CN104010744B - 圆锥形金属管材的扭转强塑性加工方法 - Google Patents

圆锥形金属管材的扭转强塑性加工方法 Download PDF

Info

Publication number
CN104010744B
CN104010744B CN201280062230.XA CN201280062230A CN104010744B CN 104010744 B CN104010744 B CN 104010744B CN 201280062230 A CN201280062230 A CN 201280062230A CN 104010744 B CN104010744 B CN 104010744B
Authority
CN
China
Prior art keywords
metal tubing
conical metal
mentioned
processing method
strong plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280062230.XA
Other languages
English (en)
Other versions
CN104010744A (zh
Inventor
金亨燮
严浩溶
尹恩宥
李东俊
李�城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Academy Industry Foundation of POSTECH
Original Assignee
Academy Industry Foundation of POSTECH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academy Industry Foundation of POSTECH filed Critical Academy Industry Foundation of POSTECH
Publication of CN104010744A publication Critical patent/CN104010744A/zh
Application granted granted Critical
Publication of CN104010744B publication Critical patent/CN104010744B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D11/00Bending not restricted to forms of material mentioned in only one of groups B21D5/00, B21D7/00, B21D9/00; Bending not provided for in groups B21D5/00 - B21D9/00; Twisting
    • B21D11/02Bending by stretching or pulling over a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/01Extruding metal; Impact extrusion starting from material of particular form or shape, e.g. mechanically pre-treated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D35/00Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/002Processes combined with methods covered by groups B21D1/00 - B21D31/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/02Making hollow objects characterised by the structure of the objects
    • B21D51/10Making hollow objects characterised by the structure of the objects conically or cylindrically shaped objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D7/00Bending rods, profiles, or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • B21J1/025Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough affecting grain orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K21/00Making hollow articles not covered by a single preceding sub-group
    • B21K21/02Producing blanks in the shape of discs or cups as semifinished articles for making hollow articles, e.g. to be deep-drawn or extruded
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/10Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes shotgun barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/16Making tubes with varying diameter in longitudinal direction
    • B21C37/18Making tubes with varying diameter in longitudinal direction conical tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D11/00Bending not restricted to forms of material mentioned in only one of groups B21D5/00, B21D7/00, B21D9/00; Bending not provided for in groups B21D5/00 - B21D9/00; Twisting
    • B21D11/14Twisting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/063Friction heat forging

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Forging (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及强塑性加工方法,能够代替作为主要在子弹或导弹这样的投射体、飞机的头部中使用的圆锥形金属管材的加工方法的金属旋压工艺,是如下的加工方法:利用模具对材料施加基于扭转和压缩力的强塑性变形,从而使材料实现晶粒超细化、纳米化。本发明的强塑性加工方法的特征在于,在圆锥形金属管材的内侧安装与上述圆锥形金属管材的内侧形状匹配的冲头,在上述圆锥形金属管材的外侧安装与上述圆锥形金属管材的外侧形状匹配的模具,之后根据通过上述冲头和模具对上述圆锥形金属管材施加压缩和扭转而得到的剪断变形,使上述圆锥形金属管材的微细组织实现超微细晶粒化或纳米晶粒化。

