CN103984788A - Automatic intelligent design and optimization system for anchor bolt support of coal tunnel - Google Patents
Automatic intelligent design and optimization system for anchor bolt support of coal tunnel Download PDFInfo
- Publication number
- CN103984788A CN103984788A CN201310746911.4A CN201310746911A CN103984788A CN 103984788 A CN103984788 A CN 103984788A CN 201310746911 A CN201310746911 A CN 201310746911A CN 103984788 A CN103984788 A CN 103984788A
- Authority
- CN
- China
- Prior art keywords
- roadway
- subsystem
- surrounding rock
- stability
- tunnel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003245 coal Substances 0.000 title claims abstract description 32
- 238000013461 design Methods 0.000 title claims abstract description 31
- 238000005457 optimization Methods 0.000 title claims abstract description 30
- 239000011435 rock Substances 0.000 claims abstract description 44
- 238000012545 processing Methods 0.000 claims abstract description 7
- 238000012549 training Methods 0.000 claims abstract description 7
- 238000013528 artificial neural network Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 20
- 238000011156 evaluation Methods 0.000 claims description 11
- 238000004088 simulation Methods 0.000 claims description 6
- 238000004422 calculation algorithm Methods 0.000 claims description 3
- 238000012942 design verification Methods 0.000 abstract description 7
- 239000002131 composite material Substances 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 6
- 238000011161 development Methods 0.000 abstract description 5
- 239000000725 suspension Substances 0.000 abstract description 3
- 239000000523 sample Substances 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 7
- 210000002569 neuron Anatomy 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 238000007781 pre-processing Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000009412 basement excavation Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 238000007621 cluster analysis Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000033772 system development Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及一种煤巷锚杆支护自动智能设计与优化系统,它包括通过处理用户输入的数据或者调用相关知识库中的参数实现对巷道围岩稳定性的分类与评估的巷道围岩指标获取与稳定性分类子系统;基于系统内部知识库内的样本巷道训练BP神经网络建立训练模型实现该巷道的锚杆支护参数智能匹配的锚杆支护参数智能匹配子系统;根据锚杆支护参数智能能匹配子系统得到的锚杆支护参数基于悬吊理论、组合梁理论、组合拱理论、能量理论进行理论验算,自动对各种支护方案进行分析,以选取满足巷道围岩变形要求的支护方案作为最优支护方案推荐给用户的支护设计验证与优化子系统。本系统有效地保证了锚杆支护结构与参数的科学性与合理性,提高了锚杆支护系统的可靠性,促进了我国煤矿巷道锚杆支护技术的健康发展。
The invention relates to an automatic intelligent design and optimization system for coal roadway bolt support, which includes a roadway surrounding rock index for classifying and evaluating the stability of the roadway surrounding rock by processing the data input by the user or calling the parameters in the relevant knowledge base Acquisition and stability classification subsystem; based on the sample roadway training BP neural network in the internal knowledge base of the system to establish a training model to realize the bolting parameter intelligent matching subsystem of the roadway's bolting parameter intelligent matching; according to the bolting parameter intelligent matching subsystem; The bolt support parameters obtained by the protection parameter intelligent matching subsystem are theoretically checked and calculated based on suspension theory, composite beam theory, composite arch theory, and energy theory. The required support scheme is recommended to the user's support design verification and optimization subsystem as the optimal support scheme. This system effectively guarantees the scientificity and rationality of the bolt support structure and parameters, improves the reliability of the bolt support system, and promotes the healthy development of my country's coal mine roadway bolt support technology.
Description
技术领域 technical field
本发明涉及一种用于煤矿巷道锚杆支护设计与优化的系统。 The invention relates to a system for the design and optimization of bolt support in coal mine roadways. the
背景技术 Background technique
随着煤炭工业的发展,我国高产高效工作面越来越多,产量大幅度增长。煤矿采掘支护是十分重要的生产环节。锚杆技术是一项系统工程,它涉及到设计、施工、支护材料、实测技术手段等各个方面。锚杆支护设计是锚杆支护工程中的一项关键技术,关系到锚杆支护工程的质量优劣、是否安全可靠以及经济是否合理等重要问题。由于地质条件的复杂性和不确定性,支护工程设计中各种参数的选择、岩体及岩石各种性质的近似描述,支护效果的最终评价都依赖专家的经验和个人的知识水平,由于无法用定量或统一的标准做判据,不免带有较大的随意性和盲目性,如果锚杆支护形式和参数选择不合理,往往会造成两种极端,要么巷道支护强度不够,不能有效控制围岩变形,进而导致巷道出现冒顶片帮等事故;要么巷道支护强度太高不仅浪费支护材料,而且降低了巷道掘进速度,严重影响了矿井经济效益的提高。加强科技创新,实现煤炭企业信息资源的管理,加快信息化的建设,对于煤炭企业的高效、安全生产具有深远的影响和巨大的作用。随着经济快速发展和计算机及其应用知识的普及,把计算机知识应用到煤矿生产设计中,具有极其重要的理论意义和生产实践意义。 