CN103979692B - 一种脱除焦化酚氰废水反渗透浓水中难降解有机物的工艺 - Google Patents

一种脱除焦化酚氰废水反渗透浓水中难降解有机物的工艺 Download PDF

Info

Publication number
CN103979692B
CN103979692B CN201410212085.XA CN201410212085A CN103979692B CN 103979692 B CN103979692 B CN 103979692B CN 201410212085 A CN201410212085 A CN 201410212085A CN 103979692 B CN103979692 B CN 103979692B
Authority
CN
China
Prior art keywords
water
adsorber
reverse osmosis
backwashing
osmosis concentrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410212085.XA
Other languages
English (en)
Other versions
CN103979692A (zh
Inventor
王文波
王颜亭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Homology And Genie Et Environnement
Original Assignee
Shandong Homology And Genie Et Environnement
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Homology And Genie Et Environnement filed Critical Shandong Homology And Genie Et Environnement
Priority to CN201410212085.XA priority Critical patent/CN103979692B/zh
Publication of CN103979692A publication Critical patent/CN103979692A/zh
Application granted granted Critical
Publication of CN103979692B publication Critical patent/CN103979692B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种脱除焦化酚氰废水反渗透浓水中难降解有机物的工艺。其主要包括如下步骤:(1)吸附:利用纳米吸附介质NELE-8在吸附器内对反渗透浓水进行吸附处理;(2)气擦洗:利用压缩空气对介质层内的吸附介质进行疏松;(3)水反洗I:用带压的水反洗吸附器内饱和的吸附介质;(4)碱解析再生:将加热至一定温度的碱溶液通入吸附器内与所吸附的有机物反应,使饱和的吸附介质再生;(5)水反冲洗:将加热至一定温度的水通入吸附器内,将介质层内残留的碱液洗出;(6)酸洗:将一定浓度的酸溶液通入吸附器内,将吸附介质孔道内的铁铝胶体以及残留的碱洗出;(7)水反洗Ⅱ:将带压的水通入吸附器内,将残留的酸液洗出,并使吸附介质进行分层。

Description

一种脱除焦化酚氰废水反渗透浓水中难降解有机物的工艺
技术领域
本发明涉及一种焦化废水中有机物的脱除方法,特别涉及一种经生化处理后的焦化酚氰废水反渗透浓水中难降解有机物的脱除工艺,属于焦化废水深度处理领域。
背景技术
焦化酚氰废水含有大量的氨、氰和酚等有毒有害物质,以及大量的油、溶解盐、硬度,即使经过生化和混凝沉淀处理达标排放的焦化废水其悬浮物、有机物、硬度、含盐量、油的指标仍然比较高,只能作为熄焦水、焖渣水使用。而随着干熄焦技术的推广和国家废水排放标准的日趋严格,国内焦化企业需采用深度处理工艺以去除生化出水中的有机物和盐分,将其处理成高品质的工业给水,用作循环冷却水补充水或锅炉补给水。
就目前成功工业化应用的“吸附法脱除有机物+反渗透脱盐”深度处理工艺而言,焦化酚氰废水生化出水经纳米吸附介质有效吸附脱除有机物后,无有机物污堵的反渗透系统运行稳定,产水率为70%-80%,但系统仍旧有占处理水量20%-30%的反渗透浓水产生。该部分浓水含盐量一般为9000mg/L-13500mg/L,CODcr一般为120mg/L-200mg/L,CODcr主要成分为经纳米吸附介质吸附后废水中残留的多环及杂环类的苯系衍生物,属于典型的难降解有机物。酚氰废水反渗透浓水的水质特点决定了这部分水不能再进行生化处理,而煤炭洗选用水补水并不能全部将这些废水消纳(依据《煤炭采选业清洁生产指标》要求,煤炭洗选过程补水量不大于0.145m3/t)。
“吸附法脱除有机物+反渗透脱盐”深度处理工艺实质是污染物的物理转移过程,焦化酚氰废水经吸附法脱除有机物后,产水COD≤60mg/L进入反渗透系统经除盐、除硬、除残余有机物后,产水水质符合《循环冷却水用再生水水质标准HG-T3923-2007》。即使将反渗透浓盐水CODcr降低至满足循环冷却水补充水水质标准,如此高的含盐量进入反渗透系统再次脱盐也不经济,因此,利用何种技术有效脱除酚氰废水反渗透浓水中的难降解有机物,使该类废水可达标排放,是目前焦化企业处理此类废水最亟需解决的问题。
公告号为CN103449635A的中国专利申请公布了一种焦化废水反渗透浓水的处理方法,该方法用于处理高含盐量和高难降解有机物的反渗透浓水。核心工艺是“Fenton氧化+离子交换除钙镁+碱性药剂软化”。此项发明的实质是利用Fenton试剂产生的羟基自由基·OH来氧化反渗透浓水中难降解的有机物,去除浓水中的钙镁离子后,将反渗透浓水回用作冷却循环水补充水,但由于实际应用中Fenton试剂处理反渗透浓水的效果并不理想,且实际投加的H2SO4、H2O2、FeSO4是理论值的5倍甚至更多,导致处理反渗透浓水吨水的药剂费用高达20元以上。
发明内容
针对现有技术中存在的上述缺陷,本发明提供了一种能够有效脱除焦化酚氰废水反渗透浓水中难降解有机物的水处理工艺,能有效降低浓水中的难降解有机物,大大降低处理成本。
本发明是通过如下技术方案来实现的:一种脱除焦化酚氰废水反渗透浓水中难降解有机物的水处理工艺,其包括以下步骤:
(1)吸附:将经过硝基或氨基改性的纳米吸附介质NELE-8装入吸附器内,将反渗透浓水以一定流速流过吸附介质层,当吸附器内的吸附介质吸附饱和时,停止进水;
(2)气擦洗:将无油压缩空气由吸附器的底部通入吸附器内,利用压缩空气与吸附器内的纳米吸附介质及残余的反渗透浓水相互摩擦、混合振荡,产生紊流,对介质层内的吸附介质进行疏松,并将残留在介质颗粒间以及颗粒表面的截留的悬浮物及其他杂质冲走;
(3)水反洗I:用带压的水反洗吸附器内饱和的吸附介质,将残留在介质层中的反渗透浓水及其他杂质排出;
(4)碱解析再生:将加热至一定温度的碱溶液通入吸附器内与所吸附的有机物反应,有机物形成盐溶于水中,使饱和的吸附介质再生;
(5)水反冲洗:将加热至一定温度的水由吸附器底部通入吸附器内,将介质层内残留的碱液洗出;
(6)酸洗:将一定浓度的酸溶液由吸附器底部通入吸附器内,将吸附介质孔道内的铁铝胶体以及残留的碱洗出;
(7)水反冲洗Ⅱ:将带压的水由吸附器的底部通入吸附器内,将残留的酸液洗出,并使吸附介质进行分层,以便投入下一周期使用。
本发明是先将反渗透浓水以一定流速通过装填有纳米吸附介质的吸附器吸附饱和后,可启动备用的吸附器,将吸附饱和的吸附器用解析药剂进行解析,如此循环。本发明步骤(1)中,吸附介质是否吸附饱和,以出水CODcr超过80mg/L(《炼焦化学工业污染物排放标准GB16171-2012》)为标准。本发明所述的纳米吸附介质为现有技术,是以苯乙烯为聚合单体,二乙烯苯为交联剂,在0.5%的明胶溶液中,加入一定比例的甲苯、二甲苯等致孔剂聚合成球,去除残留在聚合物孔道内的致孔剂后,对聚合物进行硝基或氨基改性而制得,是一种具有三维立体多孔骨架结构的球形颗粒。
依据吸附动力学理论,吸附质分子要从溶液某个具体位置要最终完成被纳米介质吸附在其内部某一具体位置,需要依次完成三阶段路径的扩散过程:均相扩散、液膜扩散、粒扩散。均相扩散:其中吸附质分子从其所处的位置通过溶液中的均相位移到吸附介质的表面这一过程为“均相扩散”,由于吸附质分子在溶液中的扩散过程进行的非常快,除非溶液的粘度特别高,否则均相扩散不是吸附动力学主要控制步骤;液膜扩散:通过实验已证明,处于溶液中的纳米吸附介质颗粒周围会有一层厚约数十至数百纳米的液膜,存在于液膜内的溶剂分子由于粘度和界面能的双重作用,几乎不随液相的运动而运动。“液膜扩散”即为吸附质分子到达纳米吸附介质球粒表面并穿越其表面上液膜的扩散过程。液膜扩散的主要控制因素为温度及运行流速。粒扩散:绝大部分穿越了液膜的吸附质分子会在纳米介质孔道内部继续扩散,并最终到达纳米介质球体内的某个部位,这就是“粒扩散”。介质粒径越小,越有利于吸附质分子在纳米介质内部扩散,但工程应用中纳米介质粒径过小,会出现大量跑料的现象,因此颗粒粒径优选为0.4mm-0.8mm,最优选为0.5mm-0.6mm。
进一步的方案是,步骤(1)中的运行温度为10-40℃,反渗透浓水的流速为2-4BV/H。步骤(1)中,用硝基或氨基改性的纳米吸附介质吸附反渗透浓水中的难降解有机物时,运行温度越高,膜扩散过程进行的越快,但由于过高的温度会影响吸附质分子(即难降解有机物)与纳米介质之间氢键的形成,进而影响“粒扩散”过程,因此,本发明选择运行温度为10-40℃。由于运行流速越低,待处理溶液与纳米介质的接触时间越长,越利于吸附质分子位移到纳米介质孔道内,但过低的运行流速会增加纳米介质装填量,增加投资成本,因此本发明选择反渗透浓水的流速为2-4BV/H,运行更经济。
为了保证压缩空气能够与吸附器内的纳米吸附介质及残余的反渗透浓水产生适当的紊流,以便充分疏松介质层并冲走截留的悬浮物及杂质,本发明步骤(2)中的压缩空气的压力为0.6-0.8MPa,进气量为1-10Nm3/(m2·min),气擦洗时间为10-20min。
步骤(3)中所述的反洗用水为反渗透产水或去离子水或蒸馏水,反洗水流速为0.5-2BV/H,反洗时间为15-20min。
步骤(4)中所述的碱溶液为NaOH、KOH中的一种或两种配制而成,所述碱溶液的质量百分比浓度为4%-6%,碱解析温度为55-65℃,碱解析流量为0.1-0.9BV/H,碱解析时间为10-500min。优选的,步骤(4)中的碱解析流量为0.5-0.8BV/H,碱解析时间为50-400min。
步骤(5)中所述的反冲洗水为反渗透产水或去离子水或为蒸馏水,反冲洗水温度为45-95℃,反冲洗水流量为0.5-6BV/H,反冲洗时间为10-1000min;优选的,步骤(5)中的反冲洗水温度为50-90℃,反冲洗水流量为1-4BV/H,反冲洗时间为60-600min。由于反冲洗时,吸附器介质层内仍残留部分碱液,在这一过程中采用经过加热的进水可更加充分的解析再生纳米介质。
步骤(6)中所述的酸溶液为盐酸、硫酸中的一种或两种配制而成,所述酸溶液的质量百分比浓度为1%-8%,酸溶液的流量为0.5-6BV/H,酸洗时间为10-600min。
步骤(7)中所述的反冲洗用水为反渗透产水或去离子水或蒸馏水,反冲洗水流速为1-30m/H,反冲洗时间为10-1000min。由于介质层在运行时由上至下依次分为饱和层、工作层、缓冲层,饱和层是难降解有机物已吸附饱和的纳米介质层,工作层是难降解有机物未吸附饱和的纳米介质层,缓冲层是理论上并不吸附难降解有机物的纳米介质层。研究发现,解析再生后的纳米介质内仍会残留部分难降解有机物,因此其比重大于缓冲层内的纳米介质。为充分利用缓冲层的纳米介质,并将酸洗步骤的酸液充分洗去,本发明设置反洗步骤以使纳米介质重新合理分层,反洗时缓冲层的介质将会升至上层,下一周期时优先吸附有利于提高吸附介质的利用率。
本发明克服了现有技术的不足之处,采用纳米吸附介质对焦化酚氰废水反渗透浓水中的难降解有机物进行吸附富集处理,具有吸附系统运行周期长,产水CODcr含量低,消耗化学药剂量低,不向水中增添盐分等优点,水处理工艺简单,可大幅度降低投资及运行成本,生产实践证明,采用本发明提供的技术方案,吸附后产水的CODcr为30mg/L-80mg/L,焦化酚氰废水反渗透浓水的吨水消耗药剂费用仅为4-6元,是其他工艺药剂费用的1/5左右,大幅降低了运行成本。
附图说明
图1是本发明的工艺流程图;
图2是本发明具体实施方式中采用的吸附器的结构示意图;
图中,1是出水管道,2是氢氧化钠进口,3是反洗进水口,4是出料口,5是承托板,6是盐酸进口,7是废水进口,8是压力表及取样接口,9是吸附介质层,10是罐体,11是进料口,12是进水管道,13是排气口,14是排气管道,15是导流板,16是人孔,17是中排口,18是观察窗,19是排液口,20是压力表及取样接口,21是产水口,22是排水口。
具体实施方式
下面通过非限定性的实施例并结合附图对本发明作进一步的说明:
实施例1
如附图所示,一种脱除焦化酚氰废水反渗透浓水中难降解有机物的水处理工艺,其包括以下步骤:
(1)吸附:将一定量经过硝基或氨基改性的纳米吸附介质NELE-8装入吸附器内,将反渗透浓水以一定流速流过吸附器的吸附介质层,当吸附器产水CODcr超过80mg/L时,表明吸附介质吸附饱和,此时停止进水;
(2)气擦洗:将无油压缩空气由吸附器的底部通入吸附器内,利用压缩空气与吸附器内的吸附介质及残余的反渗透浓水相互摩擦、混合振荡作用,产生紊流,对介质层内的吸附介质进行疏松,并将残留在介质颗粒间以及颗粒表面的在吸附过程中截留的悬浮物及其他杂质冲走;
(3)水反洗I:用一定量的带压的水反洗吸附器内饱和的吸附介质,顶出残留在介质层中的反渗透浓水及其他杂质;
(4)碱解析再生:将一定量加热至一定温度的碱溶液通入吸附器内,通过碱溶液与吸附有机物的反应,体系的亲水疏水平衡条件改变,有机物形成盐溶于水中,而使饱和的吸附介质再生;
(5)水反冲洗:将一定量加热至一定温度的水由吸附器底部通入吸附器内,将介质层内残留的碱液洗出;
(6)酸洗:将配制好的一定浓度的酸溶液由吸附器底部通入吸附器内,将吸附介质孔道内的铁铝胶体以及残留的碱洗出;
(7)水反洗Ⅱ:将一定量的带压的水由吸附器的底部通入吸附器内,将残留的酸液洗出,并使吸附介质进行分层,以便投入下一周期使用。
以上为一个完整周期的运行。
本实施例中所采用的吸附器为现有技术,其具体结构已经在公告号为CN203346118U的中国专利文献中公开。如附图2所示,吸附器包括罐体10,罐体10顶部设有进水口,底部设有出水口,罐体10的进水口和出水口分别与进水管道12和出水管道1连接。罐体10内由下至上依次设有承托板5、吸附介质层9、导流板15。吸附介质层9与导流板15之间间隔有一定距离。罐体10的侧壁上设有用于装填吸附介质的进料口11、用于更换吸附介质时用的出料口4及位于罐体10中上部的中排口17。与罐体10的进水口连接的进水管道12上还设有与其连通的废水进口7、排液口19及压力表及取样接口8。与罐体10的出水口连接的出水管道1上设有与其连通的排水口22、反洗进水口3、产水口21、盐酸进口6、氢氧化钠进口2及压力表及取样接口20。在罐体10顶部还设有排气口13,排气口13与排气管道14连接。上述所有管口均通过阀门控制其开关。
步骤(1)中,运行的温度为10℃,运行流速为2BV/H。
步骤(2)中,无油压缩空气的压力为0.8MPa,进气量为1Nm3/(m2·min),气擦洗时间为10min。
步骤(3)中,所述的反洗用水为反渗透产水或去离子水或蒸馏水,反洗水流速为0.5BV/H,反洗时间为10min。
步骤(4)中,所述的碱溶液为NaOH溶液,所述碱溶液的质量百分比浓度为4%,碱解析温度为55-65℃,碱解析流量为0.1BV/H,碱解析时间为10min。
步骤(5)中,所述的反冲洗水为反渗透产水或去离子水或为蒸馏水,反冲洗水温度为45℃,反冲洗水流量为0.5BV/H,反冲洗时间为10min。
步骤(6)中,所述的酸溶液为盐酸,所述酸溶液的质量百分比浓度为1%,酸溶液的流量为0.5BV/H,酸洗时间为10min。
步骤(7)中,所述的反冲洗用水为反渗透产水或去离子水或蒸馏水,反冲洗水流速为1m/H,反冲洗时间为10min。
本实施例中的其他部分采用已知技术,在此不再赘述。
本实施例中,对不同运行周期的吸附后产水的CODcr取样情况如表1所示:
表1:
实施例2
本实施例与实施例1基本相同,不同之处在于:
步骤(1)中,运行的温度为15℃,运行流速为3BV/H。
步骤(2)中,无油压缩空气的压力为0.6MPa,进气量为5Nm3/(m2·min),气擦洗时间为15min。
步骤(3)中,反洗水流速为1BV/H,反洗时间为15min。
步骤(4)中,所述的碱溶液为NaOH溶液,所述碱溶液的质量百分比浓度为6%,碱解析温度为55-65℃,碱解析流量为0.5BV/H,碱解析时间为50min。
步骤(5)中,反冲洗水温度为50℃,反冲洗水流量为1BV/H,反冲洗时间为60min。
步骤(6)中,所述的酸溶液为硫酸,所述酸溶液的质量百分比浓度为3%,酸溶液的流量为1BV/H,酸洗时间为20min。
步骤(7)中,反冲洗水流速为5m/H,反冲洗时间为20min。
本实施例中,对不同运行周期的吸附后产水的CODcr取样情况如表2所示:
表2
实施例3
本实施例与实施例1基本相同,不同之处在于:
步骤(1)中,运行的温度为35℃,运行流速为4BV/H。
步骤(2)中,无油压缩空气的压力为0.8MPa,进气量为3Nm3/(m2·min),气擦洗时间为20min。
步骤(3)中,反洗水流速为2BV/H,反洗时间为60min。
步骤(4)中,所述的碱溶液为KOH溶液,所述碱溶液的质量百分比浓度为5%,碱解析温度为55-65℃,碱解析流量为0.8BV/H,碱解析时间为150min。
步骤(5)中,反冲洗水温度为60℃,反冲洗水流量为4BV/H,反冲洗时间为120min。
步骤(6)中,所述的酸溶液为盐酸,所述酸溶液的质量百分比浓度为6%,酸溶液的流量为6BV/H,酸洗时间为600min。
步骤(7)中,反冲洗水流速为30m/H,反冲洗时间为100min。
本实施例中,对不同运行周期的吸附后产水的CODcr取样情况如表3所示:
表3
实施例4
本实施例与实施例1基本相同,不同之处在于:
步骤(1)中,运行的温度为40℃,运行流速为3BV/H。
步骤(2)中,无油压缩空气的压力为0.4MPa,进气量为4Nm3/(m2·min),气擦洗时间为20min。
步骤(3)中,反洗水流速为1.5BV/H,反洗时间为20min。
步骤(4)中,所述的碱溶液为NaOH、KOH混合配制而成,所述碱溶液的质量百分比浓度为6%,碱解析温度为55-65℃,碱解析流量为0.9BV/H,碱解析时间为250min。
步骤(5)中,反冲洗水温度为70℃,反冲洗水流量为6BV/H,反冲洗时间为300min。
步骤(6)中,所述的酸溶液为硫酸,所述酸溶液的质量百分比浓度为8%,酸溶液的流量为2BV/H,酸洗时间为400min。
步骤(7)中,反冲洗水流速为5m/H,反冲洗时间为1000min。
本实施例中,对不同运行周期的吸附后产水的CODcr取样情况如表4所示:
表4
实施例5
本实施例与实施例1基本相同,不同之处在于:
步骤(1)中,运行的温度为30℃,运行流速为2BV/H。
步骤(2)中,无油压缩空气的压力为0.6MPa,进气量为8Nm3/(m2·min),气擦洗时间为10min。
步骤(3)中,反洗水流速为4BV/H,反洗时间为50min。
步骤(4)中,所述的碱溶液为KOH溶液,所述碱溶液的质量百分比浓度为5%,碱解析温度为55-65℃,碱解析流量为0.6BV/H,碱解析时间为400min。
步骤(5)中,反冲洗水温度为90℃,反冲洗水流量为5BV/H,反冲洗时间为600min。
步骤(6)中,所述的酸溶液为硫酸、盐酸混合配制而成,所述酸溶液的质量百分比浓度为7%,酸溶液的流量为4BV/H,酸洗时间为40min。
步骤(7)中,反冲洗水流速为20m/H,反冲洗时间为30min。
本实施例中,对不同运行周期的吸附后产水的CODcr取样情况如表5所示:
表5
实施例6
本实施例与实施例1基本相同,不同之处在于:
步骤(1)中,运行的温度为40℃,运行流速为2BV/H。
步骤(2)中,无油压缩空气的压力为0.7MPa,进气量为10Nm3/(m2·min),气擦洗时间为15min。
步骤(3)中,反洗水流速为0.8BV/H,反洗时间为10min。
步骤(4)中,所述的碱溶液为NaOH溶液,所述碱溶液的质量百分比浓度为4%,碱解析温度为55-65℃,碱解析流量为0.7BV/H,碱解析时间为500min。
步骤(5)中,反冲洗水温度为95℃,反冲洗水流量为2BV/H,反冲洗时间为1000min。
步骤(6)中,所述的酸溶液为硫酸,所述酸溶液的质量百分比浓度为4%,酸溶液的流量为5BV/H,酸洗时间为80min。
步骤(7)中,反冲洗水流速为15m/H,反冲洗时间为60min。
本实施例中,对不同运行周期的吸附后产水的CODcr取样情况如表6所示:
表6

Claims (6)

1.一种脱除焦化酚氰废水反渗透浓水中难降解有机物的水处理工艺,其特征是:包括以下步骤:
(1)吸附:将经过硝基或氨基改性的纳米吸附介质NELE-8装入吸附器内,将反渗透浓水以一定流速流过吸附介质层,当吸附器内的吸附介质吸附饱和时,停止进水;该步骤中的运行温度为10-40℃,反渗透浓水的流速为2-4BV/H;
(2)气擦洗:将无油压缩空气由吸附器的底部通入吸附器内,利用压缩空气与吸附器内的纳米吸附介质及残余的反渗透浓水相互摩擦、混合振荡,产生紊流,对介质层内的吸附介质进行疏松,并将残留在介质颗粒间以及颗粒表面的截留的悬浮物及其他杂质冲走;压缩空气的压力为0.6-0.8MPa,进气量为1-10Nm3/(m2·min),气擦洗时间为10-20min;
(3)水反洗I:用带压的水反洗吸附器内饱和的吸附介质,将残留在介质层中的反渗透浓水及其他杂质排出;
(4)碱解析再生:将加热至一定温度的碱溶液通入吸附器内与所吸附的有机物反应,有机物形成盐溶于水中,使饱和的吸附介质再生;所述的碱溶液为NaOH、KOH中的一种或两种配制而成,所述碱溶液的质量百分比浓度为4%-6%,碱解析温度为55-65℃,碱解析流量为0.1-0.9BV/H,碱解析时间为10-500min;
(5)水反冲洗:将加热至一定温度的水由吸附器底部通入吸附器内,将介质层内残留的碱液洗出;
(6)酸洗:将一定浓度的酸溶液由吸附器底部通入吸附器内,将吸附介质孔道内的铁铝胶体以及残留的碱洗出;
(7)水反洗Ⅱ:将带压的水由吸附器的底部通入吸附器内,将残留的酸液洗出,并使吸附介质进行分层,以便投入下一周期使用;所述的反冲洗用水为反渗透产水或去离子水或蒸馏水,反冲洗水流速为1-30m/H,反冲洗时间为10-1000min。
2.根据权利要求1所述的脱除焦化酚氰废水反渗透浓水中难降解有机物的水处理工艺,其特征是:步骤(3)中所述的反洗用水为反渗透产水或去离子水或蒸馏水,反洗水流速为0.5-2BV/H,反洗时间为15-20min。
3.根据权利要求1所述的脱除焦化酚氰废水反渗透浓水中难降解有机物的水处理工艺,其特征是:步骤(4)中的碱解析流量为0.5-0.8BV/H,碱解析时间为50-400min。
4.根据权利要求1所述的脱除焦化酚氰废水反渗透浓水中难降解有机物的水处理工艺,其特征是:步骤(5)中所述的反冲洗水为反渗透产水或去离子水或为蒸馏水,反冲洗水温度为45-95℃,反冲洗水流量为0.5-6BV/H,反冲洗时间为10-1000min。
5.根据权利要求4所述的脱除焦化酚氰废水反渗透浓水中难降解有机物的水处理工艺,其特征是:步骤(5)中的反冲洗水温度为50-90℃,反冲洗水流量为1-4BV/H,反冲洗时间为60-600min。
6.根据权利要求1所述的脱除焦化酚氰废水反渗透浓水中难降解有机物的水处理工艺,其特征是:步骤(6)中所述的酸溶液为盐酸、硫酸中的一种或两种配制而成,所述酸溶液的质量百分比浓度为1%-8%,酸溶液的流量为0.5-6BV/H,酸洗时间为10-600min。
CN201410212085.XA 2014-05-19 2014-05-19 一种脱除焦化酚氰废水反渗透浓水中难降解有机物的工艺 Expired - Fee Related CN103979692B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410212085.XA CN103979692B (zh) 2014-05-19 2014-05-19 一种脱除焦化酚氰废水反渗透浓水中难降解有机物的工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410212085.XA CN103979692B (zh) 2014-05-19 2014-05-19 一种脱除焦化酚氰废水反渗透浓水中难降解有机物的工艺

Publications (2)

Publication Number Publication Date
CN103979692A CN103979692A (zh) 2014-08-13
CN103979692B true CN103979692B (zh) 2015-12-09

Family

ID=51271897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410212085.XA Expired - Fee Related CN103979692B (zh) 2014-05-19 2014-05-19 一种脱除焦化酚氰废水反渗透浓水中难降解有机物的工艺

Country Status (1)

Country Link
CN (1) CN103979692B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104803548B (zh) * 2015-04-01 2017-01-04 浙江碧源环保科技有限公司 一种焦化酚氰废水处理回用零排放工艺及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613162A (zh) * 2009-07-30 2009-12-30 上海京瓷电子有限公司 一种电镀废水再利用的处理方法
CN102372376A (zh) * 2010-08-27 2012-03-14 中国石油化工股份有限公司 一种反渗透浓水的处理方法
CN203346118U (zh) * 2013-07-18 2013-12-18 王文波 一种脱除焦化废水中难生物降解物质的设备
CN203346117U (zh) * 2013-07-18 2013-12-18 王文波 一种用于处理焦化废水的污水处理设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432171B1 (en) * 2000-08-28 2002-08-13 The Boc Group, Inc. Thermal swing adsorption process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613162A (zh) * 2009-07-30 2009-12-30 上海京瓷电子有限公司 一种电镀废水再利用的处理方法
CN102372376A (zh) * 2010-08-27 2012-03-14 中国石油化工股份有限公司 一种反渗透浓水的处理方法
CN203346118U (zh) * 2013-07-18 2013-12-18 王文波 一种脱除焦化废水中难生物降解物质的设备
CN203346117U (zh) * 2013-07-18 2013-12-18 王文波 一种用于处理焦化废水的污水处理设备

Also Published As

Publication number Publication date
CN103979692A (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
CN101560044B (zh) 羟基苯甲酸生产废水的处理方法
CN100569356C (zh) 一种树脂用于印染废水的深度处理及回用的方法
WO2011082507A1 (zh) 一种氰化尾矿浆资源化和无害化处理方法
CN101134628A (zh) Pta精制废水的综合处理利用方法
CN105214625B (zh) 一种活化褐煤及应用该活化褐煤的焦化废水的处理工艺
CN104129831A (zh) 一种利用螯合树脂同时去除和回收重金属离子和有机酸的方法
CN105502628B (zh) 一种低浓度含氰废水的循环处理系统
CN104512957A (zh) 一种炼油污水臭氧催化氧化预处理装置及方法
CN105565533A (zh) 一种由硫酸铜电镀废水制备去离子水的零排放在线处理工艺
CN103693773A (zh) 一种含铬废水回用处理方法
CN103991924A (zh) 一种用于处理电解锰生产工艺末端废水的离子交换树脂的再生方法
CN104561592A (zh) 一种含镍电镀废水的处理和镍回收方法
CN103979692B (zh) 一种脱除焦化酚氰废水反渗透浓水中难降解有机物的工艺
CN102188959A (zh) 一种吸附污水中氨氮饱和后的沸石的再生方法
CN203346118U (zh) 一种脱除焦化废水中难生物降解物质的设备
CN203715324U (zh) 一种含酚废水脱除装置
CN107311354B (zh) 含铁离子和锌离子的废酸的治理与资源化方法
CN103086575A (zh) 大蒜加工废水深度处理系统及方法
CN215365311U (zh) 高煤含盐废水处理系统
CN114804500A (zh) 一种活性炭吸附池再生方法及再生系统
CN212127781U (zh) 一种废旧电池废水的镍回收装置
CN102815805A (zh) 含镍、铜离子的废水处理方法
AU2020104409A4 (en) Device and Method for the Recycle of Ammonium Sulfate from Waste Acid in the Dye Industry
CN112777817A (zh) 一种含苯胺类化合物高盐废水处理方法
CN101851815A (zh) 一种吸附分离除去腈纶溶剂中铁离子的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151209

Termination date: 20200519