CN104021587B - 基于计算全息技术的大场景真三维显示快速生成方法 - Google Patents

基于计算全息技术的大场景真三维显示快速生成方法 Download PDF

Info

Publication number
CN104021587B
CN104021587B CN201410215802.4A CN201410215802A CN104021587B CN 104021587 B CN104021587 B CN 104021587B CN 201410215802 A CN201410215802 A CN 201410215802A CN 104021587 B CN104021587 B CN 104021587B
Authority
CN
China
Prior art keywords
dimensional
entity
large scene
model
true
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410215802.4A
Other languages
English (en)
Other versions
CN104021587A (zh
Inventor
常炳国
陈超
霍博华
谢健
曹天泽
冯硕果
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201410215802.4A priority Critical patent/CN104021587B/zh
Publication of CN104021587A publication Critical patent/CN104021587A/zh
Application granted granted Critical
Publication of CN104021587B publication Critical patent/CN104021587B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种基于计算全息技术的大场景真三维显示快速生成方法,包括以下步骤:(1)对三维数据源重采样得到目标大场景中的各实体的三维数据,并利用三维数据生成实体三维立体模型;(2)对实体三维立体模型通过坐标变换生成统一参考坐标的三维模型描述;(3)将实体模型的景深信息和纹理信息融合到三维模型中,形成单实体真三维实体模型;(4)将单体三维实体模型合成为大场景对应的位置,形成大场景三维实体模型;(5)通过计算机模拟生成目标大场景的虚拟显示。本发明通过计算全息技术实现大视角、大场景三维实体虚拟显示的快速生成,处理快捷,视觉效果良好,可应用于实现三维实体虚拟显示领域。