With the development of the coal industry, there are more and more high-yield and high-efficiency working faces in my country, and the output has increased significantly. Coal mine excavation support is a very important production link. Anchor technology is a systematic project, which involves design, construction, support materials, measurement techniques and other aspects. Bolt support design is a key technology in bolt support engineering, which is related to important issues such as the quality of bolt support engineering, whether it is safe and reliable, and whether the economy is reasonable. Due to the complexity and uncertainty of geological conditions, the selection of various parameters in support engineering design, the approximate description of various properties of rock mass and rocks, and the final evaluation of support effects all depend on the experience and personal knowledge of experts. Since quantitative or unified standards cannot be used as criteria, it is inevitable to be arbitrarily and blindly. If the bolt support form and parameter selection are unreasonable, two extremes will often result, or the roadway support strength is not enough, The deformation of the surrounding rock cannot be effectively controlled, which will lead to accidents such as roof collapse in the roadway; or the strength of the roadway support is too high, which not only wastes support materials, but also reduces the speed of roadway excavation, which seriously affects the improvement of mine economic benefits. Strengthening scientific and technological innovation, realizing the management of information resources of coal enterprises, and accelerating the construction of informatization will have far-reaching influence and great effect on the efficient and safe production of coal enterprises. With the rapid economic development and the popularization of computer and its application knowledge, applying computer knowledge to coal mine production design has extremely important theoretical and practical significance. the
煤炭系统由于生产的特殊性,在计算机方面技术的应用和其它行业相比,还是比较落后的。在我国矿山生产的第一线的许多单位,技术工作仍是采用传统的人海战术和手工劳动,不仅浪费大量的技术力量,而且不宜进行科学管理。因此,应用计算机技术进行煤矿生产设计和生产管理系统的开发是现代化煤矿必须首先解决的问题。 Due to the particularity of production in the coal system, the application of computer technology is still relatively backward compared with other industries. In many units in the front line of mine production in our country, the technical work still adopts the traditional human sea tactics and manual labor, which not only wastes a lot of technical force, but also is not suitable for scientific management. Therefore, the application of computer technology in coal mine production design and production management system development is a problem that must be solved first in modern coal mines. the
目前的锚杆支护设计系统操作繁琐,需要用户输入的参数过于繁杂、过于专业,很多数据一般生产现场难以获得,且要求用户具有较高的专业水平。这样就限制了此类系统在生产实际中的推广使用。 The current bolt support design system is cumbersome to operate, and the parameters that need to be input by users are too complicated and professional. Many data are difficult to obtain in the general production site, and users are required to have a high professional level. This limits the popularization and use of such systems in production practice. the
发明内容 Contents of the invention
本发明目的是为了克服现有技术的不足而提供一种智能化煤巷锚杆支护设计与优化系统。 The purpose of the invention is to provide an intelligent coal roadway bolt support design and optimization system in order to overcome the deficiencies of the prior art. the
为达到上述目的,本发明采用的技术方案是:一种煤巷锚杆支护自动智能设计与优化系统,它包括, In order to achieve the above object, the technical solution adopted in the present invention is: an automatic intelligent design and optimization system for coal roadway bolt support, which includes,
巷道围岩指标获取与稳定性分类子系统,其通过处理用户输入的数据或者调用相关知识 库中的参数,实现对巷道围岩稳定性的分类与评估; Roadway surrounding rock index acquisition and stability classification subsystem, which realizes the classification and evaluation of roadway surrounding rock stability by processing the data input by the user or calling the parameters in the relevant knowledge base;
锚杆支护参数智能匹配子系统,其通过运用BP神经网络原理,基于系统内部知识库内的样本巷道训练BP神经网络,建立训练模型,用户提供的巷道的具体相关参数后实现该巷道的锚杆支护参数智能匹配; The bolt support parameter intelligent matching subsystem, which uses the principle of BP neural network, trains the BP neural network based on the sample roadway in the internal knowledge base of the system, establishes the training model, and realizes the anchoring of the roadway after the specific relevant parameters of the roadway provided by the user Intelligent matching of pole support parameters;
支护设计验证与优化子系统,其根据所述的锚杆支护参数智能匹配子系统得到的锚杆支护参数基于悬吊理论、组合梁理论、组合拱理论进行理论验算,并调入数值模拟模块,自动进行FLAC3D建模、模拟、优化处理,自动对各种支护方案进行分析,以选取满足巷道围岩变形要求的支护方案作为最优支护方案推荐给用户。 The support design verification and optimization subsystem, which uses the bolt support parameters obtained by the intelligent matching subsystem of the bolt support parameters based on the suspension theory, composite beam theory, and composite arch theory for theoretical verification, and transfers the values The simulation module automatically performs FLAC3D modeling, simulation, and optimization processing, and automatically analyzes various support schemes to select the support scheme that meets the deformation requirements of the surrounding rock of the roadway as the optimal support scheme and recommend it to the user. the
优化地,所述的巷道围岩指标获取与稳定性分类子系统自动根据导入的样本数据,依据基于等价关系的模糊聚类法自动完成样本数据的预处理、标准化、加权、标定、聚类处理,并根据用户选择或者系统自动判断将样本巷道进行分类,给出聚类中心。 Optimally, the roadway surrounding rock index acquisition and stability classification subsystem automatically completes the sample data preprocessing, standardization, weighting, calibration, and clustering based on the imported sample data and the fuzzy clustering method based on the equivalence relationship. According to the user's selection or the system's automatic judgment, the sample lanes are classified and the cluster centers are given. the
优化地,所述的系统巷道围岩指标获取与稳定性分类子系统内部创建有一套基础样本数据。 Optimally, a set of basic sample data is created inside the subsystem of roadway surrounding rock index acquisition and stability classification. the
优化地,所述的巷道围岩指标获取与稳定性分类子系统选定顶板强度、两帮强度、底板强度、巷道埋深、直接顶初次垮落步距、顶高比、煤柱宽度、最大水平主应力等参数作为巷道围岩稳定性分类与评价指标,用户输入新掘巷道的与上述参数相对应的数据,系统自动基于模糊综合评判方法对该巷道围岩稳定性进行评判,得到该巷道的围岩稳定性类别。 Optimally, the roadway surrounding rock index acquisition and stability classification subsystem selects the roof strength, the strength of the two sides, the floor strength, the depth of the roadway, the initial collapse step of the direct roof, the ratio of the roof height, the width of the coal pillar, the maximum Parameters such as horizontal principal stress are used as the classification and evaluation indicators of the roadway surrounding rock stability. The user inputs the data corresponding to the above parameters of the newly excavated roadway, and the system automatically evaluates the stability of the roadway surrounding rock based on the fuzzy comprehensive evaluation method, and obtains the roadway The surrounding rock stability category. the
优化地,所述的锚杆支护参数智能匹配子系统,其将用于巷道围岩稳定性所需的参数进行巷道参数的预测并运算,所述的运算包括先对样本数据及支护参数知识库进行学习训练,得到优化后的权值及阀值,而后将已输入的待预测参数,与权值、阀值进行计算,得到系统预测的支护基本参数值。 Optimally, the intelligent matching subsystem of the bolt support parameters will predict and calculate the roadway parameters for the parameters required for the stability of the surrounding rock of the roadway, and the operation includes firstly analyzing the sample data and the support parameters The knowledge base conducts learning and training to obtain optimized weights and thresholds, and then calculates the input parameters to be predicted with weights and thresholds to obtain the basic support parameters predicted by the system. the
优化地,所述的巷道围岩指标获取与稳定性分类子系统与锚杆支护参数智能匹配子系统以及支护设计验证与优化子系统作为一个相互关联的一个整体使用,一次性且系统地完成巷道的围岩稳定性分类、锚杆支护参数智能匹配、支护方案智能优化工作。 Optimally, the roadway surrounding rock index acquisition and stability classification subsystem, the bolt support parameter intelligent matching subsystem and the support design verification and optimization subsystem are used as an interrelated whole, one-time and systematically The surrounding rock stability classification of the roadway, the intelligent matching of bolt support parameters, and the intelligent optimization of support schemes have been completed. the
优化地,所述的巷道围岩指标获取与稳定性分类子系统与锚杆支护参数智能匹配子系统以及支护设计验证与优化子系统根据用户的实际情况分别独立。 Optimally, the roadway surrounding rock index acquisition and stability classification subsystem, the bolt support parameter intelligent matching subsystem, and the support design verification and optimization subsystem are independent according to the actual situation of the user. the
由于上述技术方案运用,本发明与现有技术相比具有下列优点:本系统利用智能专家系统对锚杆支护进行定量分析与优化设计,有效地保证了锚杆支护结构与参数的科学性与合理性,提高了锚杆支护系统的可靠性,实现了锚杆支护的效益最大化,提高支护安全,从根本上改变了目前我国锚杆支护广泛采用的工程类比法的缺点和局限性,促进了我国煤矿巷道锚杆支护技术和数字矿山的发展。系统建立基于相关专家、8大矿区典型案例“专家级”知识 库以提供参考数据供用户调用,使得用户在只输入较少、实际可获得数据的前提下就可以满足锚杆设计的数据需求;系统秉承了简约的界面设计,“傻瓜式”的操作模式,易于掌握和使用;智能化方案决策,提高支护设计合理性和生产管理规范性、标准化;内容丰富的“专家级别”巷道支护知识库,有效保障支护方案决策的科学性和准确性;人性化和灵活的原始参数输入和选择机制,真正实现了系统的实用、可用、能用、易用的开发目标;完善的使用说明和帮助系统,有效提高技术人员设计水平。 Due to the application of the above technical solutions, the present invention has the following advantages compared with the prior art: This system uses the intelligent expert system to carry out quantitative analysis and optimal design of the bolt support, effectively ensuring the scientific nature of the bolt support structure and parameters It improves the reliability of the bolt support system, realizes the maximum benefit of the bolt support, improves the safety of the support, and fundamentally changes the shortcomings of the engineering analogy method widely used in my country's bolt support. And limitations, promote the development of my country's coal mine roadway bolting technology and digital mine. The system establishes an "expert-level" knowledge base based on relevant experts and typical cases in 8 major mining areas to provide reference data for users to call, so that users can meet the data requirements of bolt design on the premise of only a small input and actually available data; The system inherits the simple interface design and the "fool-like" operation mode, which is easy to grasp and use; the intelligent scheme decision-making improves the rationality of support design and the standardization and standardization of production management; the content-rich "expert-level" roadway support The knowledge base effectively guarantees the scientificity and accuracy of support plan decision-making; the humanized and flexible original parameter input and selection mechanism truly realizes the practical, usable, usable, and easy-to-use development goals of the system; perfect instruction for use And the help system can effectively improve the design level of technical personnel. the
附图说明 Description of drawings
附图1是本发明的煤巷锚杆支护自动智能设计与优化系统流程图; Accompanying drawing 1 is the automatic intelligent design and optimization system flowchart of coal roadway bolt support of the present invention;
附图2是本发明的巷道围岩指标获取与相应稳定性分类系统流程图; Accompanying drawing 2 is the flow chart of roadway surrounding rock index acquisition and corresponding stability classification system of the present invention;
附图3是本发明的锚杆支护参数智能匹配子系统流程图; Accompanying drawing 3 is the intelligent matching subsystem flowchart of bolting parameter of the present invention;
附图4是本发明的支护设计验证与优化子系统流程图; Accompanying drawing 4 is support design verification and optimization subsystem flowchart of the present invention;
具体实施方式 Detailed ways
下面将结合附图对本发明优选实施方案进行详细说明: Preferred embodiment of the present invention will be described in detail below in conjunction with accompanying drawing:
本发明的煤巷锚杆支护自动智能设计与优化系统,如图1所示,其包括巷道围岩指标获取与稳定性子类系统、锚杆支护参数智能匹配子系统、支护设计验证与优化子系统。具体如下: The automatic intelligent design and optimization system of coal roadway bolt support of the present invention, as shown in Figure 1, includes the roadway surrounding rock index acquisition and stability subcategory system, bolt support parameter intelligent matching subsystem, support design verification and optimization subsystems. details as follows:
一、巷道围岩指标获取与稳定性分类子系统 1. Roadway Surrounding Rock Index Acquisition and Stability Classification Subsystem
如图2所示,在巷道围岩指标获取与稳定性分类子系统中,系统选定了顶板强度σ顶、两帮强度σ帮、底板强度σ底、巷道埋深H、直接顶初次垮落步距L、顶高比N、煤柱宽度B、最大水平主应力σh等8个参数作为巷道围岩稳定性分类与评价指标。用户可以通过操作界面输入相关数据,系统同时也通过调研分析、整理收集相关资料在内部自带有围岩物理力学参数知识库、地应力知识库等知识库,以便用户在难以获取相关数据时参考选用。 As shown in Figure 2, in the roadway surrounding rock index acquisition and stability classification subsystem, the system selects roof strength σtop , two sides strength σside , floor strength σbottom , roadway burial depth H, direct roof initial collapse Eight parameters, including step distance L, top-height ratio N, coal pillar width B, and maximum horizontal principal stress σ h , are used as the classification and evaluation indexes of roadway surrounding rock stability. Users can input relevant data through the operation interface. At the same time, the system also collects relevant data through investigation, analysis, and collation. Choose.
子系统初始使用时需要导入一定数量的典型巷道样本以完成围岩稳定性分类工作。系统可自动根据导入的样本数据,依据基于等价关系的模糊聚类法自动完成样本数据的预处理、标准化、加权、标定、聚类等处理,并可以根据用户选择或者系统自动判断将样本巷道进行分类,并给出聚类中心。系统内部也有一套基础样本,以便用户在难以获得样本时调用。 When the subsystem is initially used, a certain number of typical roadway samples need to be imported to complete the classification of surrounding rock stability. The system can automatically complete the preprocessing, standardization, weighting, calibration, clustering and other processing of the sample data according to the imported sample data and the fuzzy clustering method based on the equivalence relationship, and can automatically determine the sample roadway according to the user's selection or the system's automatic judgment. Classify and give the cluster center. There is also a set of basic samples inside the system, so that users can call when it is difficult to obtain samples. the
在完成分类工作后,用户输入新掘巷道的8个相关数据,系统自动基于模糊综合评判方法对该巷道围岩稳定性进行评判,得到该巷道的围岩稳定性类别。 After completing the classification work, the user inputs 8 relevant data of the newly excavated roadway, and the system automatically judges the stability of the surrounding rock of the roadway based on the fuzzy comprehensive evaluation method, and obtains the stability category of the surrounding rock of the roadway. the
具体处理方式为: The specific processing method is:
(一)巷道围岩稳定性聚类 (1) Stability clustering of roadway surrounding rock
1.输入数据预处理 1. Input data preprocessing
将输入n条巷道样本的信息,每条巷道8个指标,分别为顶板强度σ顶、两帮强度σ帮、底板强度σ底、巷道埋深H、直接顶初次垮落步距L、顶高比N、煤柱宽度B、最大水平主应力σh。则即为一个n×8的矩阵。 The information of n roadway samples will be input, and each roadway has 8 indicators, which are the roof strength σtop , the strength of the two sides σside , the floor strength σbottom , the buried depth of the roadway H, the initial collapse step of the direct roof L, and the roof height Ratio N, coal pillar width B, maximum horizontal principal stress σ h . Then it is an n×8 matrix.
数据的预处理: Data preprocessing:
当煤性为软煤(σ帮<10MPa)时,W’取值如下: When the coal is soft coal ( σ <10MPa), the value of W' is as follows:
当煤性为中硬(10MPa<σ帮<20MPa)时,W’取值如下: When the coal is medium-hard (10MPa< σb <20MPa), the value of W' is as follows:
当煤性为硬(20MPa<σ帮)时,W’取值如下: When the coal is hard (20MPa< σ ), the value of W' is as follows:
依据下表选择B0值 Select the B 0 value according to the table below
这里面埋深即上面输入的H值, The buried depth here is the H value entered above,
N>4取4,H、L、σh不做处理。 If N>4, take 4, and H, L, and σ h will not be processed.
2.数据标准化 2. Data standardization
将第j个样本的第i个指标xij变换成x′ij,即 Transform the i-th index x ij of the j-th sample into x′ ij , namely
(2)极差正规化 (2) Poor regularization
将经过标准差标准化处理后的第j个样本的第i个指标x′ij变换成x″ij,即 Transform the i-th index x′ ij of the j-th sample after standard deviation normalization into x″ ij , namely
3.加权 3. Weighting
数据经过以上处理后,每一个指标都要乘以相应的权值。 After the data has been processed above, each indicator must be multiplied by the corresponding weight. the
4.标定 4. Calibration
计算相似系数γij Calculate the similarity coefficient γ ij
经标定后得到:0≤γij≤1,(i=1,2,…,m;j=1,2,...,m);于是可以确定模糊关系矩阵 After calibration, it is obtained: 0≤γ ij ≤1, (i=1, 2,..., m; j=1, 2,..., m); then the fuzzy relationship matrix can be determined
5.聚类分析 5. Cluster analysis
将标定所得的相似矩阵用平方法求得的传递包R*,是包含最小模糊等价矩阵,再按R*的λ-截关系,对X进行动态聚类分析,小于λ的记为0,大于λ的记为1,最后把完全相同的行归为一类, The similarity matrix obtained by calibration The transitive package R * obtained by the square method contains The minimum fuzzy equivalent matrix, and then according to the λ-cut relationship of R * , perform dynamic clustering analysis on X, the ones smaller than λ are recorded as 0, and the ones larger than λ are recorded as 1, and finally the identical rows are classified into one category,
6.确定最优分类数目 6. Determine the optimal number of categories
F-统计量法:设对应λ的分类数为r,第j类的样本数为nj,第j类的第k个特征的平均值为作F-统计量:
F-统计量是服从自由度为(r-1,n-1)的F-分布。它的分子表示类与类之间的距离,分母表示类内样本间的距离。因此,F值越大,说明类与类之间的距离越大,即类与类之间的差异越大,分类效果就越好。 The F-statistic is an F-distribution with (r-1, n-1) degrees of freedom. Its numerator represents the distance between classes and the denominator represents the distance between samples within a class. Therefore, the larger the F value, the greater the distance between classes, that is, the greater the difference between classes, the better the classification effect. the
如果F>F1-λ(r-1,n-r)(α=0.05),则根据数理统计的方差分析理论可以知道,类与类之间的差异显著,说明分类是最优的。 If F>F 1-λ (r-1, nr) (α=0.05), according to the variance analysis theory of mathematical statistics, it can be known that the difference between classes is significant, indicating that the classification is optimal.
如果满足F>F1-λ(r-1,n-r)的F值不止一个,可以进一步考察F-Fα的大小,从较大者中选择一个满意的F值作为最优的分类。 If there is more than one F value that satisfies F>F 1-λ (r-1, nr), the size of FF α can be further investigated, and a satisfactory F value can be selected from the larger one as the optimal classification.
分完类后取各类样本巷道各指标的平均值得到(初步)聚类中心。 After classification, the average value of each index of each sample roadway is taken to obtain the (preliminary) cluster center. the
(二)巷道围岩稳定性模糊综合评判 (2) Fuzzy comprehensive evaluation of roadway surrounding rock stability
1.构建模糊关系矩阵 1. Construct fuzzy relationship matrix
构建模糊关系矩阵R={rij}9*5,其中rij表示从i因素着眼,该因素能评为第j类的隶属程度。rij求法可从以下几种方法中选择: Construct the fuzzy relationship matrix R={r ij }9*5, where r ij represents the degree of membership of the j-th category from the perspective of factor i. The r ij calculation method can be selected from the following methods:
方法一.正态隶属函数法: Method 1. Normal membership function method:
2.模糊变换 2. Fuzzy transformation
集合C={c1,c2,c3,c4,c5,c6,c7,c8,c9}为9个因素的影响权值(同上个程序)。做模糊变换B=CoR。模糊向量B={b1,b2,b3,b4,b5}T={b j},其中b1,b2,b3,b4,b5分别表示待预测巷道对各聚类中心的从属程度,待预测巷道的类别即由该巷道同聚类中心之间的隶属程度大的样本决定。 The set C={c 1 , c 2 , c 3 , c 4 , c 5 , c 6 , c 7 , c 8 , c 9 } is the influence weight of 9 factors (same as the previous procedure). Do fuzzy transformation B=C o R. Fuzzy vector B={b 1 , b 2 , b 3 , b 4 , b 5 }T={b j}, where b 1 , b 2 , b 3 , b 4 , b 5 represent the clusters of the roadway to be predicted The degree of membership of the center, the category of the roadway to be predicted is determined by the samples with a high degree of membership between the roadway and the clustering center.
bj的算法有以下四种方法: The algorithm of b j has the following four methods:
法一.主因素决定型:其中∧为两者取其小符号,∨为两者取其大符号; Method 1. Determinant type of main factor: Among them, ∧ is the smaller symbol of the two, and ∨ is the larger symbol of the two;
法二.主因素突出型: Method 2. Main factor prominent type:
法三.主因素突出型: Method 3. Main factor prominent type:
法四.加权平均型: Method 4. Weighted average type:
则可以得到评判矩阵B={b1,b2,b3,b4,b5}T={bj} Then the evaluation matrix B={b 1 , b 2 , b 3 , b 4 , b 5 }T={b j } can be obtained
3.评价指标处理: 3. Evaluation index processing:
方法一、最大隶属度法: Method 1, the maximum degree of membership method:
b1到b5中最大值所对应的下标j即为待测巷道类别。 The subscript j corresponding to the maximum value among b 1 to b 5 is the type of roadway to be tested.
方法二:加权平均法: Method 2: Weighted average method:
令v’=(b1+2b2+3b3+4b4+5b5)/(b1+b2+b3+b4+b5),则v’接近于几则巷道属于第几类】 Let v'=(b 1 +2b 2 +3b 3 +4b 4 +5b 5 )/(b 1 +b 2 +b 3 +b 4 +b 5 ), then v' is close to which category the roadway belongs to 】
二、锚杆支护参数智能匹配子系统 2. Intelligent matching subsystem of bolt support parameters
在这一子系统中,如图3所示,首先将所需的参数,如直接顶初次垮落步距、顶板强度、底板强度、巷道埋深、巷道净宽、巷道净高输入到界面上,再进行巷道参数的预测,进行运算。运算主要在系统后台进行,即系统先对样本及支护参数知识库进行学习训练,得到优化后的权值及阀值,而后将已输入的待预测参数,与权值、阀值进行一系列的计算,最后得到系统预测的支护基本参数值。 In this subsystem, as shown in Figure 3, the required parameters, such as the initial caving step of the direct roof, the strength of the roof, the strength of the floor, the buried depth of the roadway, the clear width of the roadway, and the clear height of the roadway, are input to the interface , and then predict the roadway parameters and perform calculations. The calculation is mainly carried out in the background of the system, that is, the system first learns and trains the samples and the knowledge base of support parameters, obtains the optimized weights and thresholds, and then conducts a series of calculations on the input parameters to be predicted, weights, and thresholds. Finally, the system predicted support basic parameter values are obtained. the
第一步,网络初始化,对输入输出进行归一化处理。 The first step is to initialize the network and normalize the input and output. the
给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数ε,给定计算精度值和最大学习次数。 Assign a random number in the interval (-1, 1) to each connection weight, set the error function ε, and give the calculation accuracy value and the maximum number of learning times. the
第二步,随机选取第k个输入样本及对应期望输出 The second step is to randomly select the kth input sample and the corresponding expected output
do(k)=(d1(k),d2(k),…,dq(k)) d o (k) = (d 1 (k), d 2 (k), ..., d q (k))
x(k)=(x1(k),x2(k),…,xn(k)) x(k)=(x 1 (k), x 2 (k), . . . , x n (k))
第三步,计算隐含层各神经元的输入和输出。 The third step is to calculate the input and output of each neuron in the hidden layer. the
第四步,利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数δo(k)。 The fourth step is to use the expected output and the actual output of the network to calculate the partial derivative δ o (k) of the error function to each neuron in the output layer.
第五步,利用隐含层到输出层的连接权值、输出层的δo(k)和隐含层的输出计算误差函数对隐含层各神经元的偏导数δh(k)。 The fifth step is to use the connection weights from the hidden layer to the output layer, δ o (k) of the output layer and the output of the hidden layer to calculate the partial derivative δ h (k) of the error function to each neuron in the hidden layer.
第六步,利用输出层各神经元的δo(k)和隐含层各神经元的输出来修正连接权值who(k) The sixth step is to use the δ o (k) of each neuron in the output layer and the output of each neuron in the hidden layer to correct the connection weight who ho (k)
第七步,利用隐含层各神经元的δh(k)和输入层各神经元的输入修正连接权。 The seventh step is to use the δ h (k) of each neuron in the hidden layer and the input of each neuron in the input layer to modify the connection weight.
第八步,计算全局误差
第九步,判断网络误差是否满足要求。当误差达到预设精度或学习次数大于设定的最大次数,则结束算法。否则,选取下一个学习样本及对应的期望输出,返回到第三步,进入下一轮学习。 The ninth step is to judge whether the network error meets the requirements. When the error reaches the preset accuracy or the number of learning times is greater than the set maximum number of times, the algorithm ends. Otherwise, select the next learning sample and the corresponding expected output, return to the third step, and enter the next round of learning. the
三、支护设计验证与优化子系统 3. Support design verification and optimization subsystem
如图4所示,将上面所得到的锚杆支护参数自动调入到该子系统中,首先依据理论计算法,将该设计方案自动导入进行基于悬吊理论、组合梁理论、组合拱理论、能量理论验算。 设计方案经验算满足要求后,再调用后台基于正交试验模块得到一系列支护设计方案,将这些方案调入数值模拟模块,自动进行FLAC3D建模、模拟、优化等处理,自动对各种支护方案进行分析,选取满足巷道围岩变形要求的最经济的支护方案作为最优支护方案推荐给用户。 As shown in Figure 4, the bolt support parameters obtained above are automatically transferred into the subsystem. Firstly, according to the theoretical calculation method, the design scheme is automatically imported and carried out based on suspension theory, composite beam theory, and composite arch theory. , Energy theory calculation. After the experience calculation of the design scheme meets the requirements, the background is called to obtain a series of support design schemes based on the orthogonal test module, and these schemes are transferred into the numerical simulation module to automatically perform FLAC3D modeling, simulation, optimization, etc. According to the analysis of the protection scheme, the most economical support scheme that meets the deformation requirements of the roadway surrounding rock is selected as the optimal support scheme and recommended to the user. the
系统包括围岩稳定性智能分类子系统、锚杆支护参数智能匹配子系统、支护方案智能优化子系统三个子系统。三个子系统既可以作为一个相互关联的一个整体使用,以一次性系统的完成巷道的围岩稳定性分类、锚杆支护参数智能匹配、支护方案智能优化工作,也可以根据用户的实际情况,分别独立使用其中的某一个模块实现相关的功能,使系统具有更强的适用性和选择性。有利于系统发挥稳定、高效、安全的功能,同时保证子系统相互之间的协调一致性和可持续性。 The system includes three subsystems: the intelligent classification subsystem of surrounding rock stability, the intelligent matching subsystem of bolt support parameters, and the intelligent optimization subsystem of support schemes. The three subsystems can be used as an interrelated whole to complete the stability classification of the roadway surrounding rock, the intelligent matching of bolt support parameters, and the intelligent optimization of support schemes in a one-time system, or according to the actual situation of the user , use one of the modules independently to realize related functions, so that the system has stronger applicability and selectivity. It is conducive to the stable, efficient and safe functions of the system, and at the same time ensures the coordination, consistency and sustainability of the subsystems. the
