CN104007354B - 10kV氧化锌避雷器与电缆的整组试验电路和方法 - Google Patents

10kV氧化锌避雷器与电缆的整组试验电路和方法 Download PDF

Info

Publication number
CN104007354B
CN104007354B CN201310060935.4A CN201310060935A CN104007354B CN 104007354 B CN104007354 B CN 104007354B CN 201310060935 A CN201310060935 A CN 201310060935A CN 104007354 B CN104007354 B CN 104007354B
Authority
CN
China
Prior art keywords
cable
arrester
tables
insulation resistance
experiment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310060935.4A
Other languages
English (en)
Other versions
CN104007354A (zh
Inventor
戴静旭
潘永明
夏之荫
华力潮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Baosteel Industry Technological Service Co Ltd
Original Assignee
Shanghai Baosteel Industry Technological Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Baosteel Industry Technological Service Co Ltd filed Critical Shanghai Baosteel Industry Technological Service Co Ltd
Priority to CN201310060935.4A priority Critical patent/CN104007354B/zh
Publication of CN104007354A publication Critical patent/CN104007354A/zh
Application granted granted Critical
Publication of CN104007354B publication Critical patent/CN104007354B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种10kV氧化锌避雷器与电缆的整组试验电路和方法,即试验电路由并联的避雷器等效电容、避雷器绝缘电阻、电缆等效电容以及电缆主绝缘电阻与电缆护层绝缘电阻串联后并联于电缆等效电容构成,试验直流电源与第二μА表串联后并联于避雷器等效电容两端,第一μА表连接电缆主绝缘电阻与电缆护层绝缘电阻之间和接地端。本试验方法通过调整试验直流电源电压值,分别读取第一μА表和第二μА表电流值,完成电缆第一和第二级泄漏电流测量、避雷器1mΑ动作电压值测量以及75%的1mΑ动作电压值下的泄漏电流测量。本试验电路和方法结构简单,连线方便,无需拆除连接导线实施避雷器与电缆的整组试验,达到正确评判避雷器和电缆状态的目的。

