CN103983426B - 一种基于机器视觉的光纤缺陷检测及分类方法 - Google Patents

一种基于机器视觉的光纤缺陷检测及分类方法 Download PDF

Info

Publication number
CN103983426B
CN103983426B CN201410200881.1A CN201410200881A CN103983426B CN 103983426 B CN103983426 B CN 103983426B CN 201410200881 A CN201410200881 A CN 201410200881A CN 103983426 B CN103983426 B CN 103983426B
Authority
CN
China
Prior art keywords
optical fiber
picture
image capture
capture module
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410200881.1A
Other languages
English (en)
Other versions
CN103983426A (zh
Inventor
刘小勇
郑琨
穆锦飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201410200881.1A priority Critical patent/CN103983426B/zh
Publication of CN103983426A publication Critical patent/CN103983426A/zh
Application granted granted Critical
Publication of CN103983426B publication Critical patent/CN103983426B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种基于机器视觉的光纤缺陷检测及分类系统,包括光纤速度检测模块、第一图像采集模块、第二图像采集模块、第三图像采集模块、工控机、以及用于引导待检测光纤传送的第一导线轮及第二导线轮;所述速度检测模块设于第二导线轮上,速度检测模块的输出端与工控机的输入端、第一图像采集模块的控制端、第二图像采集模块的控制端及第三图像采集模块的控制端相连接,第一图像采集模块的输出端、第二图像采集模块的输出端及第三图像采集模块的输出端均与工控机的输入端相连接,本发明还公开了一种基于机器视觉的快速光纤缺陷检测及分类方法。通过本发明可以自动、准确、快速的对光纤缺陷进行检测。

Description

一种基于机器视觉的光纤缺陷检测及分类方法
技术领域
本发明属于光纤表面缺陷的连续实时检测技术领域,涉及一种基于机器视觉的光纤缺陷检测及分类系统及其方法。
背景技术
现有的光纤检测技术主要为人工检测,存在质量不稳定,检测效率低下,自动化程度低的问题。赵伟杰等采用机器视觉技术对光纤活动连接器进行检测,查找光纤端面缺陷。该方法只检测光纤端面缺陷,不能检测出光纤表面的缺陷,也难以连续检测。Kang G-W等使用图像分割与边缘提取技术获得裂纹,解决冷轧钢条表面缺陷检测问题。Serush等研究出基于图像处理的实时检测系统,使用图像处理技术解决热钢板表面缺陷检测问题。目前还没有机器视觉技术在光纤缺陷连续实时检测方面的应用,主要存在的问题是图像算法复杂度高,数据量大,计算耗时,难以实现高速实时处理。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种基于机器视觉的光纤缺陷检测及分类系统及其方法,该系统及其方法可以自动、准确、快速的对光纤缺陷进行检测。
为达到上述目的,本发明所述的基于机器视觉的光纤缺陷检测及分类系统包括光纤速度检测模块、第一图像采集模块、第二图像采集模块、第三图像采集模块、工控机、以及用于引导待检测光纤传送的第一导线 轮及第二导线轮;
所述速度检测模块设于第二导线轮上,速度检测模块的输出端与工控机的输入端、第一图像采集模块的控制端、第二图像采集模块的控制端及第三图像采集模块的控制端相连接,第一图像采集模块的输出端、第二图像采集模块的输出端及第三图像采集模块的输出端均与工控机的输入端相连接,第一图像采集模块、第二图像采集模块及第三图像采集模块位于同一平面内,第一图像采集模块、第二图像采集模块及第三图像采集模块所处平面与光纤相垂直,光纤到第一图像采集模块、第二图像采集模块及第三图像采集模块的距离均相同。
所述第一图像采集模块、第二图像采集模块及第三图像采集模块均包括相机及光源,光源产生的光经光纤反射后入射到相机的镜头中,相机的输出端与工控机的输入端相连接,相机的控制端与速度检测模块的输出端相连接。
所述速度检测模块包括编码器及正交脉冲计数卡,编码器设于第二导线轮上,编码器的输出端与正交脉冲计数卡的输入端相连接,正交脉冲计数卡的输出端与工控机的输入端及相机的控制端相连接。
所述工控机的输入端与速度检测模块的输出端及第一图像采集模块的输出端、第二图像采集模块的输出端及第三图像采集模块的输出端通过PCI总线相连接。
所述第三图像采集模块、第一图像采集模块及第二图像采集模块均匀的分布于光纤的周围。
相应的,本发明还提供了一种基于机器视觉的快速光纤缺陷检测及 分类方法,包括以下步骤:
1)待测光纤在第一导线轮及第二导线轮上运动,带动第一导线轮、第二导线轮及编码器旋转,编码器检测待测光纤的速度信息,然后将所述速度信息转发至正交脉冲计数卡中,正交脉冲计数卡接收所述速度信息,并根据所述速度信息产生触发信号,然后将所述触发信号转发至相机的控制端中,同时将所述速度信息转发至工控机中,工控机显示所述速度信息,相机接收所述触发信号,根据所述触发信号对待测光纤进行拍照,然后将拍照得到的图片转发至工控机中;
2)工控机接收及存储所述待测光纤的图片,并对待测光纤的图片依次进行降噪、滤波及阈值分割处理后,再通过三级分类器对待测光纤的图片进行处理,其中,第一级分类器接收阈值分割处理后的待测光纤图片,然后通过粒子分离算法获取待测光纤图片中粒子信息,当粒子中存在孔并且孔的面积在预设范围内时,记为有黑斑缺陷的光纤图片,当粒子中不存在孔并且粒子面积和等效矩形长宽均在预设范围内时,记为正常光纤图片,从而分离出部分正常光纤图片及部分有黑斑缺陷的光纤图片,然后再将待测光纤的剩余图片转发至第二级分类器中,第二级分类器每隔若干像素通过边缘检测算法获取待测光纤的剩余图片中光纤的上下边缘位置信息,当待测光纤的剩余图片中所有对上下边缘位置的差值均在预设范围内时,则记作正常光纤图片,当待测光纤的剩余图片中任意一对上下边缘位置的差值不在预设范围内时,则记有缺陷光纤图片,然后将有缺陷光纤图片的所有上下边缘位置信息转发至第三级分类器中,第三级分类器接收有缺陷光纤图片的所有上下边缘位置信息,然后 判断有缺陷光纤图片中每对上下边缘位置的差值是否小于正常光纤线径,当有缺陷光纤图片中连续若干对上下边缘位置的差值有小于正常光纤线径时,则记作该有缺陷光纤图片为有黑斑缺陷的光纤图片,当有缺陷光纤图片中连续若干对上下边缘位置的差值均大于正常光纤线径时,则分别根据有缺陷光纤图片中各对上下边缘位置的差值判断光纤是否纤芯受损,当光纤纤芯受损时,则将该有缺陷光纤图片记作有边缘损伤而且损伤到纤芯的光纤图片,当光纤纤芯没有受损时,则将该有缺陷光纤图片记作有边缘损伤的光纤图片,同时工控机记录所有正常光纤图片的数量、有黑斑缺陷的光纤图片数量、有边缘损伤的光纤图片数量、有边缘损伤而且损伤纤芯的光纤图片数量,并显示正常光纤图片的数量、有黑斑缺陷的光纤图片数量、有边缘损伤的光纤图片数量、有边缘损伤而且损伤纤芯的光纤图片数量、有黑斑缺陷的光纤图片、有边缘损伤的光纤图片及边缘损伤而且损伤纤芯的光纤图片。
本发明具有以下有益效果:
本发明所述的基于机器视觉的光纤缺陷检测及分类系统及其方法在对光纤缺陷检测的过程,通过编码器及正交脉冲计数卡检测光纤的速度信息,然后根据所述速度信息产生触发信号,相机根据所述触发信号进行拍照,并将拍摄的待测光纤的图片转发至工控机中,工控机通过三级分类器对待测光纤的图片进行分类,其中第一级分类器采用粒子分离算法获取分类器所需特征数据,第二三级分类器采用边缘检测算法获取分类器所需特征数据,然后将分类的结果显示出来,从而自动、快速、准确的对光纤缺陷进行检测,工控机依次对待测光纤的图片进行处理,有 效的减少了待测光纤的图片平均处理时间。
附图说明
图1为本发明的原理图;
图2为本发明的结构示意图。
其中,1为工控机、2为正交脉冲计数卡、3为光源、4为编码器、5为相机、6为第一导线轮、7为第二导线轮。
具体实施方式
下面结合附图对本发明做进一步详细描述:
参考图1及图2,本发明所述的基于机器视觉的光纤缺陷检测及分类系统包括光纤速度检测模块、第一图像采集模块、第二图像采集模块、第三图像采集模块、工控机1、以及用于引导待检测光纤传送的第一导线轮6及第二导线轮7;
所述速度检测模块设于第二导线轮7上,速度检测模块的输出端与工控机1的输入端、第一图像采集模块的控制端、第二图像采集模块的控制端及第三图像采集模块的控制端相连接,第一图像采集模块的输出端、第二图像采集模块的输出端及第三图像采集模块的输出端均与工控机1的输入端相连接,第一图像采集模块、第二图像采集模块及第三图像采集模块位于同一平面内,第一图像采集模块、第二图像采集模块及第三图像采集模块所处平面与光纤相垂直,光纤到第一图像采集模块、第二图像采集模块及第三图像采集模块的距离均相同。
需要说明的是,所述第一图像采集模块、第二图像采集模块及第三图像采集模块均包括相机5及光源3,光源3产生的光经光纤反射后入 射到相机5的镜头中,相机5的输出端与工控机1的输入端相连接,相机5的控制端与速度检测模块的输出端相连接,速度检测模块包括编码器4及正交脉冲计数卡2,编码器4设于第二导线轮7上,编码器4的输出端与正交脉冲计数卡2的输入端相连接,正交脉冲计数卡2的输出端与工控机1的输入端及相机5的控制端相连接,工控机1的输入端与速度检测模块的输出端及第一图像采集模块的输出端、第二图像采集模块的输出端及第三图像采集模块的输出端通过PCI总线相连接,第一图像采集模块、第二图像采集模块及第三图像采集模块均匀的分布于垂直于光纤的平面,任意两个图像采集模块所成夹角为120°,所述相机5采用工业相机。
本发明所述的基于机器视觉的光纤缺陷检测及分类方法包括以下步骤:
1)待测光纤在第一导线轮6及第二导线轮7上运动,带动第一导线轮6、第二导线轮7及编码器4旋转,编码器4检测待测光纤的速度信息,然后将所述速度信息转发至正交脉冲计数卡2中,正交脉冲计数卡2接收所述速度信息,并根据所述速度信息产生触发信号,然后将所述触发信号转发至相机5的控制端中,同时将所述速度信息转发至工控机1中,工控机1显示所述速度信息,相机5接收所述触发信号,根据所述触发信号对待测光纤进行拍照,然后将拍照得到的图片转发至工控机1中;
2)工控机1接收及存储所述待测光纤的图片,并对待测光纤的图片依次进行降噪、滤波及阈值分割处理后,再通过三级分类器对待测光纤 的图片进行处理,其中,第一级分类器接收阈值分割处理后的待测光纤图片,然后通过粒子分离算法获取待测光纤图片中粒子信息,当粒子中存在孔并且孔的面积在预设范围内时,记为有黑斑缺陷的光纤图片,当粒子中不存在孔并且粒子面积和等效矩形长宽均在预设范围内时,记为正常光纤图片,从而分离出部分正常光纤图片及部分有黑斑缺陷的光纤图片,然后再将待测光纤的剩余图片转发至第二级分类器中,第二级分类器每隔若干像素通过边缘检测算法获取待测光纤的剩余图片中光纤的上下边缘位置信息,当待测光纤的剩余图片中所有对上下边缘位置的差值均在预设范围内时,则记作正常光纤图片,当待测光纤的剩余图片中任意一对上下边缘位置的差值不在预设范围内时,则记有缺陷光纤图片,然后将有缺陷光纤图片的所有上下边缘位置信息转发至第三级分类器中,第三级分类器接收有缺陷光纤图片的所有上下边缘位置信息,然后判断有缺陷光纤图片中每对上下边缘位置的差值是否小于正常光纤线径,当有缺陷光纤图片中连续若干对上下边缘位置的差值有小于正常光纤线径时,则记作该有缺陷光纤图片为有黑斑缺陷的光纤图片,当有缺陷光纤图片中连续若干对上下边缘位置的差值均大于正常光纤线径时,则分别根据有缺陷光纤图片中各对上下边缘位置的差值判断光纤是否纤芯受损,当光纤纤芯受损时,则将该有缺陷光纤图片记作有边缘损伤而且损伤到纤芯的光纤图片,当光纤纤芯没有受损时,则将该有缺陷光纤图片记作有边缘损伤的光纤图片,同时工控机1记录所有正常光纤图片的数量、有黑斑缺陷的光纤图片数量、有边缘损伤的光纤图片数量、有边缘损伤而且损伤纤芯的光纤图片数量,并显示正常光纤图片的数量、 有黑斑缺陷的光纤图片数量、有边缘损伤的光纤图片数量、有边缘损伤而且损伤纤芯的光纤图片数量、有黑斑缺陷的光纤图片、有边缘损伤的光纤图片及边缘损伤而且损伤纤芯的光纤图片。
所述工控机1对待测光纤的图片依次进行降噪滤波及阈值分割处理的具体操作为:采用中值滤波减少光纤图片中的噪点,对比度线性展宽和γ校正的方法进行图像增强预处理,然后对图像进行分割,图像分割是采用阈值分割技术,以区分背景及目标,采用最大类间差法选择最佳分割阈值,区分了背景和目标后,还需要在分割后的图像中提取光纤目标区域,因为分割后图像可能存在一些毛刺、灰尘形成的区域,对图像进行形态学闭运算处理,消除毛刺,得到光纤目标区域后,图片通过级联分类器检测是否存在缺陷,并判断出缺陷类型。粒子信息包括粒子的边界区域、面积、周长、孔信息、等效矩形相关信息和惯性矩等信息,主要利用粒子分析算法中的面积、周长、孔和等效矩形的长等信息作为第一级分类器的判断条件。

Claims (3)

1.一种基于机器视觉的光纤缺陷检测及分类方法,其特征在于,基于机器视觉的光纤缺陷检测及分类系统,所述基于机器视觉的光纤缺陷检测及分类系统包括速度检测模块、第一图像采集模块、第二图像采集模块、第三图像采集模块、工控机(1)、以及用于引导待检测光纤传送的第一导线轮(6)及第二导线轮(7);
所述速度检测模块设于第二导线轮(7)上,速度检测模块的输出端与工控机(1)的输入端、第一图像采集模块的控制端、第二图像采集模块的控制端及第三图像采集模块的控制端相连接,第一图像采集模块的输出端、第二图像采集模块的输出端及第三图像采集模块的输出端均与工控机(1)的输入端相连接,第一图像采集模块、第二图像采集模块及第三图像采集模块位于同一平面内,第一图像采集模块、第二图像采集模块及第三图像采集模块所处平面与光纤相垂直,光纤到第一图像采集模块、第二图像采集模块及第三图像采集模块的距离均相同;
所述第一图像采集模块、第二图像采集模块及第三图像采集模块均包括相机(5)及光源(3),光源(3)产生的光经光纤反射后入射到相机(5)的镜头中,相机(5)的输出端与工控机(1)的输入端相连接,相机(5)的控制端与速度检测模块的输出端相连接;
所述速度检测模块包括编码器(4)及正交脉冲计数卡(2),编码器(4)设于第二导线轮(7)上,编码器(4)的输出端与正交脉冲计数卡(2)的输入端相连接,正交脉冲计数卡(2)的输出端与工控机(1)的输入端及相机(5)的控制端相连接;
包括以下步骤:
1)待测光纤在第一导线轮(6)及第二导线轮(7)上运动,带动第 一导线轮(6)、第二导线轮(7)及编码器(4)旋转,编码器(4)检测待测光纤的速度信息,然后将所述速度信息转发至正交脉冲计数卡(2)中,正交脉冲计数卡(2)接收所述速度信息,并根据所述速度信息产生触发信号,然后将所述触发信号转发至相机(5)的控制端中,同时将所述速度信息转发至工控机(1)中,工控机(1)显示所述速度信息,相机(5)接收所述触发信号,根据所述触发信号对待测光纤进行拍照,然后将拍照得到的图片转发至工控机(1)中;
2)工控机(1)接收及存储所述待测光纤的图片,并对待测光纤的图片依次进行降噪、滤波及阈值分割处理后,再通过三级分类器对待测光纤的图片进行处理,其中,第一级分类器接收阈值分割处理后的待测光纤图片,然后通过粒子分离算法获取待测光纤图片中粒子信息,当粒子中存在孔并且孔的面积在预设范围内时,记为有黑斑缺陷的光纤图片,当粒子中不存在孔并且粒子面积和等效矩形长宽均在预设范围内时,记为正常光纤图片,从而分离出部分正常光纤图片及部分有黑斑缺陷的光纤图片,然后再将待测光纤的剩余图片转发至第二级分类器中,第二级分类器每隔若干像素通过边缘检测算法获取待测光纤的剩余图片中光纤的上下边缘位置信息,当待测光纤的剩余图片中所有对上下边缘位置的差值均在预设范围内时,则记作正常光纤图片,当待测光纤的剩余图片中任意一对上下边缘位置的差值不在预设范围内时,则记有缺陷光纤图片,然后将有缺陷光纤图片的所有上下边缘位置信息转发至第三级分类器中,第三级分类器接收有缺陷光纤图片的所有上下边缘位置信息,然后判断有缺陷光纤图片中每对上下边缘位置的差值是否小于正常光纤线径,当有缺陷光纤图片中连续若干对上下边缘位置的差值有小于正常光纤线径时,则记作该有缺陷光纤 图片为有黑斑缺陷的光纤图片,当有缺陷光纤图片中连续若干对上下边缘位置的差值均大于正常光纤线径时,则分别根据有缺陷光纤图片中各对上下边缘位置的差值判断光纤是否纤芯受损,当光纤纤芯受损时,则将该有缺陷光纤图片记作有边缘损伤而且损伤到纤芯的光纤图片,当光纤纤芯没有受损时,则将该有缺陷光纤图片记作有边缘损伤的光纤图片,同时工控机(1)记录所有正常光纤图片的数量、有黑斑缺陷的光纤图片数量、有边缘损伤的光纤图片数量、有边缘损伤而且损伤纤芯的光纤图片数量,并显示正常光纤图片的数量、有黑斑缺陷的光纤图片数量、有边缘损伤的光纤图片数量、有边缘损伤而且损伤纤芯的光纤图片数量、有黑斑缺陷的光纤图片、有边缘损伤的光纤图片及边缘损伤而且损伤纤芯的光纤图片。
2.根据权利要求1所述的基于机器视觉的光纤缺陷检测及分类方法,其特征在于,所述工控机(1)的输入端与速度检测模块的输出端、第一图像采集模块的输出端、第二图像采集模块的输出端及第三图像采集模块的输出端通过PCI总线相连接。
3.根据权利要求1所述的基于机器视觉的光纤缺陷检测及分类方法,其特征在于,所述第三图像采集模块、第一图像采集模块及第二图像采集模块均匀的分布于光纤的周围。
CN201410200881.1A 2014-05-13 2014-05-13 一种基于机器视觉的光纤缺陷检测及分类方法 Expired - Fee Related CN103983426B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410200881.1A CN103983426B (zh) 2014-05-13 2014-05-13 一种基于机器视觉的光纤缺陷检测及分类方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410200881.1A CN103983426B (zh) 2014-05-13 2014-05-13 一种基于机器视觉的光纤缺陷检测及分类方法

Publications (2)

Publication Number Publication Date
CN103983426A CN103983426A (zh) 2014-08-13
CN103983426B true CN103983426B (zh) 2016-08-24

Family

ID=51275486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410200881.1A Expired - Fee Related CN103983426B (zh) 2014-05-13 2014-05-13 一种基于机器视觉的光纤缺陷检测及分类方法

Country Status (1)

Country Link
CN (1) CN103983426B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105335779B (zh) * 2014-08-14 2018-03-02 夏志刚 数卡器及使用数卡器进行数卡的方法
CN104637049A (zh) * 2014-12-16 2015-05-20 北京航天时代光电科技有限公司 一种光纤绕环质量的自动检测方法
CN105891228A (zh) * 2016-06-07 2016-08-24 江南工业集团有限公司 基于机器视觉的光纤外观缺陷检测及外径测量装置
CN106339710B (zh) * 2016-08-25 2019-09-24 凌云光技术集团有限责任公司 一种边缘宽度缺陷检测方法及装置
CN109030499B (zh) * 2018-07-27 2021-08-24 江苏理工学院 一种适用于目标缺陷连续在线检测防止缺陷数目重复计数的装置及方法
CN110987959A (zh) * 2019-12-16 2020-04-10 广州量子激光智能装备有限公司 一种在线毛刺检测方法
CN112834526A (zh) * 2020-12-30 2021-05-25 山西大学 一种面向视觉物联网的光纤端面缺陷检测装置及方法
CN115100200B (zh) * 2022-08-24 2022-12-09 南通光烁通信设备有限公司 基于光学手段的光纤缺陷检测方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185636A (en) * 1991-12-31 1993-02-09 Corning Incorporated Method for detecting defects in fibers
JP2000281379A (ja) * 1999-03-31 2000-10-10 Mitsubishi Cable Ind Ltd 光ファイバの線引装置
JP4018071B2 (ja) * 2004-03-30 2007-12-05 富士フイルム株式会社 光ファイバの欠陥検出装置及び方法
CN100566855C (zh) * 2007-11-30 2009-12-09 华南理工大学 基于机器视觉的物料实时检测及异物剔除系统

Also Published As

Publication number Publication date
CN103983426A (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
CN103983426B (zh) 一种基于机器视觉的光纤缺陷检测及分类方法
CN111951237B (zh) 外观视觉检测方法
EP3785021B1 (en) System and method for performing automated analysis of air samples
CN102735695B (zh) 一种镜片瑕疵快速检测方法及装置
GB2569751A (en) Static infrared thermal image processing-based underground pipe leakage detection method
Wang et al. Research on crack detection algorithm of the concrete bridge based on image processing
CN109900711A (zh) 基于机器视觉的工件缺陷检测方法
EP3252710B1 (en) Banknote crack detection method and apparatus
Tao et al. Weak scratch detection and defect classification methods for a large-aperture optical element
CN105973912A (zh) 基于机器视觉的真皮表面缺陷检测系统及其检测方法
CN106802215A (zh) 一种水管漏水检测装置及检测方法
CN104408932A (zh) 一种基于视频监控的酒驾车辆检测系统
CN102175692A (zh) 织物坯布疵点快速检测系统及方法
WO2021135675A1 (zh) 一种棒材自动计数方法及装置
CN104483320A (zh) 工业脱硝催化剂的数字化缺陷检测装置与检测方法
CN102608122A (zh) 一种高速铁轨光电检测图像的处理方法
Fu et al. Research on image-based detection and recognition technologies for cracks on rail surface
CN104535584A (zh) 一种视觉检测方法
CN106778439B (zh) 一种基于图像处理的锂电池批量扫码系统及方法
CN103177426B (zh) 一种基于形态学的强干扰激光边缘图像修复方法
CN103366578A (zh) 一种基于图像的车辆检测方法
CN106370673A (zh) 一种镜片疵病自动检测方法
WO2020119246A1 (zh) 一种基于反射光的高光物体表面缺陷检测系统及方法
Schmugge et al. Automatic detection of cracks during power plant inspection
CN113567464B (zh) 一种透明介质污渍位置检测方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160824

Termination date: 20190513