CN104018092B - 一种750MPa级高强度钢板,用途及其制造方法 - Google Patents

一种750MPa级高强度钢板,用途及其制造方法 Download PDF

Info

Publication number
CN104018092B
CN104018092B CN201410276195.2A CN201410276195A CN104018092B CN 104018092 B CN104018092 B CN 104018092B CN 201410276195 A CN201410276195 A CN 201410276195A CN 104018092 B CN104018092 B CN 104018092B
Authority
CN
China
Prior art keywords
steel plate
strength
manufacture method
strand
grade high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410276195.2A
Other languages
English (en)
Other versions
CN104018092A (zh
Inventor
胡学文
张建
王海波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ma''anshan Iron And Steel Ltd By Share Ltd
Magang Group Holding Co Ltd
Original Assignee
Ma''anshan Iron And Steel Ltd By Share Ltd
Magang Group Holding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ma''anshan Iron And Steel Ltd By Share Ltd, Magang Group Holding Co Ltd filed Critical Ma''anshan Iron And Steel Ltd By Share Ltd
Priority to CN201410276195.2A priority Critical patent/CN104018092B/zh
Publication of CN104018092A publication Critical patent/CN104018092A/zh
Application granted granted Critical
Publication of CN104018092B publication Critical patent/CN104018092B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

本发明涉及一种750MPa级高强度钢板,用途及其制造方法,按照重量百分比含有:C:0.14~0.18%;Si:0.20~0.40%;Mn:1.30~1.70%;P:≤0.015%;S:≤0.005%;Nb:0.030~0.060%;V:0.030~0.060%;Cr:0.20~0.50%;Mo:0.05~0.20%;Al:0.015~0.040%;余量为Fe及不可避免的夹杂。本发明的化学成分、工艺和具体方法生产的钢板,屈服强度为650~700MPa,抗拉强度为800~850MPa,延伸率=16~20%,硬度HV10为250~300,‑60℃夏比V型冲击功大于40J(冲击试样尺寸:4×10×55mm),钢板横向、纵向和45°方向的强度差异小于20MPa,力学性能均匀性好。

Description

一种750MPa级高强度钢板,用途及其制造方法
技术领域
本发明涉及金属材料,涉及连续热轧金属板带技术领域,特别涉及到750MPa级高强度钢板及其制造方法。
背景技术
混凝土搅拌车通常按搅拌容积来分类,一般搅拌容积在3~12m3,搅拌车罐体材料普遍采用Q345强度级别的钢板。近年来14m3及以上的大容量混凝土搅拌车的市场需求越来越大,应用大容量混凝土搅拌车有利于提高施工效率,采用高强度钢板制造混凝土搅拌车罐体可以实现混凝土搅拌车轻量化、降低能耗和提高运输效率。搅拌车罐体制造需要采用成型和焊接工艺,因此大容量搅拌车罐体用钢板需要在高强度的同时具有良好的成形性能和焊接性能。
专利CN101974722A公开了一种用于制造混凝土搅拌车罐体的铁素体、低碳贝氏体双相钢及其制造工艺,其化学成分为C:0.05~0.09%;Mn:1.81~2.0%;Nb:0.02~0.04%;Ti:0.07~0.14%;Als:0.010~0.030%;余量为Fe及不可避免的夹杂。采用150~180mm板坯和500~600℃卷取温度生产,抗拉强度700~850MPa,未给出材料的屈服强度范围,但双相钢钢一般屈服强度低,材料易发生屈服变形。专利CN102363858A公开了一种750MPa~880MPa级车辆用高强钢及其生产方法,其化学成分C:0.07~0.09%;Si:0.15~0.25%;Mn:1.4~1.9%;Nb:0.04~0.06%;Mo:0~0.15%;V:0~0.04%;Ti:0.07~0.14%;Al:0.01~0.06%;余量为Fe及不可避免的夹杂。轧制冷却后的钢卷需要采用缓冷坑进行缓冷处理,钢中Ti含量较高,为0.07~0.14%,由于钢冶炼过程Ti元素稳定控制一直是难点,因此生产过程中不同炉次钢板的强度波动较大。专利CN102776442A公开了一种搅拌罐内搅拌器用热轧钢及其生产方法,其化学成分为C:0.13~0.18%;Si:≤0.15%;Mn:1.20~1.79%;P:0.16~0.25%,S:≤0.008%,Als:0.035~0.070%;Ti:0.07~0.10%;Nb:0.035~0.055%;Cu:0.20~0.33%;余量为Fe及不可避免的夹杂。该材料由于含有Cu元素和较高的Ti元素,铸坯高温塑性低,裂纹敏感性较高,铸坯表面和角部容易出现裂纹是生产的难题,且钢中Ti含量较高,由于Ti元素冶炼过程收得率不易控制,不同炉钢中Ti含量不容易稳定控制,不同炉次钢板的强度波动较大。
发明内容
本发明的目的在于提供一种750MPa级高强度钢板,用途及其制造方法。这种钢板的是通过冶炼化学成分和适当的工艺生产,具有高强度、良好成形性能、良好的低温冲击韧性和焊接性能。这种钢板适用于大容量搅拌车罐体等工程机械结构制造,可以实现轻量化。具体技术方案如下:
一种750MPa级高强度钢板,按照重量百分比含有:C:0.14~0.18%;Si:0.20~0.40%;Mn:1.30~1.70%;P:≤0.015%;S:≤0.005%;Nb:0.030~0.060%;V:0.030~0.060%;Cr:0.20~0.50%;Mo:0.05~0.20%;Al:0.015~0.040%;余量为Fe及不可避免的夹杂。
进一步地,金相组织为细铁素体、粒状贝氏体、少量细珠光体组成的复相组织,组织晶粒度为12~13级。
进一步地,屈服强度为650~700MPa,抗拉强度为800~850MPa,延伸率=16~20%,硬度HV10为250~300,-60℃夏比V型冲击功大于40J,钢板横向、纵向和45°方向的强度差异小于20MPa。
上述750MPa级高强度钢板的用途,用于混凝土搅拌车罐体制造,或高强度工程机械结构件。
上述750MPa级高强度钢板的制造方法,包括如下步骤:
(1)铸坯经过加热炉加热;
(2)经2250mm热连轧机组进行轧制;
(3)冷却;
(4)卷取。
进一步地,步骤(1)之前采用权利要求1中所述组分和配比冶炼的钢水,连铸成厚度为230mm的铸坯。
进一步地,步骤(1)中,铸坯在加热炉中加热3~4小时,控制铸坯出炉温度在1200~1250℃。
进一步地,步骤(2)中,在2250mm热连轧机组进行初轧和精轧,轧制采用高温轧制工艺,终轧温度控制在850~900℃。
进一步地,步骤(3)中,精轧后钢板采用快速冷却、控制冷却速度≥30℃,进行层流冷却水均匀检查,控制冷却后的钢板卷取温度在550~600℃。
进一步地,步骤(4)中,热轧卷自然冷却到室温后经开卷、矫直后横切成钢板,控制矫直工艺获得良好的板形。
与目前现有技术相比,本发明的化学成分、工艺和具体方法生产的钢板,屈服强度为650~700MPa,抗拉强度为800~850MPa,延伸率=16~20%,硬度HV10为250~300,-60℃夏比V型冲击功大于40J(冲击试样尺寸:4×10×55mm),钢板横向、纵向和45°方向的强度差异小于20MPa,力学性能均匀性好。
采用本发明生产的钢板的板形良好,残余应力低,不需要采用热轧卷缓冷或钢板去残余应力退火处理,热轧卷矫直开平剪切后可直接用于成形,成形件形状尺寸精度高。
采用本发明生产的750MPa级高强度钢板用于大容量混凝土搅拌车罐体制造,制造过程焊接性能良好;采用本发明生产的钢板制造的大容量混凝土搅拌车罐体相对采用普通低合金钢板可降低重量16~25%。
采用本发明生产的750MPa级高强度钢板还可以用于其它高强度工程机械结构件等。
附图说明
图1为本发明金相组织形貌
图2为本发明铸坯拉伸试样断口面缩率对比
具体实施方式
下面根据附图对本发明进行详细描述,其为本发明多种实施方式中的一种优选实施例。
本实施例提供一种750MPa级高强度钢板及其制造方法,其主要化学成分质量百分数为C:0.14~0.18%;Si:0.20~0.40%;Mn:1.30~1.70%;P:≤0.015%;S:≤0.005%;Nb:0.030~0.060%;V:0.030~0.060%;Cr:0.20~0.50%;Mo:0.05~0.20%;Al:0.015~0.040%;余量为Fe及不可避免的夹杂。不添加对铸坯高温塑性有不利影响的Cu、B元素,不添加Ti元素,以上冶炼钢水的连铸坯具有良好的铸坯表面质量。按以上化学成分冶炼的钢水,连铸成厚度为230mm的铸坯,铸坯在加热炉中加热3~4小时,控制铸坯出炉温度在1200~1250℃,然后在2250mm热连轧机组进行初轧和精轧,轧制采用高温轧制工艺,终轧温度控制在850~900℃,控制轧制后钢板具有良好的板形。精轧后钢板采用快速冷却、控制冷却速度≥30℃,进行层流冷却水均匀检查,保证热轧板面冷却均匀,避免或降低因冷却不均匀产生的钢板内部应力,控制冷却后的钢板卷取温度在550~600℃。生产的热轧卷自然冷却到室温后经开卷、矫直后横切成钢板,控制矫直工艺获得良好的板形。按上述方法生产的钢板,金相组织为细铁素体、粒状贝氏体、少量细珠光体组成的复相组织,组织晶粒度为12~13级。
采用本发明生产的钢板金相组织为细铁素体、粒状贝氏体、少量细珠光体组成的复相组织,典型的金相组织形貌见图1。将铸坯加工成φ10mm的圆棒试样在不同温度下进行拉伸试验,采用拉伸试样的断口面缩率评价铸坯高温塑性,本发明化学成分的铸坯和0.15%C-0.14%Mn-0.03%Nb-0.07%Ti-0.2%Cu对比成分铸坯的不同温度断口面缩率见图2,采用本发明化学成分生产的铸坯轧制成钢板具有良好的表面质量。
选择表1所示的化学成分钢为原料,连铸板坯尺寸为230mm。将铸坯经过加热炉加热、然后经2250mm热连轧机组进行轧制、冷却和卷取。控制加热温度、终轧温度、层流冷却速度和卷取温度。轧制和冷却工艺见表2,力学性能见表3。系列温度冲击功见表4。
表1实施例实测化学成分(质量百分数%,余量为Fe)
编号 C Si Mn P S Al Nb V Cr Mo
1 0.17 0.31 1.42 0.014 0.004 0.035 0.055 0.47 0.27 0.11
2 0.18 0.29 1.45 0.010 0.003 0.030 0.050 0.46 0.26 0.10
表2表2实施例轧制和冷却工艺参数
表3实施例力学性能
表4实施例冲击性能(冲击试样尺寸:4×10×55mm,AKV,J)
编号 0℃ -20℃ -40℃ -60℃
S1 58 53 51 42
S2 55 47 42 40
上面结合附图对本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种改进,或未经改进直接应用于其它场合的,均在本发明的保护范围之内。

Claims (4)

1.一种750MPa级高强度钢板的制造方法,其特征在于,按照重量百分比含有:C:0.14~0.18%;Si:0.20~0.40%;Mn:1.30~1.70%;P:≤0.015%;S:≤0.005%;Nb:0.030~0.060%;V:0.030~0.060%;Cr:0.20~0.50%;Mo:0.05~0.20%;Al:0.015~0.040%;余量为Fe及不可避免的夹杂;
金相组织为细铁素体、粒状贝氏体、少量细珠光体组成的复相组织,组织晶粒度为12~13级;屈服强度为650~700MPa,抗拉强度为800~850MPa,延伸率=16~20%,硬度HV10为250~300,-60℃夏比V型冲击功大于40J,钢板横向、纵向和45°方向的强度差异小于20MPa;
制造方法,包括如下步骤:
(1)铸坯经过加热炉加热;
(2)经2250mm热连轧机组进行轧制;
(3)冷却;
(4)卷取;
步骤(1)中,铸坯在加热炉中加热3~4小时,控制铸坯出炉温度在1200~1250℃;
步骤(2)中,在2250mm热连轧机组进行初轧和精轧,轧制采用高温轧制工艺,终轧温度控制在850~900℃;
步骤(3)中,精轧后钢板采用快速冷却、控制冷却速度≥30℃,进行层流冷却水均匀检查,控制冷却后的钢板卷取温度在550~600℃。
2.如权利要求1所述750MPa级高强度钢板的用途,其特征在于,用于混凝土搅拌车罐体制造,或高强度工程机械结构件。
3.如权利要求1所述750MPa级高强度钢板的制造方法,其特征在于,步骤(1)之前采用权利要求1中所述组分和配比冶炼的钢水,连铸成厚度为230mm的铸坯。
4.如权利要求3所述750MPa级高强度钢板的制造方法,其特征在于,步骤(4)中,热轧卷自然冷却到室温后经开卷、矫直后横切成钢板,控制矫直工艺获得良好的板形。
CN201410276195.2A 2014-06-19 2014-06-19 一种750MPa级高强度钢板,用途及其制造方法 Active CN104018092B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410276195.2A CN104018092B (zh) 2014-06-19 2014-06-19 一种750MPa级高强度钢板,用途及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410276195.2A CN104018092B (zh) 2014-06-19 2014-06-19 一种750MPa级高强度钢板,用途及其制造方法

Publications (2)

Publication Number Publication Date
CN104018092A CN104018092A (zh) 2014-09-03
CN104018092B true CN104018092B (zh) 2017-03-08

Family

ID=51435081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410276195.2A Active CN104018092B (zh) 2014-06-19 2014-06-19 一种750MPa级高强度钢板,用途及其制造方法

Country Status (1)

Country Link
CN (1) CN104018092B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525561A (zh) * 2015-01-15 2015-04-22 唐山钢铁集团有限责任公司 具有退化的伪珠光体组织的低碳热轧带钢的生产方法
CN104831187B (zh) * 2015-03-27 2017-07-18 武汉钢铁(集团)公司 一种筑路工程机械用钢及其制造方法
CN108531810B (zh) * 2018-05-15 2019-11-12 马鞍山钢铁股份有限公司 一种超高强钢热轧基板及其制备方法
CN116043108A (zh) * 2022-12-13 2023-05-02 东北大学 一种低屈强比V-N微合金化的690MPa级别中厚板及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5168423A (ja) * 1974-12-11 1976-06-14 Nippon Steel Corp Kojinseikochoryokukohanno seizohoho
JPH07116502B2 (ja) * 1988-12-03 1995-12-13 マツダ株式会社 鋼部材の製造方法
CN101270439A (zh) * 2007-03-23 2008-09-24 宝山钢铁股份有限公司 一种高强度热轧防弹钢板及其制造方法
CN101280390B (zh) * 2008-04-19 2011-12-21 马鞍山钢铁股份有限公司 一种高强度热轧结构钢板及其制造方法
CN101748329B (zh) * 2009-12-24 2012-07-04 马鞍山钢铁股份有限公司 一种610MPa汽车大梁板用钢及其制造方法
CN103255342B (zh) * 2013-05-28 2015-09-23 宝山钢铁股份有限公司 一种600MPa级高强度热连轧结构钢及其制造方法
CN103741068B (zh) * 2014-01-03 2016-08-31 宝鼎科技股份有限公司 一种eh36优化材料钢锭自由锻成板形轴承座锻件特种工艺
CN103898417A (zh) * 2014-04-01 2014-07-02 莱芜钢铁集团有限公司 非调质处理低裂纹敏感性钢带及其制备方法

Also Published As

Publication number Publication date
CN104018092A (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
CN106947913B (zh) 一种高强度高韧性热轧耐候钢板及其制备方法
CN104160055B (zh) 高强度冷轧钢板及其制造方法
CN100516269C (zh) 一种细晶强化碳素结构钢热轧薄板的制造工艺
CN107502821A (zh) 一种特厚规格超低温环境下使用的经济型x70管线钢板及其制造方法
CN108359908A (zh) 一种冷轧双相钢及其制备方法
JP2018505303A (ja) 降伏強度900〜1000MPa級調質高強度鋼及びその製造方法
CN107868911A (zh) 一种屈服强度600MPa级热轧钢板及其制造方法
CN102400038A (zh) 一种热轧双相钢及其生产方法
CN105274432A (zh) 600MPa级高屈强比高塑性冷轧钢板及其制造方法
CN106544590A (zh) 1000MPa级高韧性高性能均匀性易焊接特厚钢板及其制造方法
CN102041446A (zh) 一种q390e-z35低合金高强度厚板的制造方法
CN104018092B (zh) 一种750MPa级高强度钢板,用途及其制造方法
CN102296229A (zh) 一种抗拉强度700MPa级低屈强比热轧双相钢板及制造方法
CN105543666B (zh) 一种屈服强度960MPa汽车大梁钢及其生产方法
CN103540850B (zh) 屈服强度≥550MPa的超厚工程机械用钢及生产方法
CN103667921B (zh) 沿厚度方向性能均匀的高强韧性厚钢板及其生产方法
CN105063511B (zh) 中厚板轧机轧制超低碳贝氏体类薄规格钢板及其生产方法
CN104087830B (zh) 一种160MPa级别低屈服点建筑抗震用钢的制造方法
CN104099517B (zh) 一种225MPa级别低屈服点建筑抗震用钢的制造方法
CN109563587B (zh) 无缝钢管及其制造方法
CN103042039B (zh) 含Cr经济型X70管线钢热轧板卷的控轧控冷工艺
CN102409234A (zh) 焊接裂纹敏感性指数小于0.23的355MPa级低合金钢板的制造方法
CN103045945B (zh) 经济型高韧性x70管线钢热轧板卷及其制备方法
CN102766812B (zh) 一种700MPa级低屈强比热轧双相钢钢板及其制造方法
CN107760997A (zh) 双重诱导塑性高强钢及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant