplink allocations for acknowledgement of downlink data
US8565162B2 (en) * 2007-03-19 2013-10-22 Nokia Corporation Techniques for improved error detection in a wireless communication system
KR20080092222A (ko) * 2007-04-11 2008-10-15 엘지전자 주식회사 Tdd 시스템에서의 데이터 전송 방법
WO2009022295A2 (en) * 2007-08-13 2009-02-19 Nokia Corporation Mapping of uplink ack in tdd with asymmetric frame structure
US8503375B2 (en) * 2007-08-13 2013-08-06 Qualcomm Incorporated Coding and multiplexing of control information in a wireless communication system
US8000272B2 (en) * 2007-08-14 2011-08-16 Nokia Corporation Uplink scheduling grant for time division duplex with asymmetric uplink and downlink configuration
US8165035B2 (en) * 2007-10-02 2012-04-24 Nokia Siemens Networks Oy ACK/NACK DTX detection
WO2009099389A1 (en) 2008-02-06 2009-08-13 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices relating to downlink assignments
US8345605B2 (en) * 2008-02-21 2013-01-01 Texas Instruments Incorporated Transmission of bundled feedback in wireless networks

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091101A1 (en) * 2006-02-07 2007-08-16 Siemens Aktiengesellschaft Methof of signalling uplink information

Also Published As

Publication number Publication date
EP2291940A1 (en) 2011-03-09
CA2713234C (en) 2016-10-18
US8072911B2 (en) 2011-12-06
CN101939939B (zh) 2014-07-02
EP2291940B2 (en) 2018-05-16
RU2010136937A (ru) 2012-03-20
RU2494551C2 (ru) 2013-09-27
HK1152599A1 (zh) 2012-03-02
WO2009099389A1 (en) 2009-08-13
EP2291940B1 (en) 2011-12-14
CN101939939A (zh) 2011-01-05
US8743721B2 (en) 2014-06-03
ES2377540T5 (es) 2018-09-25
JP2011511596A (ja) 2011-04-07
ATE537625T1 (de) 2011-12-15
US20120020315A1 (en) 2012-01-26
ES2377540T3 (es) 2012-03-28
CN104022855A (zh) 2014-09-03
JP4886073B2 (ja) 2012-02-29
US20090196204A1 (en) 2009-08-06
DK2291940T3 (da) 2012-04-10
DK2291940T4 (en) 2018-08-13
NZ586363A (en) 2013-05-31
CA2713234A1 (en) 2009-08-13
HK1201650A1 (zh) 2015-09-04

Similar Documents

Publication Publication Date Title
CN104022855B (zh) 有关下行链路指配的方法和装置
US11627566B2 (en) Signaling processing method, base station, and user equipment
US10630451B2 (en) Sending and receiving acknowledgement information of semi-persistent scheduling data packets
US20200213044A1 (en) Method and apparatus for sending harq-ack feedback codebook and device
EP2294744B1 (en) Method and arrangement in a telecommunication system with signalling of assigned data packets in a bundling window
US9036542B2 (en) Method for feeding back ACK/NACK for downlink data transmission in radio communication system
US9553685B2 (en) PHICH-less operation for uplink-downlink configuration zero
CN104158637A (zh) 电信系统中的方法和布置
CN102136896A (zh) Ack/nack信息的传输方法和设备
US10333607B2 (en) Channel state information transmission method, user equipment, and access network device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1201650

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1201650

Country of ref document: HK