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。 The above-mentioned embodiments are only to illustrate the technical concept and characteristics of the present invention. Equivalent changes or modifications made in the spirit shall fall within the protection scope of the present invention. the
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310746911.4A CN103984788B (en) | 2013-12-31 | 2013-12-31 | A kind of coal entry anchor rod support automated intelligent design and optimization system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310746911.4A CN103984788B (en) | 2013-12-31 | 2013-12-31 | A kind of coal entry anchor rod support automated intelligent design and optimization system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103984788A true CN103984788A (en) | 2014-08-13 |
CN103984788B CN103984788B (en) | 2017-10-10 |
Family
ID=51276759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310746911.4A Active CN103984788B (en) | 2013-12-31 | 2013-12-31 | A kind of coal entry anchor rod support automated intelligent design and optimization system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103984788B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104537566A (en) * | 2014-12-22 | 2015-04-22 | 山西煤炭职业技术学院 | Prediction method for surface displacement of hexagon coal road |
CN105260575A (en) * | 2015-11-17 | 2016-01-20 | 中国矿业大学 | Roadway surrounding rock deformation predicting method based on neural network |
CN105302934A (en) * | 2015-07-10 | 2016-02-03 | 中国矿业大学 | Multi-objective intelligent optimization design method for anchoring and protecting network structure of coal mine underground roadway |
CN105787645A (en) * | 2016-02-19 | 2016-07-20 | 龙口矿业集团有限公司 | Soft rock tunnel bolting-grouting support system quantitative evaluation method |
CN105787206A (en) * | 2016-03-23 | 2016-07-20 | 同济大学 | Design method of anchor bolt support for highway tunnel |
CN106250681A (en) * | 2016-07-26 | 2016-12-21 | 山东科技大学 | A kind of Forecasting Methodology for immediate roof stability |
CN110688690A (en) * | 2019-08-02 | 2020-01-14 | 天地科技股份有限公司 | Roadway support parameter determining method and device |
CN112182719A (en) * | 2020-10-12 | 2021-01-05 | 湖南科技大学 | Partition and subsection dynamic evaluation method for roof stability of bolt-supported coal roadway |
CN112232522A (en) * | 2020-11-19 | 2021-01-15 | 山东科技大学 | Intelligent recommendation and dynamic optimization method for deep roadway support scheme |
CN112465347A (en) * | 2020-11-26 | 2021-03-09 | 湖南科技大学 | Method for cooperatively predicting roof stability based on cluster analysis and improved neural network |
CN114233325A (en) * | 2021-12-31 | 2022-03-25 | 广西路建工程集团有限公司 | A tunnel support system suitable for weak and broken surrounding rock |
CN116226751A (en) * | 2023-01-31 | 2023-06-06 | 山西科达自控股份有限公司 | Intelligent assessment method and device for health state of coal mining machine and related components |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101968825A (en) * | 2010-11-23 | 2011-02-09 | 中国矿业大学 | Method for intelligently designing bolting of coal mine tunnels |
CN103077287A (en) * | 2013-01-22 | 2013-05-01 | 中国矿业大学 | Supporting design specialist system for bolt-grouting of coal mine soft rock tunnel |
-
2013
- 2013-12-31 CN CN201310746911.4A patent/CN103984788B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101968825A (en) * | 2010-11-23 | 2011-02-09 | 中国矿业大学 | Method for intelligently designing bolting of coal mine tunnels |
CN103077287A (en) * | 2013-01-22 | 2013-05-01 | 中国矿业大学 | Supporting design specialist system for bolt-grouting of coal mine soft rock tunnel |
Non-Patent Citations (6)
Title |
---|
朱川曲 等: ""神经网络在锚杆支护方案优选及变形预测中的应用"", 《煤炭学报》 * |
李洪 等: ""回采巷道围岩分类的模糊聚类分析方法"", 《西安科技大学学报》 * |
杨仁树 等: ""煤矿巷道支护方案专家系统及应用研究"", 《采矿与安全工程学报》 * |
谭玉叶 等: ""基于模糊聚类及层次分析法的采矿方法综合评判优选"", 《北京科技大学学报》 * |
高富强: ""基于FLAC的煤巷锚杆支护设计系统开发与应用"", 《煤炭工程》 * |
高富强: ""最大水平主应力对巷道围岩稳定性影响的数值分析"", 《矿业研究与开发》 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104537566B (en) * | 2014-12-22 | 2018-08-31 | 山西煤炭职业技术学院 | A kind of prediction technique of hexagon coal road surface displacement amount |
CN104537566A (en) * | 2014-12-22 | 2015-04-22 | 山西煤炭职业技术学院 | Prediction method for surface displacement of hexagon coal road |
CN105302934A (en) * | 2015-07-10 | 2016-02-03 | 中国矿业大学 | Multi-objective intelligent optimization design method for anchoring and protecting network structure of coal mine underground roadway |
CN105302934B (en) * | 2015-07-10 | 2018-05-15 | 中国矿业大学 | The Multiobjective Intelligent optimum design method of coal mine down-hole tunnel Anchor Care network structure |
CN105260575A (en) * | 2015-11-17 | 2016-01-20 | 中国矿业大学 | Roadway surrounding rock deformation predicting method based on neural network |
CN105260575B (en) * | 2015-11-17 | 2018-12-04 | 中国矿业大学 | A kind of deformation of the surrounding rock in tunnel prediction technique neural network based |
CN105787645A (en) * | 2016-02-19 | 2016-07-20 | 龙口矿业集团有限公司 | Soft rock tunnel bolting-grouting support system quantitative evaluation method |
CN105787206B (en) * | 2016-03-23 | 2018-11-09 | 同济大学 | A kind of vcehicular tunnel Design of bolt support method |
CN105787206A (en) * | 2016-03-23 | 2016-07-20 | 同济大学 | Design method of anchor bolt support for highway tunnel |
CN106250681A (en) * | 2016-07-26 | 2016-12-21 | 山东科技大学 | A kind of Forecasting Methodology for immediate roof stability |
CN110688690A (en) * | 2019-08-02 | 2020-01-14 | 天地科技股份有限公司 | Roadway support parameter determining method and device |
CN112182719A (en) * | 2020-10-12 | 2021-01-05 | 湖南科技大学 | Partition and subsection dynamic evaluation method for roof stability of bolt-supported coal roadway |
CN112182719B (en) * | 2020-10-12 | 2022-09-27 | 湖南科技大学 | Partitioned and segmented dynamic evaluation method for stability of roof of anchor bolt support coal roadway |
CN112232522A (en) * | 2020-11-19 | 2021-01-15 | 山东科技大学 | Intelligent recommendation and dynamic optimization method for deep roadway support scheme |
CN112232522B (en) * | 2020-11-19 | 2022-09-30 | 山东科技大学 | Intelligent recommendation and dynamic optimization method for deep roadway support scheme |
CN112465347A (en) * | 2020-11-26 | 2021-03-09 | 湖南科技大学 | Method for cooperatively predicting roof stability based on cluster analysis and improved neural network |
CN112465347B (en) * | 2020-11-26 | 2024-06-21 | 湖南科技大学 | Method for cooperatively predicting stability of top plate based on cluster analysis and improved neural network |
CN114233325A (en) * | 2021-12-31 | 2022-03-25 | 广西路建工程集团有限公司 | A tunnel support system suitable for weak and broken surrounding rock |
CN116226751A (en) * | 2023-01-31 | 2023-06-06 | 山西科达自控股份有限公司 | Intelligent assessment method and device for health state of coal mining machine and related components |
Also Published As
Publication number | Publication date |
---|---|
CN103984788B (en) | 2017-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103984788A (en) | Automatic intelligent design and optimization system for anchor bolt support of coal tunnel | |
CN105260575B (en) | A kind of deformation of the surrounding rock in tunnel prediction technique neural network based | |
CN106407493B (en) | A Rockburst Grade Evaluation Method Based on Multidimensional Gaussian Cloud Model | |
CN105488611A (en) | Comprehensive evaluation method and system for mine construction project design scheme | |
CN105550515B (en) | A kind of method that Multilateral Comprehensive Judge is carried out to air quality data | |
CN101320449A (en) | Distribution Network Evaluation Method Based on Combination Evaluation Method | |
CN105046080B (en) | A kind of rock mass quality classification | |
CN111144281A (en) | OD passenger flow estimation method for urban rail transit based on machine learning | |
CN110489844A (en) | One kind being suitable for the uneven large deformation grade prediction technique of soft rock tunnel | |
Yao et al. | Evaluation of enhanced oil recovery methods for mature continental heavy oil fields in China based on geology, technology and sustainability criteria | |
CN107194519A (en) | A kind of dangerous critical level pre-judging method in goaf | |
Wei et al. | Characterization of saturation and pressure distribution based on deep learning for a typical carbonate reservoir in the Middle East | |
CN107578152A (en) | A Method for Evaluation of Gas Drainage Scheme in Multi-branch Horizontal Wells | |
Zhang et al. | Predictive models of embodied carbon emissions in building design phases: Machine learning approaches based on residential buildings in China | |
CN103488911A (en) | Investment risk assessment method of photovoltaic power generation project | |
CN106599511A (en) | Method for optimally selecting thin-coal-seam long-wall fully-mechanized mining-face coal mining method | |
Shijun | Risk management and countering measurements by computer modeling and simulation technology in the approval and early preparation stages of a large international project | |
CN104268785A (en) | Analysis method for deep well floor water inrush risk | |
CN114049921B (en) | Quantitative evaluation method of shale brittleness based on the weighting of sensitive factors in the whole loading process | |
Feng-dong et al. | Study on the model of safety evaluation in coal mine based on Fuzzy-AHP comprehensive evaluation method | |
CN117077045A (en) | Village classification model construction method based on qualitative and quantitative analysis | |
Liu et al. | Application of FCJ in the evaluation of low-carbon construction program | |
Feng et al. | The evaluation of design for energy efficiency of buildings based on analysis hierarchical process and grey theory | |
CN111274736A (en) | Water flowing fractured zone prediction method based on supervised learning neural network algorithm | |
Yin et al. | An Evaluation Model of Higher Education System based on the Coagulation Hierarchical Clustering Analysis and Entropy Weight Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |