CN104022168A - 防老化光电位移传感器 - Google Patents

防老化光电位移传感器 Download PDF

Info

Publication number
CN104022168A
CN104022168A CN201410229653.7A CN201410229653A CN104022168A CN 104022168 A CN104022168 A CN 104022168A CN 201410229653 A CN201410229653 A CN 201410229653A CN 104022168 A CN104022168 A CN 104022168A
Authority
CN
China
Prior art keywords
aging
displacement sensor
photoelectric displacement
magnetron sputtering
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410229653.7A
Other languages
English (en)
Inventor
何丹农
卢静
尹桂林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Original Assignee
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai National Engineering Research Center for Nanotechnology Co Ltd filed Critical Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority to CN201410229653.7A priority Critical patent/CN104022168A/zh
Publication of CN104022168A publication Critical patent/CN104022168A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1133Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a conductor-insulator-semiconductor diode or a CCD device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种防老化光电位移传感器,包括半导体衬底、半导体衬底表面的Al掺杂氧化锌薄膜以及薄膜表面的两个铟点电极。通过在经超声清洗的Si基片上沉积Al掺杂ZnO薄膜替代金属-氧化物-半导体结构中金属薄膜层,可以得到基于侧向光伏效应的防老化光电位移传感器。该传感器的非线性率可以控制在3.22%,位置灵敏度可以达到41.85mV/mm。且由于直接使用Al掺杂ZnO靶材,制备工艺简单,可以在实际生产中大规模制备。

Description

防老化光电位移传感器
技术领域
本发明涉及光电位移探测器领域,特别是涉及一种基于侧向光伏效应的光电位移传感器。
背景技术
近年来,基于侧向光伏效应的光电位移传感器在金属-氧化物-半导体(MOS)或基于金属-半导体(MS)结构的光电位移传感器因为精度较高、线性度良好且造价相对低廉受到了极大关注,开始在军事、工业检测等领域得到广泛应用。不同的金属材料包括钛(Ti)、钴(Co)及铜(Cu)等因可以改善位移传感器的线性度或灵敏度而被广泛研究。然而,在实际应用过程中,金属材料因极易被氧化,造成器件老化而影响器件性能。因此,有必要探索出能够防止器件老化的工艺或新的材料。
经过对现有技术的检索发现, 有文献提出在金属层外额外沉积一层TiO2氧化薄膜从而形成氧化物-金属-半导体结构,用于提高器件性能并防止老化。但对氧化层的厚度要求苛刻且成分较难均匀,在实际应用中较难实现。
发明内容
本发明针对现有的基于侧向光伏效应的光电位移传感器在实际应用中存在的明显缺陷,在空气中极易老化使得器件效应消失,提出用磁控溅射技术制备Al掺杂ZnO薄膜,替代金属-氧化物-半导体结构中金属薄膜层,从而制备出高线性度、高精确度、防老化性能优异的光电位移探测器。
一种防老化光电位移传感器,其特征在于,包括半导体衬底、半导体衬底表面的Al掺杂氧化锌薄膜以及薄膜表面的两个铟点电极。
所述的半导体衬底是经超声清洗的n型Si基底,厚度为0.3mm,电阻率为50-80Ω.cm,表面的自然氧化层二氧化硅厚度为1.2nm。
所述的Al掺杂氧化锌薄膜是用磁控溅射技术制备,厚度为20-200nm。
所述的Al掺杂氧化锌薄膜是用磁控溅射技术制备,是将磁控溅射室本底真空抽至10-5 Pa后,通入氩气并调整气体流量计使气压达到0.7Pa,利用磁控溅射设定溅射功率为40W,靶材为2% 三氧化二铝, 98% 氧化锌的Al掺杂氧化锌靶材,溅射时间为200-1600秒。 
所述的电极,为直径不超过1mm铟点电极,两电极之间的距离不超过4mm。
本发明对基于侧向光伏效应的光电位移传感器具有以下增益效果:
1、本发明通过将Al掺杂ZnO替代传统的金属薄膜层,可以显著提高基于侧向光伏效应的光电位移传感器的抗老化性。
2、本发明通过设置Al掺杂ZnO薄膜层的厚度,使得基于侧向光伏效应的光电位移传感器灵敏度和线性度达到最优。
3、本发明涉及材料成本较低,制备简单,沉积过程易于控制,可实现大规模生产应用。
附图说明
图1防老化光电位移传感器结构示意图。
图2为两个电极间距离为4mm时,侧向光伏随光照位置的变化关系。
图3 样品3与样品7的刚制备好以及在空气中放置1月以后的性能比较图。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:
将Si基片用丙酮、去离子水在超声波清洗器中洗净,干燥后,放入磁控溅射腔,抽真空至10-5 Pa后,通入氩气并调整气体流量计使气压达到0.7Pa,设置溅射功率为40W,溅射Al掺杂ZnO靶材(2% Al2O3, 98% ZnO)200s,制成厚度约25 nm的薄膜。
实施例2:
将Si基片用丙酮、去离子水在超声波清洗器中洗净,干燥后,放入磁控溅射腔,抽真空至10-5 Pa后,通入氩气并调整气体流量计使气压达到0.7Pa,设置溅射功率为40W,溅射Al掺杂ZnO靶材(2% Al2O3, 98% ZnO)400s,制成厚度约49 nm的薄膜。
实施例3:
将Si基片用丙酮、去离子水在超声波清洗器中洗净,干燥后,放入磁控溅射腔,抽真空至10-5 Pa后,通入氩气并调整气体流量计使气压达到0.7Pa,设置溅射功率为40W,溅射Al掺杂ZnO靶材(2% Al2O3, 98% ZnO)600s,制成厚度约74 nm的薄膜。
实施例4:
将Si基片用丙酮、去离子水在超声波清洗器中洗净,干燥后,放入磁控溅射腔,抽真空至10-5 Pa后,通入氩气并调整气体流量计使气压达到0.7Pa,设置溅射功率为40W,溅射Al掺杂ZnO靶材(2% Al2O3, 98% ZnO)800s,制成厚度约100 nm的薄膜。
实施例5:
将Si基片用丙酮、去离子水在超声波清洗器中洗净,干燥后,放入磁控溅射腔,抽真空至10-5 Pa后,通入氩气并调整气体流量计使气压达到0.7Pa,设置溅射功率为40W,溅射Al掺杂ZnO靶材(2% Al2O3, 98% ZnO)1000s,制成厚度约124 nm的薄膜。
实施例6:
将Si基片用丙酮、去离子水在超声波清洗器中洗净,干燥后,放入磁控溅射腔,抽真空至10-5 Pa后,通入氩气并调整气体流量计使气压达到0.7Pa,设置溅射功率为40W,溅射Al掺杂ZnO靶材(2% Al2O3, 98% ZnO)1200s,制成厚度约148 nm的薄膜。
实施例7:
将Si基片用丙酮、去离子水在超声波清洗器中洗净,干燥后,放入磁控溅射腔,抽真空至10-5 Pa后,通入氩气并调整气体流量计使气压达到0.7Pa,设置溅射功率为40W,溅射Al掺杂ZnO靶材(2% Al2O3, 98% ZnO)1400s,制成厚度约173 nm的薄膜。
实施例8:
将Si基片用丙酮、去离子水在超声波清洗器中洗净,干燥后,放入磁控溅射腔,抽真空至10-5 Pa后,通入氩气并调整气体流量计使气压达到0.7Pa,设置溅射功率为40W,溅射Al掺杂ZnO靶材(2% Al2O3, 98% ZnO)1600s,制成厚度约200nm的薄膜。
将实施例1-8的Al掺杂ZnO薄膜表面分别压上铟点形成电极,可形成简单的基于侧向光伏效应的一维光电位移探测器。当激光照射在Al掺杂ZnO薄膜表面上两个电极间不同的位置时,两电极的输出电压不同。该输出电压称为侧向光伏。图2为两个电极间距离为4mm时,侧向光伏随光照位置的变化关系。表1给出了实施例1-8的侧向光伏效应的位置灵敏度和非线性率。
表1
基于侧向光伏效应的光电位移传感器性能的两个重要因素为非线性度和位置灵敏度。从图2和表1可以看出,当Al掺杂ZnO薄膜厚度在20-200nm范围内时,位置灵敏度均较高,非线性率控制在6.1%以内。其中实施例3的非线性度最低,可控制在3.22%;实施例7的位置灵敏度最高,达41.85mV/mm。
选取实施例3与例7作为代表,将图1中的结构在空气中自然放置1一个月后,重新测量了实施例3与例7的侧向光伏效应,与图1中的实施例3与例7比较结果如图3所示。实施例3与7均具有良好的防氧化性能。
磁控溅射沉积制备的Al掺杂ZnO薄膜作为基于侧向光伏效应光电位移传感器线性度高、位置灵敏度大且具备优异的防老化功能。在实际制备中具有重要应用价值。

Claims (5)

1.一种防老化光电位移传感器,其特征在于,包括半导体衬底、半导体衬底表面的Al掺杂氧化锌薄膜以及薄膜表面的两个铟点电极。
2.根据权利要求1所述防老化光电位移传感器,其特征在于,所述的半导体衬底是经超声清洗的n型Si基底,厚度为0.3mm,电阻率为50-80Ω.cm,表面的自然氧化层二氧化硅厚度为1.2nm。
3.根据权利要求1所述防老化光电位移传感器,其特征在于,所述的Al掺杂氧化锌薄膜是用磁控溅射技术制备,厚度为20-200nm。
4.根据权利要求3所述防老化光电位移传感器,其特征在于,所述的Al掺杂氧化锌薄膜是用磁控溅射技术制备,是将磁控溅射室本底真空抽至10-5 Pa后,通入氩气并调整气体流量计使气压达到0.7Pa,利用磁控溅射设定溅射功率为40W,靶材为2% 三氧化二铝, 98% 氧化锌的Al掺杂氧化锌靶材,溅射时间为200-1600秒。 
5.根据权利要求1所述防老化光电位移传感器,其特征在于,所述的电极,为直径不超过1mm铟点电极,两电极之间的距离不超过4mm。
CN201410229653.7A 2014-05-28 2014-05-28 防老化光电位移传感器 Pending CN104022168A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410229653.7A CN104022168A (zh) 2014-05-28 2014-05-28 防老化光电位移传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410229653.7A CN104022168A (zh) 2014-05-28 2014-05-28 防老化光电位移传感器

Publications (1)

Publication Number Publication Date
CN104022168A true CN104022168A (zh) 2014-09-03

Family

ID=51438830

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410229653.7A Pending CN104022168A (zh) 2014-05-28 2014-05-28 防老化光电位移传感器

Country Status (1)

Country Link
CN (1) CN104022168A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043423A (zh) * 2015-07-24 2015-11-11 宋金会 位置传感器
CN106024926A (zh) * 2016-07-15 2016-10-12 哈尔滨工业大学 快速光电恢复响应的近紫外光电位敏传感器及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202814345U (zh) * 2012-08-31 2013-03-20 上海交通大学 一种光电位移传感器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202814345U (zh) * 2012-08-31 2013-03-20 上海交通大学 一种光电位移传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JING LU AND HUI WANG: "Large lateral photovoltaic effect observed in nano Al-doped ZnO films", 《OPTICS EXPRESS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043423A (zh) * 2015-07-24 2015-11-11 宋金会 位置传感器
CN105043423B (zh) * 2015-07-24 2018-06-05 宋金会 位置传感器
CN106024926A (zh) * 2016-07-15 2016-10-12 哈尔滨工业大学 快速光电恢复响应的近紫外光电位敏传感器及其制备方法
CN106024926B (zh) * 2016-07-15 2017-05-24 哈尔滨工业大学 快速光电恢复响应的近紫外光电位敏传感器及其制备方法

Similar Documents

Publication Publication Date Title
JP5127183B2 (ja) アモルファス酸化物半導体膜を用いた薄膜トランジスタの製造方法
CN103038889B (zh) 具有氧化物半导体薄膜层的层叠结构以及薄膜晶体管
JP5116290B2 (ja) 薄膜トランジスタの製造方法
JP2014013891A (ja) 薄膜トランジスタ
JP2012231114A (ja) 配線構造およびスパッタリングターゲット
JP2006310348A (ja) 積層型光起電力装置
TWI739840B (zh) 金屬氧氮化物半導體膜之製造方法及金屬氧氮化物半導體膜
JP2011018777A (ja) 電子素子及びその製造方法、表示装置、並びにセンサー
KR20130036296A (ko) 박막 트랜지스터의 반도체층용 산화물 및 스퍼터링 타깃과 박막 트랜지스터
CN104081534A (zh) 透明导电膜层叠体及其制造方法和薄膜太阳能电池及其制造方法
US9780228B2 (en) Oxide semiconductor device and method for manufacturing same
Mereu et al. Optical and electrical studies of transparent conductive AZO and ITO sputtered thin films for CIGS photovoltaics
CN105633280A (zh) 莫特晶体管及制备方法
CN104022168A (zh) 防老化光电位移传感器
Zhao et al. High-performance solution-processed Ti 3 C 2 T x MXene doped ZnSnO thin-film transistors via the formation of a two-dimensional electron gas
CN103972297A (zh) 半导体元件结构及其制造方法
JP2012216729A (ja) 薄膜トランジスタ構造および表示装置
CN108396298A (zh) 一种Al、Mn、ZnO共掺杂复合薄膜的制备方法
CN104060223A (zh) 导电薄膜、其制备方法及应用
Cheon et al. Resistive switching in an amorphous ZnO dielectric film prepared on a Ga-doped ZnO transparent electrode
CN104210167A (zh) 导电薄膜、其制备方法及其应用
Mui Li et al. Effect of flexible substrates on the structural and optical properties of ZnO films deposited by sputtering method
Kim et al. A Study of Characteristic based on Working Pressure of ITO Electrode for Display
CN105006521A (zh) 一种基于PFH/n-SiC有机-无机异质结构的紫外光电探测器件
CN103956199A (zh) 透明导电薄膜及其制备方法、磁控溅射装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140903