Description

基于计算全息技术的大场景真三维显示快速生成方法
技术领域
本发明涉及三维显示技术,尤其涉及大场景真三维显示技术。
背景技术
随着人们生活品质的提高,对文化娱乐服务的内容和展示形式提出更高需要。因此,基于真实三维空间显示三维场景已成为文化科技融合研究和应用领域的热点问题。
三维显示是对物体固有的三维信息进行记录、处理和再现的可视化过程,可分成四大类。第一类是基于阴影等心理深度暗示的二维屏幕透视显示,即所显示的图像只有心理景深,没有物理景深,缺点是不能直观表达深度信息,三维空间立体感完全取决于观察者的想象重构能力,容易产生混淆。第二类是基于双目视差暗示的体视对显示,缺点是视角有限,焦距固定,基于助视仪器,非自然的深度感容易引起错觉、视觉疲劳及头痛等不适。严格地说,这两类显示不能提供完整的深度暗示,都不是真正意义上的三维显示。在空中交通管制、军事战术和战略显示、医学成像等应用场合,三维信息可被看作是结构性的——即视觉上属于三维结构或是数值性(超多维数据),使用前两类伪三维显示技术,容易丢失第三维信息,无法显示出具有真实空间感的三维立体图像。第三类的全息显示能再现图像的幅值和相位信息,因此能利用二维介质显示出虚拟三维效果,使观察者有三维视感。但全息显示设备复杂,要求很宽的信号传输带宽和巨大的信息存储容量。第四类的三维显示利用人眼视觉系统固有的三维数据处理结构,显示出占据着真实体积空间的三维图像信息,因此被称为真三维立体显示。目前采用这种方式显示小型物体时能实现良好的视觉效果,但在大场景显示时,由于计算量大造成效率低,视觉效果不佳,不能满足人们文化娱乐的需要。
发明内容
为解决上述问题,本发明提供一种视觉效果良好的基于计算全息技术的大场景真三维显示快速生成方法。
本发明的技术方案:
一种基于计算全息技术的大场景真三维显示快速生成方法,包括以下步骤:
(1)对三维数据源重采样得到目标大场景中的各实体的三维数据,并利用三维数据生成实体三维立体模型;
(2)对实体三维立体模型通过坐标变换生成统一参考坐标的三维模型描述;
(3)将实体三维立体模型的景深信息和纹理信息融合到三维模型中,形成单实体真三维实体模型;
(4)将单实体真三维实体模型合成为大场景对应的位置,形成大场景三维实体模型;
(5)通过计算机模拟生成目标大场景的虚拟显示。
作为本发明的进一步改进,步骤(1)中得到目标大场景中的各实体的三维数据包括以下步骤:截取实体的二维截面信息,通过菲涅尔衍射获得全息图,建立目标场景的数学模型,通过采样抽取目标场景的三维数据,并进行去噪、识别和容错处理,形成了若干二维平面数据;采用重采样技术,处理二维平面数据,得到目标大场景中的实体的三维数据。
作为本发明的进一步改进,在步骤(1)中获得实体的三对特征点坐标,计算出坐标变换参数,在步骤(2)中利用坐标变换参数进行坐标变换,生成统一参考坐标的三维模型描述。
作为本发明的进一步改进,三对特征点坐标的获取方式为利用三维扫扫描设备通过多角度对实体进行多重扫描,获得不同视角的三维点云数据,在实体上两次扫描重叠区域放置三个标志物,将这三个标志物的几何中心作为特征点,几何中心坐标求取:
作为本发明的进一步改进,步骤(1)中重采样包括以下步骤:根据实体由坐标变换参数得到的总体纠正信息,对原始扫描数据进行重采样,得到反映实体表面几何特征的三维扫描坐标和实体立体几何信息,将每一次扫描线看成分段光滑曲线,从上至下或者从左至右,进行局部二次拟合,得到逼近的距离图像,检测深度和拟合点的法向连续性,生成边缘映射图,提取三维轮廓边缘,由二维网格链码跟踪获取不同的边缘链,沿边缘链搜索并确定边缘拐点,根据用户指定将距离图像等分为N幅子距离图像,各子图像间有且仅有一重叠边,分别在距离图像内进行自适应采样。
作为本发明的进一步改进,步骤(4)形成大场景三维实体模型是基于基于三角网内插多边形算法。
本发明的有益效果:通过计算全息技术实现大视角、大场景三维实体虚拟显示的快速生成,处理快捷,视觉效果良好,可应用于实现三维实体虚拟显示领域,为推进了人们欣赏三维世界和享受三维互动服务提供技术突破,基于本发明技术设计完成的系列文化娱乐产品将产生可观的经济效益。
附图说明
图1是本发明较佳实施例的示意图。
具体实施方式
下面结合附图对本发明的技术方案进行详细说明,本发明较佳实施例一种基于计算全息技术的大场景真三维显示快速生成方法,其能应用于文化主题园区的智能化服务领域,拓展了光学全息的应用领域,为主题园区文化产品交互服务提供强有力的技术基础。
如图1所示,基于计算全息技术的大场景真三维显示快速生成方法实施步骤包括以下步骤。
(1)截取实体的一个二维截面信息,通过菲涅尔衍射获得全息图。建立目标场景的数学模型,通过采样抽取目标场景的三维数据,并进行去噪、识别和容错处理,形成若干二维平面数据。
(2)采用重采样技术,对原始三维数据进行分块处理,得到目标大场景中的实体的三维数据,通过坐标变换生成统一参考坐标的三维模型描述。
例如,实体为人脸,通过激光扫描仪或结构光拍摄相机等三维扫描设备获得原始的人脸三维模型。由于得到的三维数据坐标不统一,为了便于计算使用,要进行坐标的统一,通过平台实现对原始模型的光滑平顺,坐标变换,根据分辨率要求,生成三维面貌表面数据。自动检测出人脸的存在并从图像中将其分割出来。找到人脸后,使用主动形状模型对人脸特征点进行自动的标定。得到特征点后,根据主要的特征点位置,计算出拍摄角度。对三维数据的进行读取,读取后构建出人脸的抽象三维模型,同时按照拍摄角度的变化模型。当三维模型的平面投影和二维照片中人脸的旋转角度相同时,通过多特征向量生成、多分类器判别及阀值设定的方法实现识别。
若三维数据源不是实体,而已是数据格式,则可将三维数据源直接重采样得到实体三维数据。
(3)对三维模型进行编码和纹理映射,将实体模型的景深信息和纹理信息融合到三维模型中,形成单实体真三维实体模型。
(4)通过改进的Delaunay三角网内插多边形算法,快速生成大场景三维全息图。
(5)通过计算机模拟再现方法和光路再现两种方法生成目标大场景的虚拟显示。
本方案采用多视点云数据合成技术将不同坐标系下的点云数据转换到统一坐标系下,实现单个三维实体的模型重建。本方案采用三点编号法进行合成,形成大场景的三维全息图。
根据实际物体的三维信息,对三维数据进行分离提取和滤噪声处理,滤除测量噪声、遮挡物干扰等的影响因子,获得单个三维实体的信息。标定标志物点云的中心点坐标,获得三对特征点坐标,计算出坐标变换参数,依此对连续扫描的断面进行整体合成纠正,得到实体二维平面数据。根据总体纠正信息对原始测量数据进行重采样计算,得到反映实体表面几何特征的三维扫描坐标数据,基于特征方法进行点云合成。对三维坐标进行建模,形成实体三维立体模型。利用坐标变换参数进行坐标变换,将三维实体模型转换到统一坐标系进行纹理映射,形成逼真三维实体模型。在此基础上,利用三点编号法,将单体三维实体模型合成为大场景对应的位置,形成大场景三维实体模型。
(1)数据获取:三维点云数据的获取方法有多种,通过三维模型设计软件制作虚拟模型,获取三维点数据。通过三维扫描设备获得三围点云数据。三维扫描设备通过多角度对目标物进行多重扫描,获得不同视角的三维点云数据。在目标实体上两次扫描重叠区域放置三个标志物,将这三个标志物的几何中心作为标志点,几何中心坐标求取:
(2)数据处理:将三维数据和影像数据进行预处理,清除不正确的数据,获取有效数据。通过扫描获得的点云数据,由于实体相互遮挡和自遮挡,将带来点云数据的重叠,必须通过扫描装置配套软件,将目标实体分离出来。此外,由于数目、行人等位于扫描仪扫描区域内,将给目标实体带来遮挡,扫描后会形成散乱点或者空洞噪声。因此,对所获得扫描数据进行滤波去噪处理。滤噪声可以依据扫描仪回波信号强度来进行识别,信号强度低于阈值时,距离信号无效;利用中值滤波去除奇异点;利用曲面拟合去除遮挡物。
(3)重采样。根据实体的总体纠正信息,对原始扫描数据进行重采样,得到反映实体表面几何特征的三维扫描坐标和实体立体几何信息。将每一次扫描线看成分段光滑曲线,从上至下或者从左至右,进行局部二次拟合,得到逼近的距离图像。检测深度和拟合点的法向连续性,生成边缘映射图,提取三维轮廓边缘。由二维网格链码跟踪获取不同的边缘链,沿边缘链搜索并确定边缘拐点。根据用户指定将距离图像等分为N幅子距离图像,各子图像间有且仅有一重叠边,分别在距离图像内进行自适应采样。
(4)合成过程
实体信息是通过多幅扫描图像来完整反映的,需要通过不同位置的多次扫描来获取数据。将这些不同位置的获取的深度图像合成到一起,形成统一坐标系下的完整实体数据模型。而多幅扫描结果数据的合成,实际上就是通过不同的两个坐标系之间的坐标转换关系,获得变换参数,完成两个点云数据点坐标的转换问题。
具体实施方式如下:
(1)输入目标场景的三维数据,通过重采样,对原始三维数据进行处理,获得目标场景中的单体物体的三维数据。
(2)通过属性选择项选定显示分辨率和缩放比率,调节生成全息图的尺寸和分辨率,模拟再现效果。
(3)合成大场景显示效果,选择需要合成成为大场景全息图的单实体全息模型,基于三角网内插多边形算法,快速合成大场景三维全息图,并模拟再现显示。
(4)读入的图像加上随机相位处理,进行快速傅立叶变换,运用博奇编码算法实现全息图编码。利用计算机模拟光学全息的光路,仿真透镜傅里叶变换等光学过程从而在虚拟的观察屏上得到全息再现像。
应当指出,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的修改,变形、添加或替换,也应属于本发明的保护范围。

Claims (5)

1.一种基于计算全息技术的大场景真三维显示快速生成方法,其特征在于,包括以下步骤:
(1)对三维数据源重采样得到目标大场景中的各实体的三维数据;
(2)对三维数据通过坐标变换生成统一参考坐标的三维模型的描述;
(3)将实体的景深信息和纹理信息融合到三维模型中,形成单实体真三维实体模型;
(4)将单实体真三维实体模型合成为大场景对应的位置,形成大场景三维实体模型;
(5)通过计算机模拟生成目标大场景的虚拟显示;
其中,步骤(1)中得到目标大场景中的各实体的三维数据包括以下步骤:截取实体的二维截面信息,通过菲涅尔衍射获得全息图,建立目标场景的数学模型,通过采样抽取目标场景的三维数据,并进行去噪、识别和容错处理,形成了若干二维平面数据;采用重采样技术,处理二维平面数据,得到目标大场景中的实体的三维数据。
2.如权利要求1所述的基于计算全息技术的大场景真三维显示快速生成方法,其特征在于,在步骤(1)中获得实体的三对特征点坐标,计算出坐标变换参数,在步骤(2)中利用坐标变换参数进行坐标变换,生成统一参考坐标的三维模型描述。
3.如权利要求2所述的基于计算全息技术的大场景真三维显示快速生成方法,其特征在于,所述三对特征点坐标的获取方式为利用三维扫扫描设备通过多角度对实体进行多重扫描,获得不同视角的三维点云数据,在实体上两次扫描重叠区域放置三个标志物,将这三个标志物的几何中心作为特征点,几何中心坐标求取:
x 0 = Σ 1 n x i n y 0 = Σ 1 n y i n z 0 = Σ 1 n z i n .
4.如权利要求1所述的基于计算全息技术的大场景真三维显示快速生成方法,其特征在于,步骤(1)中重采样包括以下步骤:根据实体由坐标变换参数得到的总体纠正信息,对原始扫描数据进行重采样,得到反映实体表面几何特征的三维扫描坐标和实体立体几何信息,将每一次扫描线看成分段光滑曲线,从上至下或者从左至右,进行局部二次拟合,得到逼近的距离图像,检测深度和拟合点的法向连续性,生成边缘映射图,提取三维轮廓边缘,由二维网格链码跟踪获取不同的边缘链,沿边缘链搜索并确定边缘拐点,根据用户指定将距离图像等分为N幅子距离图像,各子图像间有且仅有一重叠边,分别在距离图像内进行自适应采样。
5.如权利要求1所述的基于计算全息技术的大场景真三维显示快速生成方法,其特征在于,步骤(4)形成大场景三维实体模型是基于三角网内插多边形算法。
CN201410215802.4A 2014-05-22 2014-05-22 基于计算全息技术的大场景真三维显示快速生成方法 Expired - Fee Related CN104021587B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410215802.4A CN104021587B (zh) 2014-05-22 2014-05-22 基于计算全息技术的大场景真三维显示快速生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410215802.4A CN104021587B (zh) 2014-05-22 2014-05-22 基于计算全息技术的大场景真三维显示快速生成方法

Publications (2)

Publication Number Publication Date
CN104021587A CN104021587A (zh) 2014-09-03
CN104021587B true CN104021587B (zh) 2017-07-14

Family

ID=51438323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410215802.4A Expired - Fee Related CN104021587B (zh) 2014-05-22 2014-05-22 基于计算全息技术的大场景真三维显示快速生成方法

Country Status (1)

Country Link
CN (1) CN104021587B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105184849B (zh) * 2015-03-23 2018-06-26 大连民族学院 基于面片链码的三维网格模型表示方法
CN106469464B (zh) * 2015-08-19 2019-02-19 富士通株式会社 用于三维建模目标对象的方法和系统
CN105472370A (zh) * 2015-12-08 2016-04-06 张军 一种基于全息技术的增强现实实现方法
CN107483910B (zh) * 2017-07-14 2019-03-01 清华大学 一种长距离裸眼立体显示方法及其系统
CN107886567A (zh) * 2017-12-08 2018-04-06 上海德稻集群文化创意产业(集团)有限公司 一种三维快速扫描匹配识别及三维扫描系统
CN109002597B (zh) * 2018-06-29 2023-04-18 河南聚合科技有限公司 一种基于数字化双胞胎技术的虚实结合运维仿真调试平台
CN109389665B (zh) * 2018-08-24 2021-10-22 先临三维科技股份有限公司 三维模型的纹理获取方法、装置、设备和存储介质
CN109064562A (zh) * 2018-09-29 2018-12-21 深圳阜时科技有限公司 一种三维场景模拟方法
CN109493405B (zh) * 2018-10-31 2022-12-16 江苏和瑞智能科技股份有限公司 适用于大场景仓储的机器视觉点云图生成方法
CN110045941A (zh) * 2019-04-24 2019-07-23 深圳市微光视界科技有限公司 一种全息投影显示的方法、装置、移动终端及存储介质
CN110503714B (zh) * 2019-07-23 2023-04-07 杭州美戴科技有限公司 一种个性化镜腿的自动设计方法
EP3949389A4 (en) * 2020-06-10 2023-04-12 Tencent America Llc BITSTREAM EXTRACTION TECHNIQUES FOR A SUBPICTURE IN AN ENCODED VIDEO STREAM
TWI818474B (zh) * 2021-12-10 2023-10-11 愛實境股份有限公司 三維空間風格快速轉換方法與系統
CN116995810A (zh) * 2023-07-27 2023-11-03 河北信服科技有限公司 全息数字化新能源电站智能设备监管系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833487A (zh) * 2012-08-08 2012-12-19 中国科学院自动化研究所 面向视觉计算的光场成像装置和方法
CN103076734A (zh) * 2012-11-28 2013-05-01 中国人民解放军装甲兵工程学院 一种利用二次全息的数字全息图打印系统
CN103116260A (zh) * 2013-03-01 2013-05-22 浙江师范大学 一种增大计算全息再现视角的方法
CN103337095A (zh) * 2013-06-25 2013-10-02 桂林理工大学 一种真实空间三维地理实体的立体虚拟显示方法
US8593508B2 (en) * 2010-10-29 2013-11-26 Altek Corporation Method for composing three dimensional image with long focal length and three dimensional imaging system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8593508B2 (en) * 2010-10-29 2013-11-26 Altek Corporation Method for composing three dimensional image with long focal length and three dimensional imaging system
CN102833487A (zh) * 2012-08-08 2012-12-19 中国科学院自动化研究所 面向视觉计算的光场成像装置和方法
CN103076734A (zh) * 2012-11-28 2013-05-01 中国人民解放军装甲兵工程学院 一种利用二次全息的数字全息图打印系统
CN103116260A (zh) * 2013-03-01 2013-05-22 浙江师范大学 一种增大计算全息再现视角的方法
CN103337095A (zh) * 2013-06-25 2013-10-02 桂林理工大学 一种真实空间三维地理实体的立体虚拟显示方法

Also Published As

Publication number Publication date
CN104021587A (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
CN104021587B (zh) 基于计算全息技术的大场景真三维显示快速生成方法
Rogers Perceiving pictorial space
US8217931B2 (en) System and method for processing video images
US6205241B1 (en) Compression of stereoscopic images
CN108288292A (zh) 一种三维重建方法、装置及设备
CN103021017A (zh) 基于gpu加速的三维场景重建方法
US20080259073A1 (en) System and method for processing video images
CN101729920B (zh) 一种自由视角立体视频显示方法
CN102980513B (zh) 以物为中心的单目全景立体视觉传感器
CN113012293B (zh) 石刻模型构建方法、装置、设备及存储介质
CN103763543B (zh) 合成全息图的采集方法
WO2010004466A1 (en) Three dimensional mesh modeling
KR20120018915A (ko) 컬러 영상과 시점 및 해상도가 동일한 깊이 영상 생성 방법 및 장치
Lin et al. Vision system for fast 3-D model reconstruction
JP4996922B2 (ja) 立体映像化
Khilar et al. 3D image reconstruction: Techniques, applications and challenges
KR20140126120A (ko) 디지털 홀로그램 합성 방법 및 그 장치
CN117058342B (zh) 一种基于投影图像的脊柱3d体素模型构建方法
Wang et al. A 3d reconstruction method for augmented reality sandbox based on depth sensor
Garagnani et al. Virtual and augmented reality applications for Cultural Heritage
Pang et al. Dynamic holographic imaging of real-life scene
CN104360590B (zh) 一种计算周视全息图编码方法
Yang et al. Holographic rendering of a real-world scene captured with a low-cost RGB-D camera
Aykin et al. Efficient ray-casting of quadric surfaces for forward-scan sonars
Manferdini et al. virtual exhibition and fruition of archaeological finds

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170714

Termination date: 20180522

CF01 Termination of patent right due to non-payment of annual fee