Description

1〇kV氧化锌避雷器与电缆的整组试验电路和方法
技术领域
[0001] 本发明涉及一种10kV氧化锌避雷器与电缆的整组试验电路和方法。
背景技术
[0002] 目前10kV电压等级氧化锌避雷器和电缆在预防性试验中的测试项目虽然是完全 相同的,但在氧化锌避雷器试验时如果不将回路中连接的高压电缆拆除,由于直流电压下 电缆产生的直流泄漏电流叠加影响,此时就无法准确地读取氧化锌避雷器的直流泄漏电流 值,从而也无法对其状态作出正确的评判;同样如此,在电缆试验时也无法准确地读取其直 流泄漏电流值并对其进行状态评判。因此,现场实际在避雷器与电缆试验回路测试时,必须 将相互之间的连接导线拆开分解后,单独地进行各自测试项目。这样一方面造成了试验测 试时间长,影响连接导线的使用寿命;另一方面,10kV高压供电开关柜普遍采用组合式电器 柜,内部空间小而紧凑,连接导线的拆装非常困难,不仅工作量大,而且也存在着潜在的不 安全因素。
[0003] 而对于220kV及以上氧化锌避雷器一般均有多级组成,由于安装时其底座对地均 是绝缘的(需接入动作计数器),对于多级氧化锌避雷器而言,由于氧化锌避雷器的阀片是 非线性电阻,正、反向加压通过的电流是一致的,因此在220kV及以上氧化锌避雷器的预防 性试验中,普遍实现了不拆除连接导线或在线带电测量的方法。
[0004]长期以来,对于10kV及以下电压等级组合电气设备回路中的氧化锌避雷器试验, 只能采用拆除连接导线进行单体试验的方法。因为10kV及以下电压等级的氧化锌避雷器, 由于其底座对地均是非绝缘的,所以无法采用在氧化锌避雷器对地回路串入测量电流的y A表的方法来进行测量。同时,l〇kV及以下电压等级的氧化锌避雷器,由于回路中往往连接 有其它的电气设备,如电缆、变压器、电机等,在试验电压的作用下它们会产生各自的泄漏 电流,采用一般高压回路串入y A表的方法就无法区分不同设备的泄漏电流,从而难以对各 类被试设备所需要的数据进行准确地测量。因此,要准确地进行单独测量,也必须要求拆除 连接线进行单体试验。
发明内容
[0005] 本发明所要解决的技术问题是提供一种i〇kv氧化锌避雷器与电缆的整组试验电 路和方法,本试验电路结构简单,连线方便,便于实施避雷器与电缆的整组试验,本方法在 不降低测试诊断准确性与可靠性的前提条件下,无需拆除连接导线实现整组试验,准确测 量避雷器和电缆的各自试验数据,达到正确评判避雷器和电缆状态的目的。
[0006] 为解决上述技术问题,本发明i〇kv氧化锌避雷器与电缆的整组试验电路包括避雷 器等效电容、避雷器绝缘电阻、电缆等效电容、电缆主绝缘电阻、电缆护层绝缘电阻,所述避 雷器等效电容和避雷器绝缘电阻并联连接,所述电缆主绝缘电阻与电缆护层绝缘电阻串联 后与所述电缆等效电容并联连接,所述避雷器等效电容、避雷器绝缘电阻和电缆等效电容 并联连接并一端接地,本试验电路还包括试验直流电源、第一U A表和第二y A表,所述试验 直流电源与第二UA表串联后试验直流电源正极连接所述避雷器等效电容接地端、第二uA 表连接所述避雷器等效电容另一端,所述第一 y A表连接所述电缆主绝缘电阻与电缆护层 绝缘电阻之间和接地端。 ~
[0007] 1 Okv氧化锌避雷器与电缆的整组试验电路的试验方法包括如下步骤:
[0008] 步骤一、对避雷器和电缆进行单体绝缘电阻测试,绝缘电阻测试合格后按整组试 验电路正确接线;
[0009]步骤二、将试验直流电源电压升到8kV,同时观察第二U A表指示有无突变现象,读 取第一 U A表的电流值,完成电缆第一级泄漏电流测量;
[0010]步骤三、将试验直流电源电压升到13kV,同时观察第二u A表指示有无突变现象, 读取第一 y A表的电流值,完成电缆第二级泄漏电流测量;
[0011]步骤四、将试验直流电源电压勾速上升,同时观察第一'U A表指示有无突变现象, 当第二y A表显示值达到lm A电流值时,读取试验直流电源电压值,完成避雷器lm人动作电 压值测量;
[0012] 步骤五、将试验直流电源电压匀速下降到乃%避雷器1mA动作电压值,读取第二u A表的电流值,完成75%避雷器lm A动作电压值下的泄漏电流测量;
[0013]步骤六、将试验直流电源电压匀速下降到零,切断试验直流电源,完成避雷器与电 缆的整组试验。
[00M]由于本发明10kV氧化锌避雷器与电缆的整组试验电路和方法采用了上述技术方 案,即试验电路由并联的避雷器等效电容、避雷器绝缘电阻、电缆等效电容以及电缆主绝缘 电阻与电缆护层绝缘电阻串联后并联于电缆等效电容构成,试验直流电源与第二u A表串 联后并联于避雷器等效电容两端,第一 W A表连接电缆主绝缘电阻与电缆护层绝缘电阻之 间和接地端。本试验方法通过调整试验直流电源电压值,分别读取第一U A表和第二uA表 电流值,完成电缆第一级和第二级泄漏电流测量、避雷器1mA动作电压值测量以及75%的lm A动作电压值下的泄漏电流测量。本试验电路结构简单,连线方便,便于实施避雷器与电缆 的整组试验,本方法在不降低测试诊断准确性与可靠性的前提条件下,无需拆除连接导线 实现整组试验,准确测量避雷器和电缆的各自试验数据,达到正确评判避雷器和电缆状态 的目的。
附图说明
[0015]下面结合附图和实施方式对本发明作进一步的详细说明:
[0016]图1为本发明10kV氧化锌避雷器与电缆的整组试验电路示意图;
[0017]图2为氧化辞避雷器的等效电路示意图;
[0018]图3为氧化锌避雷器在直流电压下绝缘的电压特性曲线图;
[0019]图4为电缆的等效电路示意图;
[0020]图5为电缆绝缘的电压特性曲线图。
具体实施方式
[0021]如图1所示,本发明10kV氧化锌避雷器与电缆的整组试验电路包括避雷器等效电 容(^、避雷器绝缘电阻R3、电缆等效电容c2、电缆主绝缘电阻Rl、电缆护层绝缘电阻R2,所述避 雷器専效电谷Ci和避雷器绝缘电阻R3并联连接,所述电缆主绝缘电阻心与电缆护层绝缘电 阻R2串联后与所述电缆等效电容&并联连接,所述避雷器等效电容心、避雷器绝缘电/阻办和 电缆等效电容C2并联连接并一端接地,本试验电路还包括试验直流电源E、第一y A表^ A丄 和第一U A表u A 2,所述试验直流电源E与第二y A表]i A 2串联后试验直流电源E正极连接所 述避雷器等效电容Ci接地端、第二u A表y A 2连接所述避雷器等效电容Ci另一端,所述第一 y A表u A 1连接所述电缆主绝缘电阻Rl与电缆护层绝缘电阻此之间和接地端。
[0022] 1 〇kV氧化锌避雷器与电缆的整组试验电路的试验方法包括如下步骤:
[0023]步骤一、对避雷器和电缆进行单体绝缘电阻测试,绝缘电阻测试合格后按整组试 验电路正确接线; /
[0024]步骤二、将试验直流电源电压升到skv,同时观察第二y A表指示有无突变现象,读 取第一y A表的电流值,完成电缆第一级泄漏电流测量;
[0025]步骤二、将试验直流电源电压升到13kV,同时观察第二y A表指示有无突变现象, 读取第一 li A表的电流值,完成电缆第二级泄漏电流测量;
[0026]步骤四、将试验直流电源电压匀速上升,同时观察第一y A表指示有无突变现象, 当第二UA表显示值达到1mA电流值时,读取试验直流电源电压值,完成避雷器lmA动作电 压值测量;
[0027]步骤五、将试验直流电源电压匀速下降到乃%避雷器1mA动作电压值,读取第二y A表的电流值,完成75%避雷器lm A动作电压值下的泄漏电流测量;
[0028]步骤六、将试验直流电源电压匀速下降到零,切断试验直流电源,完成避雷器与电 缆的整组试验。
[0029]本试验电路和方法基于氧化锌避雷器和电缆试验项目相同的前提条件,充分利用 氧化锌避雷器和电缆绝缘结构的特点,在整组试验的情况下,实现了在不同试验电压下能 准确地读取各自的电流数据,不仅解决了氧化锌避雷器与电缆泄漏电流值无法单独采集难 题,同时也克服了氧化锌避雷器和电缆定期校验的工作量大,且不利于拆装的问题。
[0030]氧化锌避雷器是目前最先进的过电压保护器之一,核心元件电阻片主要采用氧化 锌配方制作,其等效电路如图2所示为并联的避雷器等效电容&和避雷器绝缘电阻r3。氧化 锌避雷器在直流电压下绝缘的电压特性曲线如图3所示,曲线1为避雷器绝缘性能良好,曲 线2为绝缘受潮或动作性能异常,氧化锌避雷器在工作电压下相当于是绝缘体,其伏安特性 可分为小电流区、非线性区和饱和区。避雷器在75%UlmA直流电压区为小电流区,在此区域 内随着电压升高,电流将缓慢上升,流过避雷器的电流仅有微安级;当直流电压达到直流 UlmA临界动作电压值时,避雷器进入非线性区,此时避雷器优异的非线性伏安特性发挥作 用,流过避雷器的电流瞬间增大,避雷器处于导通状态,在此区域内电压稍有升高,电流将 大幅度上升,释放过电压能量,从而有效地限制了对输变电设备的过压;当电流达到数千安 培时,此时如果电压继续升高,电流上升缓慢,避雷器进入饱和区。
[0031]氧化锌避雷器绝缘电阻测量主要是检查是否进水受潮。预防性试验规程规定10kV 及以下的氧化锌避雷器用2500V兆欧表测量,其绝缘电阻不低于1000MD。测量氧化锌避雷 器的UlraA和75%UlmA直流下的泄漏电流主要是确定其动作性能是否符合要求,检查其阀片是 否受潮。预防性试验规程规定了典型的电站和配电用的氧化锌避雷器其直流UlmA临界动作 电压的测量值并规定75%UlmA直流下的泄漏电流值应不大于50uA。
[0032]电缆的等效电路如图4所示,其由串联的电缆主绝缘电阻Ri和电缆护层绝缘电阻R2 与电缆等效电容C2构成;给电缆加上直流电压后,电缆绝缘的电压特性曲线如图5所示,曲 线3为电缆绝缘性能良好,曲线4为电缆绝缘受潮,曲线5为电缆绝缘中有未贯通的集中性缺 陷,曲线6为电缆绝缘有击穿的危险。测量电缆吸收电流和漏电流,根据漏电流的绝对值以 及电压特性曲线的特异点等,来判断电缆是否发生老化。对电缆各线芯导体与屏蔽层间的 绝缘电阻进行测定,主要是检查电缆主绝缘是否进水受潮或存在贯通性的缺陷;对电缆护 层绝缘电阻进行测定,主要是检查电缆外护套是否破损。预防性试验规程规定l〇kV电缆用 2500V兆欧表测量,其主绝缘电阻不低于2000MQ,护层绝缘电阻不低于0.5MD ;10kV电缆在 直流8kV及13kV电压值下的泄漏电流值不应大于lu A。
[0033] 在避雷器和电缆的整组试验中,反映最终的绝缘电阻为电缆主绝缘电阻h和氧化 锌避雷器绝缘电阻R3的并联电阻值,在电缆主绝缘电阻Ri测量时,通常将电缆护层屏蔽线直 接接地,此时等效于将R2电阻短路。在正常情况下用2500V兆欧表单独测量10kV氧化锌避雷 器和电缆单体绝缘电阻时,它们的绝缘电阻值均可达到50000MQ以上,因此氧化锌避雷器 与电缆在绝缘电阻判断的标准上无差异。
[0034]电缆的绝缘由主绝缘和护层绝缘二部分组成,而电缆的泄漏电流主要是测量电缆 主绝缘的电流。由于电缆护层的绝缘电阻在0.5MQ以上,电缆护层屏蔽线是通过金属导线 经过绝缘处理引出后再接地的,如果将电缆主绝缘泄漏电流测量的y A表串入护层屏蔽线 接地回路中,由于W A表的内阻很小,一般其电阻值只有几个欧姆,因此电缆的泄漏电流在 电缆护层绝缘电阻上的分流影响完全可忽略不计。因此如图1所示,电缆主绝缘的泄漏电流 值II可通过y A 1表直接单独测量,氧化锌避雷器的75%的直流lm A动作电压值下的泄漏电 流及lm A动作电压值测量可通过y A 2表单独测量。整个主回路中的泄漏电流12等于电缆主 绝缘的泄漏电流II和氧化锌避雷器泄漏电流13之和。
[0035]即12 = II +13
[0036]电缆主绝缘的泄漏电流值II可通过U A 1表直接单独测量。由于主回路中的泄漏电 流12能很方便地通过串入试验直流电源回路中的y A 2表直接进行测量,因此氧化锌避雷器 泄漏电流13=12-11,由此得到避雷器和电缆整组试验的方法。
[0037]利用本电路和方法进行试验时应注意电缆护层的绝缘电阻在〇. mQ以下时,必须 拆除连接导线进行分解测量;如果出现绝缘电阻值小于2000M Q时,必须拆除连接导线进行 分解测量;在电缆泄漏电流测量升压过程中,如果y A 1表的电流值没有超过ly A时出现了y A 2表的电流值不按比例上升或泄漏电流超过50u A时,应停止整组升压试验,必须拆线分 解单独测量;在氧化锌避雷器直流lm A动作电压值测量升压过程中,如果出现u A丨表的电 流值不按比例上升或泄漏电流超过10u A时,应停止整组升压试验,必须拆线分解单独测 量。
[0038]采用本电路和方法的主要优点是原理简单安全、易操作、抗干扰好、对氧化锌避雷 器和电缆主绝缘无破坏性,有效地缩短了试验作业与停电时间,降低了作业劳动强度,提高 了试验作业和设备运行的安全性。
[0039]本氧化锌避雷器和电缆整组试验电路和方法经实际应用,通过拆线和整组试验测 量数据的比较分析,整组试验测量完全能满足测量精度要求,取得了良好的实际效果。

Claims (2)

1. 一种lOkV氧化锌避雷器与电缆的整组试验电路,包括避雷器等效电容、避雷器绝缘 电阻、电缆等效电容、电缆主绝缘电阻、电缆护层绝缘电阻,所述避雷器等效电容和避雷器 绝缘电阻并联连接,所述电缆主绝缘电阻与电缆护层绝缘电阻串联后与所述电缆等效电容 并联连接,所述避雷器等效电容、避雷器绝缘电阻和电缆等效电容并联连接并一端接地,其 特征在于:本试验电路还包括试验直流电源、第一 ii A表和第二y A表,所述试验直流电源与 第二y A表串联后试验直流电源正极连接所述避雷器等效电容接地端、第二yA表连接所述 避雷器等效电容另一端,所述第一W A表连接所述电缆主绝缘电阻与电缆护层绝缘电阻之 间和接地端。
2. 根据权利要求1所述10kV氧化锌避雷器与电缆的整组试验电路的试验方法,其特征 在于本方法包括如下步骤: 步骤一、对避雷器和电缆进行单体绝缘电阻测试,绝缘电阻测试合格后按整组试验电 路正确接线; / 步骤二、将试验直流电源电压升到SkV,同时观察第二y A表指示有无突变现象,读取第 一U A表的电流值,完成电缆第一级泄漏电流测量; ’ 步骤二、将试知:直》111电源电压升到l;3kV,冋时观察第二y A表指示有无突变现象,读取 第一 ii A表的电流值,完成电缆第二级泄漏电流测量; ’ 步骤四二将试验直流电源电压匀速上升,同时观察第一 y A表指示有无突变现象当第 二y A表显示值达到lm A电流值时,读取试验直流电源电压值,完成避雷器Im A动^电压值 测量; 步骤五、将试验直流电源电压匀速下降到75%避雷器lm A动作电压值,读 的电流值,完成75%避雷器1mA动作电压值下的泄漏电流测量; ’ ' 一 步骤六、将试验直流电源电压匀速下降到零,切断试验直流电源,完成避雷器与电缆的 整组试验。
CN201310060935.4A 2013-02-27 2013-02-27 10kV氧化锌避雷器与电缆的整组试验电路和方法 Active CN104007354B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310060935.4A CN104007354B (zh) 2013-02-27 2013-02-27 10kV氧化锌避雷器与电缆的整组试验电路和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310060935.4A CN104007354B (zh) 2013-02-27 2013-02-27 10kV氧化锌避雷器与电缆的整组试验电路和方法

Publications (2)

Publication Number Publication Date
CN104007354A CN104007354A (zh) 2014-08-27
CN104007354B true CN104007354B (zh) 2018-07-20

Family

ID=51368106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310060935.4A Active CN104007354B (zh) 2013-02-27 2013-02-27 10kV氧化锌避雷器与电缆的整组试验电路和方法

Country Status (1)

Country Link
CN (1) CN104007354B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107884685A (zh) * 2017-10-09 2018-04-06 中冶天工集团有限公司 一种查找高压电缆外绝缘不明显损伤的方法
CN108519537B (zh) * 2018-03-01 2019-10-18 华南理工大学 一种电缆金属护套多点接地下大地漏电流计算方法
CN111025094A (zh) * 2019-11-19 2020-04-17 云南电网有限责任公司临沧供电局 一种以泄露电流变化系数为依据的xlpe电缆可靠性评价方法
CN111426981A (zh) * 2020-04-27 2020-07-17 江苏图腾电气科技有限公司 一种防漏电电流电源柜的故障检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675773A (en) * 1984-11-05 1987-06-23 Hitachi, Ltd. Transmission line protection system
CN2445334Y (zh) * 2000-09-29 2001-08-29 常州太平洋自动化技术有限公司 避雷器泄漏电流在线监测装置
CN201637789U (zh) * 2009-11-09 2010-11-17 南京欧亚大陆电气设备有限公司 避雷器用在线监测器远传装置及其监测系统
CN102023249A (zh) * 2009-09-17 2011-04-20 上海市电力公司超高压输变电公司 一种220kV氧化锌避雷器不拆高压引线的预试方法
CN102298109A (zh) * 2011-07-27 2011-12-28 华北电网有限公司唐山供电公司 电力电缆交流耐压试验电路模型的确定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675773A (en) * 1984-11-05 1987-06-23 Hitachi, Ltd. Transmission line protection system
CN2445334Y (zh) * 2000-09-29 2001-08-29 常州太平洋自动化技术有限公司 避雷器泄漏电流在线监测装置
CN102023249A (zh) * 2009-09-17 2011-04-20 上海市电力公司超高压输变电公司 一种220kV氧化锌避雷器不拆高压引线的预试方法
CN201637789U (zh) * 2009-11-09 2010-11-17 南京欧亚大陆电气设备有限公司 避雷器用在线监测器远传装置及其监测系统
CN102298109A (zh) * 2011-07-27 2011-12-28 华北电网有限公司唐山供电公司 电力电缆交流耐压试验电路模型的确定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
220kV氧化锌避雷器泄漏电流超标的原因分析;蒋庆云,廉国海;《湖南电力》;20121031;第32卷(第5期);第17-20页 *

Also Published As

Publication number Publication date
CN104007354A (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
Christodoulou et al. Measurement of the resistive leakage current in surge arresters under artificial rain test and impulse voltage subjection
CN104007354B (zh) 10kV氧化锌避雷器与电缆的整组试验电路和方法
CN203502580U (zh) 绝缘在线监测装置校验系统
CN104698311B (zh) 一种直流线路直流避雷器带电检测方法
CN104569609A (zh) 一种测量引下线异频电流的杆塔接地阻抗测试方法
Judendorfer et al. Conductivity measurements of electrical insulating oils
CN101726514A (zh) 基于回复电压的油浸式变压器固体绝缘含水量评估方法
CN102128983B (zh) 输配电线路相位测定方法
CN104880652A (zh) 一种开关柜带电局放测试系统及其电压信号提取装置
CN107991584A (zh) 一种基于极化/去极化电流的变压器电容式套管绝缘老化测试方法
Heizmann et al. On-site partial discharge measurements on premoulded cross-bonding joints of 170 kV XLPE and EPR cables
CN210071942U (zh) 一种在线接地网络及在线接地电阻监测装置
CN106526383A (zh) 避雷器状态监测系统及监测方法
CN106501584A (zh) 氧化锌避雷器泄漏电流测量方法
CN103293400B (zh) 避雷器直流测试系统
CN204789832U (zh) Cvt高压试验的换线装置及cvt高压试验装置
CN107356849A (zh) 气体绝缘开关中支撑绝缘子局部放电检测装置和方法
CN103454536A (zh) 一种电力变压器试验方法
CN201945654U (zh) 电压互感器二次接地测试仪
KR20140049211A (ko) 변전설비의 내부 절연상태를 감시하기 위한 시스템 및 방법
CN106556745B (zh) 一种直流分压器及其电容量和介质损耗检测方法
CN109782070A (zh) 一种pt测试短路阻抗的方法
CN202649309U (zh) 输电线路直流电阻测试系统
CN204679581U (zh) 一种便携式电流互感器极性测试装置
CN104931740B (zh) 用于零磁通ct二次电子模块试验接线的快速转换装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: No. 3520 Tongji Road, Baoshan District, Shanghai, 201900

Patentee after: Baowu equipment Intelligent Technology Co., Ltd

Address before: 201900, 335, Pu Pu Road, Shanghai, Baoshan District

Patentee before: SHANGHAI BAOSTEEL INDUSTRY TECHNOLOGICAL SERVICE Co.,Ltd.