CN103994928A - Mechanics-acoustics combined testing method in orientated rock extrusion fracture process - Google Patents
Mechanics-acoustics combined testing method in orientated rock extrusion fracture process Download PDFInfo
- Publication number
- CN103994928A CN103994928A CN201410236260.9A CN201410236260A CN103994928A CN 103994928 A CN103994928 A CN 103994928A CN 201410236260 A CN201410236260 A CN 201410236260A CN 103994928 A CN103994928 A CN 103994928A
- Authority
- CN
- China
- Prior art keywords
- rock
- rock sample
- ultrasonic
- loading
- fracture process
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011435 rock Substances 0.000 title claims abstract description 93
- 238000012360 testing method Methods 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000001125 extrusion Methods 0.000 title claims abstract description 20
- 239000000523 sample Substances 0.000 claims abstract description 89
- 235000021355 Stearic acid Nutrition 0.000 claims description 3
- 239000007822 coupling agent Substances 0.000 claims description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 3
- -1 polytetrafluoroethylene Polymers 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 239000008117 stearic acid Substances 0.000 claims description 3
- 239000003831 antifriction material Substances 0.000 claims 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- 238000007405 data analysis Methods 0.000 abstract 1
- 206010017076 Fracture Diseases 0.000 description 15
- 208000010392 Bone Fractures Diseases 0.000 description 14
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 238000005755 formation reaction Methods 0.000 description 4
- 238000013028 emission testing Methods 0.000 description 2
- 206010010214 Compression fracture Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
技术领域technical field
本发明属于岩石断裂过程的物理力学行为研究技术领域,特别是涉及一种岩石定向挤压断裂过程的力学声学联合测试方法。The invention belongs to the technical field of physical and mechanical behavior research of rock fracture process, and in particular relates to a mechanical-acoustic joint test method of rock directional extrusion fracture process.
背景技术Background technique
研究岩石断裂过程的物理力学行为,对地震的预测、地震的机理研究及岩层构造应力场的反演都具有十分重要的作用。The study of the physical and mechanical behavior of the rock fracture process plays a very important role in the prediction of earthquakes, the study of the mechanism of earthquakes, and the inversion of the stress field of rock formations.
现阶段,在实验室环境下开展岩石挤压断裂的物理力学实验,是作为相关技术人员研究岩石断裂过程的物理力学行为的一种手段。At this stage, carrying out physical and mechanical experiments of rock extrusion fracture in the laboratory environment is a means for relevant technicians to study the physical and mechanical behavior of rock fracture process.
相关技术人员已经在单轴和三轴条件下进行了岩石压缩破裂的应力应变力学测试,但是实验过程中总会出现多组宏观裂隙面和宏观裂纹的交叉复合现象,这给实验结果的分析带来了极大的不便,无法很好的说明岩石挤压断裂现象。Relevant technicians have carried out stress-strain mechanical tests of rock compression fractures under uniaxial and triaxial conditions, but there will always be multiple groups of macro-crack surfaces and macro-cracks in the experimental process. It was a great inconvenience, and it was impossible to explain the phenomenon of rock extrusion and fracture well.
由于岩石在挤压断裂过程中,往往伴随着声发射现象,研究表明,岩石挤压断裂过程中发出的声学信号可以很好地解释岩石断裂过程的物理力学行为,因此相关技术人员确定了两种主要的声学测试方法,包括声发射检测法和超声检测法,通过声发射检测法可以了解岩石的损伤演化过程,通过超声检测法可以很好的表征岩石的内部变化和损伤程度。Because rocks are often accompanied by acoustic emission phenomena in the process of extrusion and fracture, studies have shown that the acoustic signals emitted during rock extrusion and fracture can well explain the physical and mechanical behavior of rock fractures, so related technicians have identified two The main acoustic testing methods include acoustic emission testing and ultrasonic testing. Acoustic emission testing can be used to understand the damage evolution process of rocks, and ultrasonic testing can well characterize the internal changes and damage degrees of rocks.
但是,目前还没有一种有效的方法可以将力学测试与声学测试联合在一起进行同时测试,并实现测试过程中避免多组宏观裂隙面的出现和宏观裂纹交叉复合现象的发生,想要进一步研究岩石挤压断裂过程中的物理力学行为,现有测试技术暂时还无法满足这一目标。However, there is currently no effective method that can combine mechanical testing and acoustic testing for simultaneous testing, and avoid the appearance of multiple groups of macroscopic crack surfaces and the occurrence of macroscopic crack cross-combination during the testing process. I want to study further For the physical and mechanical behavior of rock during extrusion and fracture, the existing testing technology cannot meet this goal for the time being.
发明内容Contents of the invention
针对现有技术存在的问题,本发明提供一种岩石定向挤压断裂过程的力学声学联合测试方法,通过局部定向加载的方式,人工控制宏观裂隙面的形成,有效避免多组宏观裂隙面的产生和宏观裂纹交叉复合现象的发生;进行力学测试的同时,同步实现声学测试,为进一步研究岩石挤压断裂过程中的物理力学行为提供了可能。Aiming at the problems existing in the prior art, the present invention provides a combined mechanical-acoustic testing method for the directional extrusion fracture process of rocks. By means of local directional loading, the formation of macro-crack surfaces is manually controlled, effectively avoiding the generation of multiple sets of macro-crack surfaces. The phenomenon of cross-combination with macroscopic cracks occurs; while the mechanical test is carried out, the acoustic test is simultaneously realized, which provides the possibility for further research on the physical and mechanical behavior of the rock extrusion fracture process.
为了实现上述目的,本发明采用如下技术方案:一种岩石定向挤压断裂过程的力学声学联合测试方法,包括如下步骤:In order to achieve the above object, the present invention adopts the following technical scheme: a mechanical-acoustic joint testing method for rock directional extrusion fracture process, comprising the following steps:
步骤一:制备岩石试样,岩石试样的长、高、宽尺寸比例为3:2:1;Step 1: Prepare a rock sample, the ratio of length, height and width of the rock sample is 3:2:1;
步骤二:在岩石试样的两个长×宽端面上分别划出应力加载区,应力加载区位于长×宽端面中心;Step 2: Delineate the stress loading area on the two long × wide end faces of the rock sample respectively, and the stress loading area is located at the center of the long × wide end face;
步骤三:在岩石试样的一个长×高端面上贴应变片;Step 3: Paste strain gauges on one long × high-end surface of the rock sample;
步骤四:在岩石试样的两个高×宽端面上固定超声波探头,包括超声波发射探头和超声波接收探头,超声波发射探头位于一个高×宽端面中心,超声波接收探头位于另一个高×宽端面中心;Step 4: Fix the ultrasonic probes on the two high × wide end faces of the rock sample, including the ultrasonic transmitting probe and the ultrasonic receiving probe. The ultrasonic transmitting probe is located at the center of one high × wide end face, and the ultrasonic receiving probe is located at the center of the other high × wide end face. ;
步骤五:在岩石试样的长×高端面上固定声发射传感器;Step five: fixing the acoustic emission sensor on the long × high-end surface of the rock sample;
步骤六:将岩石试样置于岩石压力机的上压头与下压头之间,在岩石试样与上压头之间加装上端局部加载压块,在岩石试样与下压头之间加装下端局部加载压块,上端局部加载压块、下端局部加载压块同时与岩石试样的长×宽端面的应力加载区居中对齐;Step 6: Place the rock sample between the upper indenter and the lower indenter of the rock press, add a local loading block at the upper end between the rock sample and the upper indenter, and place the rock sample and the lower indenter Install the lower end partial loading press block between them, the upper end partial loading press block and the lower end partial loading press block are aligned with the stress loading area of the long × wide end face of the rock sample at the same time;
步骤七:启动岩石压力机,对岩石试样进行阶梯式应力加载;同时,通过声发射传感器对声发射信号进行连续实时采集,通过超声波探头采集超声波信号,通过应变片采集应变信号,直到岩石试样出现定向的宏观裂纹,加载停止;Step 7: Start the rock press, and carry out stepwise stress loading on the rock sample; at the same time, continuously and real-time collect the acoustic emission signal through the acoustic emission sensor, collect the ultrasonic signal through the ultrasonic probe, and collect the strain signal through the strain gauge until the rock test Oriented macroscopic cracks appear, and the loading stops;
步骤八:提取测试数据,并对获取的测试数据进行分析。Step 8: Extract test data and analyze the acquired test data.
所述的超声波发射探头、超声波接收探头与岩石试样之间通过耦合剂进行耦合。The ultrasonic transmitting probe, the ultrasonic receiving probe and the rock sample are coupled through a coupling agent.
所述上端局部加载压块、下端局部加载压块均为刚性垫块,其长度为岩石试样长度的一半,其宽度与岩石试样相等。The upper and lower partial loading press blocks are both rigid pads, the length of which is half the length of the rock sample, and the width is equal to that of the rock sample.
在所述岩石试样与上端局部加载压块、下端局部加载压块之间均加入了减摩剂,减摩剂采用聚四氟乙烯膜或硬脂酸合成减摩剂。A friction reducer is added between the rock sample and the locally loaded compact at the upper end, and the locally loaded compact at the lower end. The friction reducer is polytetrafluoroethylene film or stearic acid synthetic friction reducer.
在所述的上端局部加载压块与上压头之间安装有平衡球头。A balance ball head is installed between the local loading pressure block at the upper end and the upper pressure head.
通过所述的超声波探头采集超声波信号需要在应力加载台阶处进行,即应力加载每增加一级,便进行一次超声波测试。Acquisition of ultrasonic signals by the ultrasonic probe needs to be performed at the stress loading step, that is, an ultrasonic test is performed every time the stress loading increases by one level.
本发明的有益效果:Beneficial effects of the present invention:
本发明能够通过局部定向加载的方式,人工控制宏观裂隙面的形成,有效避免多组宏观裂隙面的产生和宏观裂纹交叉复合现象的发生;进行力学测试的同时,同步实现声学测试,为进一步研究岩石挤压断裂过程中的物理力学行为提供了可能。The present invention can artificially control the formation of macro-crack surfaces by means of local directional loading, effectively avoiding the generation of multiple sets of macro-crack surfaces and the occurrence of cross-combination phenomena of macro-cracks; while performing mechanical tests, the simultaneous realization of acoustic tests provides further research The physical and mechanical behavior in the process of rock extrusion and fracture provides the possibility.
附图说明Description of drawings
图1为实施例中岩石试样测试前的安装状态示意图;Fig. 1 is the installation state schematic diagram before rock sample test among the embodiment;
图2为实施例中岩石试样应力加载曲线图;Fig. 2 is a rock sample stress loading curve figure in the embodiment;
图3为实施例中应变与应力、超声波波速、声发射脉冲数关系曲线图;Fig. 3 is the graph of relationship between strain and stress, ultrasonic wave velocity, and acoustic emission pulse number in the embodiment;
图中,1—岩石试样,2—短栅应变片,3—长栅应变片,4—上端局部加载压块,5—下端局部加载压块,6—平衡球头,7—超声波发射探头,8—超声波接收探头,9—声发射传感器,10—上压头,11—下压头。In the figure, 1—rock sample, 2—short grid strain gauge, 3—long grid strain gauge, 4—partially loaded pressure block at the upper end, 5—locally loaded pressure block at the lower end, 6—balance ball head, 7—ultrasonic transmitting probe , 8—ultrasonic receiving probe, 9—acoustic emission sensor, 10—upper pressure head, 11—lower pressure head.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明做进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
所述的岩石定向挤压断裂过程的力学声学联合测试方法,包括如下步骤:The mechanical-acoustic combined testing method of the rock directional extrusion fracture process comprises the following steps:
步骤一:制备岩石试样1,其长、高、宽的尺寸比例为3:2:1,本实施例中,岩石试样1的长、高、宽尺寸为200mm、100mm、50mm,岩石试样1各端面需要进行磨平处理,使每两个平行端面的平行误差不超过0.02mm;Step 1: Prepare the rock sample 1, the size ratio of its length, height, and width is 3:2:1. In this embodiment, the length, height, and width of the rock sample 1 are 200mm, 100mm, and 50mm. Each end face of sample 1 needs to be ground and flattened so that the parallel error of each two parallel end faces does not exceed 0.02mm;
步骤二:在岩石试样1的两个长×宽(200mm×50mm)端面上分别划出应力加载区,应力加载区位于长×宽(200mm×50mm)端面中心;Step 2: Delineate stress loading areas on the two length x width (200mm x 50mm) end faces of the rock sample 1 respectively, and the stress loading area is located at the center of the length x width (200mm x 50mm) end faces;
步骤三:在岩石试样1的一个长×高(200mm×100mm)端面上贴应变片,应变片包括短栅应变片2和长栅应变片3,短栅应变片2用于测量岩石试样1一点的局部应变,长栅应变片3用于测量岩石试样1整体的平均应变;Step 3: Paste strain gauges on a long × high (200mm × 100mm) end surface of the rock sample 1. The strain gauges include short-grid strain gauge 2 and long-grid strain gauge 3, and the short-grid strain gauge 2 is used to measure the rock sample The local strain at one point, the long grid strain gauge 3 is used to measure the average strain of the rock sample 1 as a whole;
步骤四:在岩石试样1的两个高×宽(100mm×50mm)端面上固定超声波探头,包括超声波发射探头7和超声波接收探头8,超声波发射探头7位于一个高×宽(100mm×50mm)端面中心,超声波接收探头8位于另一个高×宽(100mm×50mm)端面中心;Step 4: Fix the ultrasonic probes on the two high × wide (100mm × 50mm) end faces of the rock sample 1, including the ultrasonic transmitting probe 7 and the ultrasonic receiving probe 8, and the ultrasonic transmitting probe 7 is located on a height × width (100mm × 50mm) At the center of the end face, the ultrasonic receiving probe 8 is located at the center of another end face with height×width (100mm×50mm);
步骤五:在岩石试样1的长×高(200mm×100mm)端面上固定声发射传感器9;Step 5: fixing the acoustic emission sensor 9 on the end face of the length × height (200mm × 100mm) of the rock sample 1;
步骤六:将岩石试样1置于岩石压力机的上压头10与下压头11之间,在岩石试样1与上压头10之间加装上端局部加载压块4,在岩石试样1与下压头11之间加装下端局部加载压块5,上端局部加载压块4、下端局部加载压块5同时与岩石试样1的长×宽(200mm×50mm)端面的应力加载区居中对齐,如图1所示;Step 6: Place the rock sample 1 between the upper indenter 10 and the lower indenter 11 of the rock press, and install an upper-end partial loading briquetting block 4 between the rock sample 1 and the upper indenter 10. Between the sample 1 and the lower indenter 11, add the lower end partial loading press block 5, the upper end partial loading press block 4, and the lower end partial loading press block 5 simultaneously with the stress loading of the end face of the length × width (200mm × 50mm) of the rock sample 1. The area is centered, as shown in Figure 1;
步骤七:启动岩石压力机,对岩石试样1进行阶梯式应力加载,加载梯度为20KN,加载速率为1KN/s,如图2所示;同时,通过声发射传感器9对声发射信号进行连续实时采集,通过超声波探头采集超声波信号,通过应变片采集应变信号,直到岩石试样1出现定向的宏观裂纹,加载停止;Step 7: Start the rock press, and perform stepwise stress loading on the rock sample 1 with a loading gradient of 20KN and a loading rate of 1KN/s, as shown in Figure 2; at the same time, the acoustic emission signal is continuously monitored through the acoustic emission sensor 9 Real-time collection, collecting ultrasonic signals through ultrasonic probes, and collecting strain signals through strain gauges, until directional macroscopic cracks appear in rock sample 1, and the loading stops;
步骤八:提取测试数据,并对获取的测试数据进行分析,通过测试数据绘制应变与应力、超声波波速、声发射脉冲数关系曲线图,具体如图3所示。Step 8: Extract the test data, analyze the obtained test data, draw the relationship curve between strain and stress, ultrasonic wave velocity, and acoustic emission pulse number through the test data, as shown in Figure 3.
为了减小测试误差,提高测试精度,所述的超声波发射探头7、超声波接收探头8与岩石试样1之间通过耦合剂进行耦合。In order to reduce test errors and improve test accuracy, the ultrasonic transmitting probe 7, the ultrasonic receiving probe 8 and the rock sample 1 are coupled through a coupling agent.
所述上端局部加载压块4、下端局部加载压块5均为刚性垫块,其长度为岩石试样1长度的一半,其宽度与岩石试样1相等,其作用是控制宏观裂纹的形成。The upper locally loaded briquetting block 4 and the lower end locally loaded briquetting block 5 are both rigid pads whose length is half the length of the rock sample 1 and whose width is equal to that of the rock sample 1, and their function is to control the formation of macroscopic cracks.
为了减小岩石试样1与上端局部加载压块4、下端局部加载压块5之间的摩擦,降低摩擦对声发射信号的干扰,在所述岩石试样1与上端局部加载压块4、下端局部加载压块5之间均加入了减摩剂,减摩剂采用聚四氟乙烯膜或硬脂酸合成减摩剂。In order to reduce the friction between the rock sample 1 and the local loading briquetting block 4 at the upper end and the local loading briquetting block 5 at the lower end, and reduce the interference of friction on the acoustic emission signal, the rock sample 1 and the local loading briquetting block 4 at the upper end, A friction reducer is added between the local loading briquetting blocks 5 at the lower end, and the friction reducer adopts polytetrafluoroethylene film or stearic acid synthetic friction reducer.
为了保证岩石试样1的受力平衡性,在所述的上端局部加载压块4与上压头10之间安装有平衡球头6。In order to ensure the force balance of the rock sample 1 , a balance ball head 6 is installed between the local loading briquetting block 4 at the upper end and the upper pressing head 10 .
为了防止声发射信号与超声波信号的相互干扰,通过所述的超声波探头采集超声波信号需要在应力加载台阶处进行,即应力加载每增加一级,便进行一次超声波测试。In order to prevent the mutual interference between the acoustic emission signal and the ultrasonic signal, the ultrasonic signal collection by the ultrasonic probe needs to be carried out at the stress loading step, that is, an ultrasonic test is performed every time the stress loading increases by one level.
实施例中的方案并非用以限制本发明的专利保护范围,凡未脱离本发明所为的等效实施或变更,均包含于本案的专利范围中。The solutions in the embodiments are not intended to limit the scope of patent protection of the present invention, and all equivalent implementations or changes that do not deviate from the present invention are included in the patent scope of this case.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410236260.9A CN103994928B (en) | 2014-05-29 | 2014-05-29 | A kind of mechanics acoustics joint test method of rock orientation extrusion fracture process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410236260.9A CN103994928B (en) | 2014-05-29 | 2014-05-29 | A kind of mechanics acoustics joint test method of rock orientation extrusion fracture process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103994928A true CN103994928A (en) | 2014-08-20 |
CN103994928B CN103994928B (en) | 2016-06-22 |
Family
ID=51309153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410236260.9A Expired - Fee Related CN103994928B (en) | 2014-05-29 | 2014-05-29 | A kind of mechanics acoustics joint test method of rock orientation extrusion fracture process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103994928B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107340229A (en) * | 2017-06-22 | 2017-11-10 | 中国矿业大学 | A kind of experimental provision and method for testing coal and rock dynamics |
CN107664662A (en) * | 2017-10-30 | 2018-02-06 | 西安交通工程学院 | Long range rail failure detector |
CN107966364A (en) * | 2017-11-20 | 2018-04-27 | 河北工业大学 | A kind of recognition methods of the rock type materials rupture property based on deformation test |
CN108020269A (en) * | 2018-01-30 | 2018-05-11 | 吉林大学 | A kind of acoustic emission test device detected for axial workpiece bending crack with fracture |
CN108240942A (en) * | 2016-12-26 | 2018-07-03 | 中国科学院地质与地球物理研究所 | A kind of rock fracturing experiment system and experiment method |
CN108871984A (en) * | 2018-06-08 | 2018-11-23 | 清华大学 | Indentation test device and method based on load and deformation field measurement |
CN109142045A (en) * | 2017-06-28 | 2019-01-04 | 中国石油化工股份有限公司 | A kind of system and method detecting rock core destruction signals |
CN110208053A (en) * | 2019-01-25 | 2019-09-06 | 东北大学 | A kind of production of bedded rock thin plate sample and loading method |
CN111272565A (en) * | 2020-03-10 | 2020-06-12 | 大连理工大学 | Test method for detecting rock mechanical parameters |
CN112595598A (en) * | 2020-11-24 | 2021-04-02 | 西安科技大学 | Inclined layered coal rock physical strength-sound-light-wave integrated testing device and method |
CN113514313A (en) * | 2021-04-22 | 2021-10-19 | 中煤科工集团重庆研究院有限公司 | Device and method for preparing mud rock samples in batches |
CN118641320A (en) * | 2024-06-01 | 2024-09-13 | 中国地质大学(北京) | A hierarchical true triaxial indenter for longitudinal and transverse wave velocity measurement |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101625296A (en) * | 2009-08-06 | 2010-01-13 | 孙仙山 | Multifunctional material mechanics testing machine with functions of tension torsion and pressure torsion |
CN201392291Y (en) * | 2009-02-28 | 2010-01-27 | 孙仙山 | Multifunctional material mechanical testing machine with tension-torsion and compression-torsion functions |
CN102954914A (en) * | 2012-10-31 | 2013-03-06 | 长江水利委员会长江科学院 | True triaxial test ultrasonic wave and acoustic emission testing system and testing method thereof |
-
2014
- 2014-05-29 CN CN201410236260.9A patent/CN103994928B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201392291Y (en) * | 2009-02-28 | 2010-01-27 | 孙仙山 | Multifunctional material mechanical testing machine with tension-torsion and compression-torsion functions |
CN101625296A (en) * | 2009-08-06 | 2010-01-13 | 孙仙山 | Multifunctional material mechanics testing machine with functions of tension torsion and pressure torsion |
CN102954914A (en) * | 2012-10-31 | 2013-03-06 | 长江水利委员会长江科学院 | True triaxial test ultrasonic wave and acoustic emission testing system and testing method thereof |
Non-Patent Citations (1)
Title |
---|
梁天成等: "利用声发射和波速变化判定岩石损伤状态", 《中国地震》, vol. 28, no. 2, 30 June 2012 (2012-06-30) * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108240942A (en) * | 2016-12-26 | 2018-07-03 | 中国科学院地质与地球物理研究所 | A kind of rock fracturing experiment system and experiment method |
CN107340229A (en) * | 2017-06-22 | 2017-11-10 | 中国矿业大学 | A kind of experimental provision and method for testing coal and rock dynamics |
CN109142045A (en) * | 2017-06-28 | 2019-01-04 | 中国石油化工股份有限公司 | A kind of system and method detecting rock core destruction signals |
CN107664662A (en) * | 2017-10-30 | 2018-02-06 | 西安交通工程学院 | Long range rail failure detector |
CN107664662B (en) * | 2017-10-30 | 2023-12-22 | 西安交通工程学院 | Long-distance steel rail damage detector |
CN107966364B (en) * | 2017-11-20 | 2019-12-27 | 河北工业大学 | Rock material fracture property identification method based on deformation test |
CN107966364A (en) * | 2017-11-20 | 2018-04-27 | 河北工业大学 | A kind of recognition methods of the rock type materials rupture property based on deformation test |
CN108020269A (en) * | 2018-01-30 | 2018-05-11 | 吉林大学 | A kind of acoustic emission test device detected for axial workpiece bending crack with fracture |
CN108020269B (en) * | 2018-01-30 | 2023-09-29 | 吉林大学 | Acoustic emission testing device for detecting bending cracks and fractures of shaft parts |
CN108871984A (en) * | 2018-06-08 | 2018-11-23 | 清华大学 | Indentation test device and method based on load and deformation field measurement |
CN110208053A (en) * | 2019-01-25 | 2019-09-06 | 东北大学 | A kind of production of bedded rock thin plate sample and loading method |
CN110208053B (en) * | 2019-01-25 | 2021-05-25 | 东北大学 | Method for manufacturing and loading layered rock sheet sample |
CN111272565A (en) * | 2020-03-10 | 2020-06-12 | 大连理工大学 | Test method for detecting rock mechanical parameters |
CN112595598A (en) * | 2020-11-24 | 2021-04-02 | 西安科技大学 | Inclined layered coal rock physical strength-sound-light-wave integrated testing device and method |
CN113514313A (en) * | 2021-04-22 | 2021-10-19 | 中煤科工集团重庆研究院有限公司 | Device and method for preparing mud rock samples in batches |
CN113514313B (en) * | 2021-04-22 | 2024-01-26 | 中煤科工集团重庆研究院有限公司 | Device and method for preparing mudstone samples in batches |
CN118641320A (en) * | 2024-06-01 | 2024-09-13 | 中国地质大学(北京) | A hierarchical true triaxial indenter for longitudinal and transverse wave velocity measurement |
Also Published As
Publication number | Publication date |
---|---|
CN103994928B (en) | 2016-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103994928B (en) | A kind of mechanics acoustics joint test method of rock orientation extrusion fracture process | |
CN104965027B (en) | The analysis method extended based on image recognition and sound emission positioning and anchoring rock cranny | |
CN100596328C (en) | A model experiment method for deep rockburst process | |
US20220136945A1 (en) | Method for evaluating anchor bolt embedment in concrete | |
CN102928512B (en) | Test method of rock aging deterioration process | |
CN113218766B (en) | An identification method of rock crack initiation stress and damage stress based on moment tensor analysis | |
CN103852377B (en) | Clash into number identification Rock Under Uniaxial Compression based on accumulative sound emission and compress the method opening resistance to spalling | |
CN106053238A (en) | Unilateral unloading test device for brittle rock in biaxial stress state and test method of unilateral unloading test device | |
CN102778387A (en) | Testing device and testing method for rock cracked through coupling of dynamic static load and water pressure | |
CN106198753A (en) | A kind of method improving Acoustic Emission location temporal-spatial evolution Process Precision | |
CN106370812A (en) | Rock alteration zoning comprehensive quantitative discrimination method | |
CN110487635B (en) | Rapid testing system and method for core resistivity and wave velocity under loading state | |
CN204556385U (en) | Rock Under Uniaxial Compression compression test crack propagation process observation device | |
CN106370730A (en) | Method of precisely measuring damage threshold value of brittle materials on the basis of acoustic emission technology | |
CN106192969A (en) | A kind of based on ball-type full discharge orifice pressure feeler inspection penetrometer and coefficient of consolidation evaluation methodology thereof | |
CN103760008A (en) | Method for determining fracture closure stress of rock under uniaxial compression condition | |
CN108519437A (en) | A Multiple Regression Prediction Model of Uniaxial Compressive Strength of Coal Samples and Its Establishment Method | |
CN108612526A (en) | A kind of drilling in-situ test feeler inspection loading device and application method | |
CN108344806A (en) | A method of Rock Damage degree under blast action is calculated based on nuclear magnetic resonance | |
CN108896415B (en) | Rock mass creep impact test method | |
CN104165795B (en) | A kind of residue anti-bending bearing capacity assay method of ancient building wooden frame | |
CN112595598A (en) | Inclined layered coal rock physical strength-sound-light-wave integrated testing device and method | |
CN206399899U (en) | Sensor Fixture for Uniaxial Compression Acoustic Emission Test of Cubic Specimen | |
CN209182151U (en) | A Measuring Device for Apparent Resistivity in Rock Damage and Destruction Test | |
CN112100842B (en) | A new method for identifying abnormal geostress areas and measuring geostress in a large area |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160622 |