Description

圆锥形金属管材的扭转强塑性加工方法
技术领域
本发明涉及对圆锥形金属管材施加扭转强塑性的方法,更具体地讲,涉及如下的强塑性加工方法:在实质上保持形状的同时,通过对圆锥形金属管材施加由压缩力和扭转形成的剪断应力而实现的剪断变形,使金属管材的微细组织实现超微细晶粒化或纳米晶粒化,从而能够提高材料的机械性质。
背景技术
圆锥形金属管材利用于子弹或导弹的头、航空、如汽车这样的运输机零部件产业及厨房、取暖器材这样的各种领域。以往,这样的圆锥形金属管材是通过金属旋压法来加工为规定的形状而使用的。
但是,金属旋压法是将材料的形状控制作为主要目的的金属成型技术,因此与控制微细组织这样的提高材料的物理性质的技术没有太大关系。进而,在金属旋压法中,由金属工具的强压力所致的变形集中于金属管材的表面,存在加工之后金属管材的内部与外部的物理性质差异较大的问题。
当金属材料受到塑性变形时,开始形成小边界角位错胞的结构,塑性变形量越大,越随着位错胞(dislocationcell)的亚晶粒的晶界角的增加而发生晶粒逐渐被细化的现象。在利用该现象,对材料施加大的变形而使晶粒实现超微细晶粒化或纳米晶粒化时,与变形前的金属材料相比,其机械性质(强度、硬度、耐磨损性及超塑性等)大大提高,因此越来越需要一种脱离以往的以形状成型为主的材料加工方法而用于制造超微细/纳米结晶材料的加工方法。
在这样的超微细/纳米晶粒形成中,不仅压缩、拉伸、剪断变形这样的对材料施加的塑性变形量很重要,而且以使工艺前后的材料的形状实质上相同的方式设计模具,以使能够进行可施加大量的变形量的反复工艺也非常重要。
目前为止,作为满足这种条件的强塑性加工方法,研发有如下工艺:等通道转角挤压工艺(ECAP:EqualChannelAngularPressing)、高压扭转工艺(HPT:High-Pressuretorsion)、累积轧合法(ARB:AccumulativeRollBonding)、等径角轧制工艺(ECAR:EqualChannelAngularRolling)等。
但是,还未研发出能够相应于圆锥形金属管材的形状而进行强塑性加工的方法,因此需要研发该方法。
发明内容
技术课题
本发明的课题在于,提供如下的强塑性加工方法:实质上维持圆锥形金属管材的形状而能够进行大变形加工,能够使微细组织实现超微细晶粒化或纳米晶粒化,从而能够大大提高圆锥形金属管材的机械性质。
解决课题的手段
作为解决上述课题的手段,本发明提供圆锥形金属管材的扭转强塑性加工方法,其特征在于,在圆锥形金属管材的内侧安装与上述圆锥形金属管材的内侧形状匹配的冲头,在上述圆锥形金属管材的外侧安装与上述圆锥形金属管材的外侧形状匹配的模具,之后根据通过上述冲头和模具对上述圆锥形金属管材一边施加压缩力一边施加扭转而得到的剪断变形,使圆锥形金属管材的微细组织实现超微细晶粒化或纳米晶粒化。
在本发明的实施例中,上述剪断变形可通过使上述冲头对模具加压之后使上述冲头旋转而得到。另外,可以通过相反地使模具加压旋转或使冲头和模具向彼此不同的方向(例如,冲头向顺时针方向,模具向逆时针方向)旋转的方法来施加扭转。
另外,在本发明的实施例中,能够通过调节上述冲头的压缩力或转速来控制上述剪断变形的量。如果,在旋转模具或使冲头和模具同时旋转的情况下,能够通过调节模具的转速或冲头和模具的转速来调节剪断变形的量。
另外,在本发明的实施例中,能够向上述圆锥形金属管材的中心部施加大的压缩力而使上述圆锥形金属管材的中心部的微细结构实现超微细晶粒化或纳米晶粒化。
另外,在本发明的实施例中,优选为,进行上述强塑性加工方法的工艺前后的圆锥形金属管材的形状实质上相同。由此,能够使用相同的冲头和模具而反复地施加变形,因此能够施加大量的变形量。
另外,在本发明的实施例中,在上述模具或冲头的一侧或两侧的内部具备发热体,从而能够控制工艺温度。由此,能够在适合金属管材的材质的工艺温度下进行加工或进行微细组织的控制,从而能够进一步提高加工的效率性。另外,上述发热体可以不设置于模具或冲头的内部,而是设置于模具或冲头的外部。
另外,在本发明的实施例中,上述冲头的顶点曲率可维持为比圆锥形金属管材的顶点曲率大。由此,能够将圆锥形金属管材的在高度方向上的厚度维持为一定厚度,由此防止应力的集中而防止圆锥形金属管材被破坏。
发明效果
根据本发明的强塑性加工方法,在维持圆锥形形状而不损失材料的情况下,能够对材料施加大的剪断变形和压缩变形,由此能够实现微细组织的超微细晶粒化或纳米晶粒化,能够显著提高材料的机械物理性质,从而能够提供可满足各种物理性质要求的圆锥形金属管材。
另外,在本发明的强塑性加工方法中,工艺前后的材料形状同为圆锥形,因此能够通过反复进行工艺来调节扭转变形和机械性质。
另外,在本发明的强塑性加工方法中,调节工艺进行中的冲头(或模具)的转速,由此可自由调节施加于材料的变形量,因此能够容易进行圆锥形金属管材的物理性质强化和微细组织的调节。
附图说明
图1是概略性地示出在本发明的强塑性加工方法中使用的冲头、模具及各个工艺步骤的图。
图2是在本发明的实施例中使用的模具、冲头及试片的剖面图。
图3的(a)是对强塑性加工前的圆锥形金属管材进行拍照的照片,图3的(b)是对进行本发明的实施例的强塑性加工后的圆锥形金属管材进行拍照的照片。
图4示出对进行本发明的实施例的强塑性加工前后的圆锥形金属管材的硬度进行检测的结果。
具体实施方式
图1是概略性地示出在本发明的强塑性加工方法中使用的冲头、模具及各个工艺步骤的图,图2是在本发明的实施例中使用的模具、冲头及试片的剖面图,图3的(a)是对强塑性加工前的圆锥形金属管材进行拍照的照片,图3的(b)是对进行本发明的实施例的强塑性加工后的圆锥形金属管材进行拍照的照片。
参照附图,对本发明的具体制造工艺进行叙述。首先,本发明的强塑性加工方法大体分为将圆锥形金属管材安装到模具的步骤(第一步骤)、利用模具和冲头进行加压的步骤(第二步骤)、对圆锥形金属管材施加扭转的步骤(第三步骤)。
如图1和图2所示,上述第一步骤是如下的步骤:将对应于圆锥形金属管材的内侧的形状而制造的冲头安装于圆锥形金属管材的内侧,将安装有冲头的圆锥形金属管材安装于模具的内部,该模具是对应于圆锥形金属管材的外侧形状而制造的,由此将圆锥形金属管材安装到模具。此时,上述冲头和模具的安装顺序可根据模具的设计状态而不同。即,也可以先将圆锥形金属管材安装到模具,然后将冲头配置于圆锥形金属管材的内侧。另外,在上述模具的内部具备通过电阻而发热的发热体,由此能够施加适合圆锥形金属管材的加工条件的热。
上述第二步骤是如下步骤:以对安装于模具的圆锥形金属管材进行冲压的方式施加规定的压缩力。此时,压缩力为不发生试片的滑动的压缩力,可考虑试片的最终厚度而选定。另外,关于向圆锥形金属管材施加压缩力的方式,除了如上所述的移动冲头而加压的方式以外,还可以使用固定冲头而移动模具或者使两者均移动的方式。
上述第三步骤是如下步骤:在对圆锥形金属管材维持一定的压缩力的状态下旋转冲头而对圆锥形金属管材施加扭转。如上所述,在完成扭转工艺时,解除压缩力,使试片脱离模具。
由此,在本发明的强塑性加工方法中,通过压缩力来对材料施加非常大的静水压,在成为圆锥形金属管材与冲头之间的边界面的摩擦非常大的紧贴状态的情况下施加扭转,从而能够在没有滑动的情况下,对圆锥形金属管材施加完整的剪断变形。并且,所施加的静水压和剪断变形使圆锥形金属管材的微细组织根据上述的机理而被细化,从而能够实现超微细晶粒化或纳米晶粒化。
另外,在进行本发明的强塑性加工工艺时,利用施加到圆锥形金属管材的压缩力和转速,能够将圆锥形金属管材的微细组织和机械性质调节为所希望的形态。
下面,基于本发明的优选实施例对本发明进行更详细的说明。
图2是在本发明的实施例中使用的圆锥形金属管材试片、模具及冲头的剖面图。试片的大小和材料可根据使用目的而变形为各种各样,并且对应于试片的形状制造模具和冲头。
在本发明的实施例中,调整曲率,以使相比于试片的顶点部分,冲头的顶点部分不够尖细(即,使冲头的顶点曲率大于试片的顶点曲率),这是为了防止在强塑性加工工艺过程中,应力集中在试片顶点部分,从而导致在试片的顶点部分发生破坏。
在本发明的实施例的强塑性加工工艺中,使用了如下试片:将由纯铜构成且加工为图2所示的形状的试片,在加工工艺之前在600℃下加热2小时,然后在加热炉中进行退火。强塑性加工是在常温下进行的,以施加80吨的加压力的状态下使冲头以1rpm的速度旋转1次的方法执行。
图3是对进行本发明的实施例的强塑性加工工艺前后的试片的样子进行拍照的照片。其中,图3的(a)是工艺前初始状态的试片,图3的(b)是进行强塑性工艺之后的试片的样子,由该图可知,强塑性加工工艺前后的两个试片的形状实质上相同。只是,因强压缩力的影响,试片的厚度从1.2mm在进行工艺之后稍微减小为0.96mm。另外,可利用压缩力和冲头转速而调节强塑性加工工艺之后的试片的厚度。
图4示出用于确认进行本发明的实施例的强塑性加工前后的材料的机械性质的差异而进行的硬度检测结果。
图中,“初始状态”是从完成热处理的初始状态的试片的外侧壁的边缘向中心轴方向检测的硬度值,如图4的(a)所示,“外侧”为在进行强塑性加工工艺之后的试片中以与“初始状态”相同的方式检测的硬度值,如图4的(b)所示,“内部”为从试片的剖面所检测的硬度值。此时,硬度的检测方向如图4的(a)、(b)所示,检测间隔为1mm。
从图4可知,强塑性加工工艺之后的试片的硬度值比初始状态的试片的平均维氏硬度(Hv)值53大大提高,经过1次强塑性加工工艺之后的最大硬度值上升到140。另外,试片的外部与内部的硬度之差并不大,由此可知试片整体被均匀地强化。
通过这样的硬度值均匀上升的现象可实现试片的强度、耐磨损性这样的机械性质的提高。因此,本发明的实施例的强塑性加工工艺在维持圆锥形金属管材的形状的状态下,通过简单的方法而能够显著提高其机械性质,因此可适当使用于子弹或导弹这样的要求高物理性质的零部件。

Claims (8)

1.一种圆锥形金属管材的扭转强塑性加工方法,其特征在于,
在圆锥形金属管材的内侧安装与上述圆锥形金属管材的内侧形状匹配的冲头,在上述圆锥形金属管材的外侧安装与上述圆锥形金属管材的外侧形状匹配的模具,之后根据通过上述冲头和模具对上述圆锥形金属管材施加压缩和扭转而得到的剪断变形,使上述圆锥形金属管材的微细组织实现超微细晶粒化或纳米晶粒化,
上述冲头的顶点曲率大于圆锥形金属管材的顶点曲率。
2.根据权利要求1所述的圆锥形金属管材的扭转强塑性加工方法,其特征在于,
上述剪断变形是通过使上述冲头对模具加压之后使上述冲头旋转而得到的。
3.根据权利要求2所述的圆锥形金属管材的扭转强塑性加工方法,其特征在于,
通过调节上述冲头的压缩力或转速来控制上述剪断变形的量。
4.根据权利要求1至3中的任意一项所述的圆锥形金属管材的扭转强塑性加工方法,其特征在于,
向上述圆锥形金属管材的中心部施加大的压缩力而使上述圆锥形金属管材的中心部的微细结构实现超微细晶粒化或纳米晶粒化。
5.根据权利要求1至3中的任意一项所述的圆锥形金属管材的扭转强塑性加工方法,其特征在于,
进行上述强塑性加工方法的工艺前后的圆锥形金属管材的形状除厚度之外实质上相同。
6.根据权利要求1至3中的任意一项所述的圆锥形金属管材的扭转强塑性加工方法,其特征在于,
在上述模具上具备发热体,从而能够控制工艺温度。
7.根据权利要求1至3中的任意一项所述的圆锥形金属管材的扭转强塑性加工方法,其特征在于,
在上述冲头上具备发热体,从而能够控制工艺温度。
8.根据权利要求1所述的圆锥形金属管材的扭转强塑性加工方法,其特征在于,
上述模具能够进行旋转,从而能够单独旋转或与冲头一起旋转。
CN201280062230.XA 2011-12-16 2012-11-30 圆锥形金属管材的扭转强塑性加工方法 Expired - Fee Related CN104010744B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020110136224A KR101323168B1 (ko) 2011-12-16 2011-12-16 원뿔형 금속관재의 비틀림 강소성 가공법
KR10-2011-0136224 2011-12-16
PCT/KR2012/010335 WO2013089374A1 (ko) 2011-12-16 2012-11-30 원뿔형 금속관재의 비틀림 강소성 가공법

Publications (2)

Publication Number Publication Date
CN104010744A CN104010744A (zh) 2014-08-27
CN104010744B true CN104010744B (zh) 2016-01-20

Family

ID=48612774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280062230.XA Expired - Fee Related CN104010744B (zh) 2011-12-16 2012-11-30 圆锥形金属管材的扭转强塑性加工方法

Country Status (6)

Country Link
US (1) US9447487B2 (zh)
EP (1) EP2808101A4 (zh)
JP (1) JP6077000B2 (zh)
KR (1) KR101323168B1 (zh)
CN (1) CN104010744B (zh)
WO (1) WO2013089374A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101593836B1 (ko) 2014-11-03 2016-02-12 포항공과대학교 산학협력단 금속재료의 강도증가장치 및 강도증가방법
KR101680461B1 (ko) 2015-03-30 2016-11-28 포항공과대학교 산학협력단 원뿔형 금속관재의 비틀림 강소성 가공용 금형
KR20170109109A (ko) * 2016-03-17 2017-09-28 포항공과대학교 산학협력단 고엔트로피 합금의 방오특성을 향상시키는 방법
KR101903236B1 (ko) 2016-08-23 2018-11-13 국방과학연구소 원뿔형 금속관재의 국부적 비틀림 강소성 가공 방법
KR101866127B1 (ko) 2017-03-20 2018-06-08 포항공과대학교 산학협력단 표면연마를 적용시켜 기계적 성질이 향상된 금속 봉재의 비틀림 강소성 가공법
CN110378053B (zh) * 2019-07-25 2020-10-30 东北大学 管材二斜辊矫直工艺圆弧辊型最优矫直曲率的确定方法
CN112474873B (zh) * 2020-12-02 2022-03-01 江阴市丰厚管件有限公司 一种无缝变径管的制造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE791879A (fr) * 1971-11-25 1973-05-24 Scal Gp Condit Aluminium Procede de fabrication de tubes souples coniques
FR2644714A1 (fr) * 1989-03-22 1990-09-28 Commissariat Energie Atomique Procede d'obtention de pieces de grandes dimensions en cuivre et de structure tres fine, a partir d'un lopin issu de coulee continue
ATE195674T1 (de) * 1994-05-30 2000-09-15 Andrzej Korbel Verfahren zur plastischen verformung von materialien
JPH0810833A (ja) * 1994-06-27 1996-01-16 Nippon Steel Metal Prod Co Ltd テーパ角管製造装置
CN1060694C (zh) * 1996-02-13 2001-01-17 张荣发 圆锥轴承内外圈的锻造方法
JP2001321825A (ja) * 2000-05-18 2001-11-20 Toto Ltd 金属材料の加工法及びその装置
JP3616591B2 (ja) * 2001-09-06 2005-02-02 独立行政法人科学技術振興機構 金属材料の結晶粒微細化方法及び結晶粒微細化装置
JP2004174563A (ja) 2002-11-27 2004-06-24 Mitsubishi Heavy Ind Ltd 金属管の組織制御方法及び装置並びに金属板の製造方法
US6866180B2 (en) * 2003-02-18 2005-03-15 Rockwell Scientific Licensing, Llc Thick-section metal forming via friction stir processing
JP4305151B2 (ja) * 2003-05-16 2009-07-29 晋 水沼 材料のねじり押出し加工法
US7096705B2 (en) * 2003-10-20 2006-08-29 Segal Vladimir M Shear-extrusion method
KR100541221B1 (ko) * 2004-01-08 2006-01-11 충남대학교산학협력단 비틀림압출용 금형 및 상기 금형을 이용한 금속소재의표면경화방법
CN100386466C (zh) * 2006-03-22 2008-05-07 西安建筑科技大学 连续变断面循环挤压制备细晶材料的方法及装置
CN1994605A (zh) * 2006-08-22 2007-07-11 陈波 一种高强度摩托车方向柱锥形立管的冷挤压加工工艺
JP2009018342A (ja) * 2007-06-11 2009-01-29 Sango Co Ltd ワークの異径部成形方法
JP5288437B2 (ja) * 2007-08-13 2013-09-11 善治 堀田 ひずみ印加方法及びひずみ印加装置
JP2009203508A (ja) * 2008-02-27 2009-09-10 Aisin Seiki Co Ltd 結晶粒微細化方法及び結晶粒微細化装置
JP2010105005A (ja) * 2008-10-29 2010-05-13 Aisin Seiki Co Ltd 金属材料微細化装置
KR101202852B1 (ko) * 2010-04-15 2012-11-20 한국생산기술연구원 연속전단변형 장치 및 그 방법
CN102189706B (zh) 2011-01-28 2014-10-08 南京理工大学 管状材料高压剪切变形方法及其装置
CN102836939B (zh) * 2011-06-24 2015-03-25 深圳富泰宏精密工业有限公司 铝或铝合金的锻造方法
CN102500632B (zh) * 2011-09-30 2014-11-05 南京理工大学 利用劈尖原理实现管材高压切变的方法及其装置

Also Published As

Publication number Publication date
JP6077000B2 (ja) 2017-02-08
KR20130068827A (ko) 2013-06-26
EP2808101A1 (en) 2014-12-03
JP2015508334A (ja) 2015-03-19
EP2808101A4 (en) 2015-10-21
US20140331733A1 (en) 2014-11-13
WO2013089374A1 (ko) 2013-06-20
CN104010744A (zh) 2014-08-27
US9447487B2 (en) 2016-09-20
KR101323168B1 (ko) 2013-11-05

Similar Documents

Publication Publication Date Title
CN104010744B (zh) 圆锥形金属管材的扭转强塑性加工方法
AU2014238036B2 (en) Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US11660650B2 (en) Apparatus for and method of manufacturing roll-formed component
Zhbankov et al. Rational parameters of profiled workpieces for an upsetting process
US10173256B2 (en) Radial rolling process for ring product that can control strain distribution of ring product
Meng et al. Deformation characteristic and geometrical size effect in continuous manufacturing of cylindrical and variable-thickness flanged microparts
KR102579287B1 (ko) 절곡가공 방법
Pacheco et al. Numerical simulation of electric hot incremental sheet forming of 1050 aluminum with and without preheating
CN109226375B (zh) 一种等厚度圆弧类零件的辊压面内连续弯曲成形方法
CN103464504A (zh) 冷压模具的生产方法
US20180093316A1 (en) Method and apparatus for forming a compound curvature metal skin
KR101465090B1 (ko) 관형 금속재료의 결정립 미세화 방법
Oh et al. Process-induced defects in an L-shape profile ring rolling process
Chang et al. Influence of grain size and temperature on micro upsetting of copper
Pater et al. Analysis of a cross wedge rolling process for producing drive shafts
EP2444169A1 (en) A system and method for near net shape forging
RU2560474C2 (ru) Способ непрерывного равноканального углового прессования металлических заготовок в виде прутка
KR20120127974A (ko) 관형 금속재료의 결정립 미세화 방법
CN1872448A (zh) 一种外加厚油管的制造方法
US10661335B2 (en) Localized torsional severe plastic deformation method for conical tube metals
RU2570268C1 (ru) Способ пластического структурообразования металла
EP2987568A1 (en) Hot press forming device for coated steel and hot press forming method using same
Yanle et al. A novel micro-rolling & incremental sheet forming hybrid process: Deformation behavior and microstructure evolution
RU2769797C1 (ru) Способ отбортовки тонкостенных осесимметричных конических деталей
Wolfgarten et al. Analysis of process limits for open-die forging with superimposed manipulator displacements in vertical direction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120

Termination date: 20181130