CN103978789A - Head medical model quick forming method based on 3D printing - Google Patents

Head medical model quick forming method based on 3D printing Download PDF

Info

Publication number
CN103978789A
CN103978789A CN201410218464.XA CN201410218464A CN103978789A CN 103978789 A CN103978789 A CN 103978789A CN 201410218464 A CN201410218464 A CN 201410218464A CN 103978789 A CN103978789 A CN 103978789A
Authority
CN
China
Prior art keywords
image
mr
tissue
medical
ct
Prior art date
Application number
CN201410218464.XA
Other languages
Chinese (zh)
Other versions
CN103978789B (en
Inventor
周志勇
戴亚康
郁朋
耿辰
Original Assignee
中国科学院苏州生物医学工程技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州生物医学工程技术研究所 filed Critical 中国科学院苏州生物医学工程技术研究所
Priority to CN201410218464.XA priority Critical patent/CN103978789B/en
Publication of CN103978789A publication Critical patent/CN103978789A/en
Application granted granted Critical
Publication of CN103978789B publication Critical patent/CN103978789B/en

Links

Abstract

The invention provides a head medical model quick forming method based on 3D printing. According to the method, CT/MR multimode medical images are used, a three-dimensional model is quickly established for head tissue/organs, and a 3D printing method is used for carrying out quick forming on the three-dimensional model. The method comprises the steps that (1) a multimode image registration technology is used, and the CT/MR images are registered into a unified space coordinate system; (2) according to medical information provided by the CT/MR images, different kinds of head tissue/organs are extracted; (3) the three-dimensional model is established for the extracted tissue/organs; and (4) the three-dimensional model is subjected to layering layer by layer, cross section data after layering are obtained, and 3D printing is carried out according to the cross section data. According to the CT/MR images, the head tissue/organs can be subjected to quick and accurate modeling, the manufacturing speed and the accuracy of a head medical model can be effectively improved, and a customized and personalized head medical model can be provided.

Description

基于3D打印的头部医学模型快速成型方法 Rapid prototyping 3D printing head based on the medical model

技术领域 FIELD

[0001] 本发明涉及一种头部医学模型的设计和制造技术,尤其是涉及一种基于3D打印的医学模型快速成型方法。 [0001] The present invention relates to a medical model head design and manufacturing technology, especially relates to a medical method of rapid prototyping model based on 3D printing.

背景技术 Background technique

[0002] 3D打印作为一项创新技术,以三维模型数据为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体。 [0002] 3D printing as an innovative technology, based on three-dimensional model data, the use of powdered metal or other plastics material may be an adhesive, layer by layer by the printing mode to construct the object. 3D打印与传统制造方式相比具有明显成本优势:无需设计模具,不必引进生产流水线。 3D printing compared to conventional manufacturing methods have significant cost advantages: no need to design the mold, do not have to introduce production lines. 同时,3D打印制作模型的速度快,单个实物制作费用低,并在在工业快速成型、设计模型制造和医疗义肢制作等领域获得应用。 At the same time, the production model 3D printing speed, low single physical production costs and obtain rapid prototyping applications in industrial, medical and manufacturing design models to make artificial limbs and other fields. 近几年,3D打印技术快速发展引起了广泛关注,引起较大影响,是制造业发展的一个新趋势。 In recent years, 3D printing, rapid technological development has attracted wide attention, causing a greater impact, it is a new trend in the development of the manufacturing sector. 随着桌面3D打印机及打印材料价格的不断下降,3D打印技术正在向实用化方向迈进。 As a desktop 3D printer and print material prices continue to decline, 3D printing technology is moving to the practical direction. 3D打印可以为医学1¾型制造提供有别于传统制造方式的新思路,可提闻1¾型的制造效率,提供可定制化和个性化的医学模型。 3D printing can provide new ideas different from the traditional manufacturing methods for manufacturing medical 1¾ type, mention may hear 1¾ type of manufacturing efficiency, provide medical model can be customized and personalized.

发明内容 SUMMARY

[0003] 本发明提供了一种基于3D打印的医学模型快速成型方法。 [0003] The present invention provides a medical model rapid prototyping methods based 3D printing. 基于多模态医学图像的精确分割和配准,有效利用CT图像和MR图像的信息,对头部皮肤、颅骨、灰质、白质、脑脊液和大脑不同脑区建立三维模型,通过3D打印的方法,精确、快速地制造头部医学模型,并可提供可定制化、个性化的模型,解决了传统医学模型制作周期长、精度低、不可定制化的缺点。 Based on accurate segmentation and registration of multi-modal medical image, effective use of information CT images and MR images, 3D model of the head skin, skull, gray matter, white matter, CSF and brain in different brain regions, the method by 3D printing, accurately and quickly head manufacturing medical model, and can provide customized, personalized model to solve the traditional medical model making long cycle, low accuracy, can not be customized shortcomings. [0004] 为了解决上述技术问题,实现上述目的,本发明通过以下技术方案实现: [0004] In order to solve the above problems, to achieve the above object, the present invention is achieved by the following technical solution:

一种基于3D打印的头部医学模型快速成型方法,其特征在于包含以下步骤: A fast method of forming print head based medical 3D model, characterized by comprising the steps of:

多模态医学图像配准、基于多模态图像的组织/器官精确分割、组织/器官的三维模型 Multi-modal medical image registration, multimodal image-based tissue / organ accurate segmentation, three-dimensional model tissue / organ

建立和3D打印,其中,所述多模态医学图像,包含以下任意一种模态的图像或任意组合:计算机断层成像(CT)图像和磁共振成像(MR)图像,或衍生自CT的成像技术获取的图像和衍生自MR的成像技术获取的图像的任一组合。 Establishing and 3D printing, wherein the multi-modal medical images, comprising any of modality images, or any combination of: computed tomography (CT) image and a magnetic resonance imaging (MR) images, or from CT imaging technology acquired image and an image derived from any combination of MR imaging techniques acquired.

[0005] 所述的衍生自CT的成像技术,包含以下任意一种成像技术:灌注CT成像技术、功能CT成像技术和计算机断层血管造影。 [0005] derived from the CT imaging techniques, including any of the following imaging techniques: CT perfusion imaging, functional imaging and computed tomography CT angiography.

[0006] 所述的衍生自MR的成像技术,包含以下任意一种成像技术:灌注MR成像技术,功能MR成像技术、弥散张量MR成像技术和磁共振血管造影技术。 [0006] derived from the MR imaging technique, including any of the following imaging techniques: MR perfusion imaging, functional MR imaging, MR diffusion tensor imaging and magnetic resonance angiography.

[0007] 所述的多模态医学图像配准步骤包括: [0007] The medical multimodal image registration step comprises:

(I)构造或选择参考图像,并提取多模态图像的相关信息; (I), or configured to select a reference image, and extract the relevant information multimodal images;

(II)构造图像的相似性测度; (II) configured image similarity measure;

(III)最大化相似性测度,计算得到图像的位移向量; (III) to maximize the similarity measure is calculated displacement vector image;

(IV)将多模态图像所在的空间变换到参考图像的坐标空间; (IV) The space where the multimodal image transformed to the coordinate space of the reference image;

其中所述的参考图像是待配准的多模态图像中的其中之一,或是参考图像是标准的模板图像,或是由若干幅图像构造的模板图像,或是由多模态图像构造的先验结构图像,或是由健康人体采集而得的高精度图像; Wherein said reference image is one of a multi-modality image registration to be in, or standard reference image is the template image, an image or several images by the template structure, or a multi-modal image configuration priori structure of the image, or collected by the high-precision image obtained in healthy volunteers;

其中所述的多模态图像的相关信息,包含以下任一一种或若干种信息的任意组合: Wherein said multimodal image-related information, including any combination of any one or several of the following information:

图像像素的灰度、图像梯度、图像局部梯度方向、互相关系数、互信息(或归一化互信息、或条件互信息、或包含空间上下文内容的互信息)、图像局部熵、拉普拉斯邻域图和自相似性特征,以及基于以上信息的改进; Gray image pixels, image gradient, the local gradient direction image, cross-correlation, mutual information (or normalized mutual information, or conditional mutual information, or a context of mutual information content space), the image local entropy, Plata Adams neighborhood graph and self-similarity characteristics, and improved based on the above information;

其中所述的空间变换是以下任—种:刚性变换、仿射变换、弹性变换或非刚性变换,以及在不同图像尺度上上述变换的任意组合。 Wherein said spatial transformation is one of the following - species: a rigid transformation, affine transformation, elastic or non-rigid transformation transform, and any combination of the conversion of the image at different scales.

[0008] 所述的多模态医学图像的组织/器官精确分割步骤包括: [0008] The tissue multimodal medical images / organ accurate segmentation step comprises:

对于MR图像的处理,具体指的是对MR图像或衍生自MR的成像技术获取的图像(以下简称MR图像)进行如下处理: For MR image processing, specifically refers to the MR image or an image derived from the following process (hereinafter referred to as MR images) of the acquired MR imaging techniques:

(I)预处理MR图像或衍生自MR的成像技术获取的图像,得到预处理后的图像; (I) or a MR image derived pretreatment MR image acquired from the imaging technique to obtain the preprocessed image;

(II)去除MR图像或衍生自MR的成像技术获取的图像中的颅骨和小脑等组织; (II) removing an image or a MR image derived from MR imaging technology acquired skull and cerebellum tissue;

(III)分割得到灰质、白质、脑脊液和背景等区域,并计算灰质等组织的厚度; (III) obtained by dividing the gray matter, white matter, cerebrospinal fluid, and background region, and calculates the thickness of the gray matter tissue and the like;

(IV)分割大脑中的感兴趣区域; (IV) dividing the region of interest in the brain;

对于CT图像的处理,具体指的是对CT图像或衍生自CT的成像技术获取的图像(以下简称CT图像),进行如下处理: For CT image processing, specifically refers to an image or derived from the CT image (hereinafter referred to as CT image) obtained by CT imaging techniques, the following process:

(I)预处理CT图像或衍生自CT的成像技术获取的图像,去除图像噪声和灰度分布不均匀性; (I) Pretreatment CT image or from an image acquired by CT imaging techniques, removing an image noise and unevenness in the distribution of the gradation;

(II)分割头部的颅骨组织; (II) the skull tissue division head;

(III)分割头部的皮肤; (III) dividing the head skin;

(IV)分割得到整体的脑部组织。 (IV) obtained by dividing the overall brain tissue.

[0009] 对于MR图像的处理步骤(III)中采用MR图像分割算法,其特征在于:使用多水平集方法分割灰质、白质和脑脊液;对于MR图像的处理步骤(IV)中采用非线性对称配准算法分割大脑的感兴趣区域,其特征在于:所述的非线性对称配准算法,可将大脑区域分割成90个脑区。 [0009] For process step (III) MR images in an MR image segmentation algorithm, wherein: using a multi-level set method division gray matter, white matter, and cerebrospinal fluid; nonlinear symmetric with respect to process step (IV) MR images using registration algorithm divided region of interest of the brain, characterized in that: said nonlinear symmetric registration algorithm can be divided into regions of the brain 90 brain regions.

[0010] 所述的组织/器官的三维模型建立步骤包括: [0010] The three-dimensional model of the tissue / organ establishing step comprises:

(I)基于图像分割的结果,生成可精确描述各组织/器官表面的三角网格曲面; (I) based on a result of image segmentation, generating a triangular mesh can describe each tissue / organ surface;

(II)根据多模态医学图像的信息和先验解剖知识,生成各组织/器官的信息,并附加到网格曲面中; (II) The information multimodal medical images and a priori anatomical knowledge, the information generated for each tissue / organ, and attached to the mesh surface;

(III)将三维模型转换为逐层横截面数据; (III) to convert the three-dimensional model layer by layer to the cross-section data;

其中所述的三角网格曲面,其特征在于:存储该三角网格曲面的文件格式是STL,或3MF,或自定位的包含三角网格曲面和其他附加信息; Wherein said triangular mesh surface, wherein: storing the triangular mesh is the STL file format, or 3 mf, or self-contained positioning triangular mesh and other additional information;

其中所述的可附加到网格曲面的信息,可包含以下内容:网格曲面对应的组织/器官的密度、曲面的厚度、曲面所包围区域的填充率和曲面所代表组织/器官的颜色; Wherein said information may be attached to the mesh surface, it may include the following: mesh surface corresponding to tissue / organ density, surface thickness, and the surface of the surface region surrounding the filling rate of color tissue / organ represented;

其中所述的逐层横截面数据地厚度是0.1毫米I毫米; Wherein said cross-sectional data layer by layer a thickness of 0.1 mm and I mm;

生成其所述的逐层横截面数据,可使用的软件是Cura,或是Slicr,或是netfabb,或是Skeinforge,或是基于Windows8.1及后续版本提供的SDK开发的软件。 Generating layer by layer according to its cross-sectional data, the software may be used Cura, or Slicr, or netfabb, or Skeinforge, or based on Windows8.1 and later versions of the SDK provides software development.

[0011] 所述的3D打印方法,包含以下步骤: (I)为不同的组织/器官选择合适的3D打印材料; [0011] The 3D printing method, comprising the steps of: (I) selecting the appropriate printed material for different 3D tissue / organ;

(II)根据权利要求13所述的附加信息,设置3D打印的参数; (II) the additional information according to claim 13, the parameter set of 3D printing;

(III)执行3D打印过程; (III) performing 3D printing process;

其所述的3D打印材料,其特征在于:打印颅骨的材料是磷酸钙、或是磷酸钙生物陶瓷、或是含磷酸钙的混合材料、或是聚乳酸、或是含有聚乳酸的混合物、或是丙烯腈-丁二烯-苯乙烯共聚物、或是含丙烯腈-丁二烯-苯乙烯共聚物的混合物,打印皮肤和脑组织的材料是硅胶、或是橡胶、或是明胶、或是工业淀粉、或是含有上述任一一种或若干种材料的混合物。 The 3D printing material thereof, wherein: skull printed material is calcium phosphate, or calcium phosphate bioceramics, or a mixed material containing calcium phosphate, or polylactic acid, or a mixture containing polylactic acid, or acrylonitrile - butadiene - styrene copolymer, or acrylonitrile containing - butadiene - styrene copolymer, skin and brain print material is a silicone, or rubber, or gelatin, or industrial starch, or mixtures of any one or several materials containing.

[0012] 所述的3D打印材料,包括:3D打印的材料和人体组织/器官的颜色一致或较为接近;或可根据不同组织(器官),或根据大脑中的不同脑区,可选用不同颜色的材料。 [0012] The 3D printing material, comprising: a uniform material and human tissues / organs or 3D printed color closer; or according to different tissues (organs), or on different brain regions in the brain, can choose different colors s material.

[0013] 所述的3D打印过程中,3D打印的层厚是0.1毫米〜3毫米。 [0013] The 3D printing process, the printed layer thickness of 0.1 mm 3D ~ 3 mm.

[0014] 上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。 [0014] The above description is only an overview of the technical solution of the present invention, in order to more fully understood from the present disclosure, may be implemented in accordance with the contents of the specification, the following preferred embodiments of the present invention to the detailed description and the accompanying drawings as Rear. 本发明的具体实施方式由以下实施例及其附图详细给出。 DETAILED DESCRIPTION Example embodiments of the present invention is given by the following and the accompanying drawings in detail.

[0015]附图说明 [0015] BRIEF DESCRIPTION OF DRAWINGS

[0016] 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。 [0016] The drawings described herein are provided for further understanding of the present invention, constitute a part of this application, exemplary embodiments of the present invention are used to explain the present invention without unduly limiting the present invention. 在附图中: In the drawings:

图1为本发明提供的基于3D打印的头部医学模型快速成型方法的步骤流程图; Step 1 based 3D model of a head for printing medical rapid prototyping method of the present invention to provide a flow chart;

图2为本发明一实施例提供的CT/MR多模态医学图像配准的步骤流程图; FIG 2 steps provided in CT / MR multimodal medical image registration flowchart of one embodiment of the present invention;

图3为本发明一实施例提供的MR图像分割脑组织的步骤流程图; Step 3 provided an MR image segmentation of brain tissue flow chart of an embodiment of the invention;

图4为本发明一实施例提供的脑部三维模型建立的步骤流程图; FIG 4 embodiment provides three-dimensional model of the brain step established a flowchart of the present embodiment of the invention;

图5为本发明一实施例提供的3D打印脑部组织的步骤流程图。 The procedure of Example 5 provided a 3D printing flowchart of the brain tissue of the present invention.

具体实施方式 Detailed ways

[0017] 下面结合附图和实施例对本发明的技术实施过程做进一步说明。 The drawings and the technical implementation of embodiments of the present invention will be further described [0017] below in conjunction.

[0018] 一种基于3D打印的头部医学模型快速成型方法,该方法的实施步骤如下所述。 [0018] A method of rapid prototyping 3D printing head based on the medical model, steps of the method embodiments described below.

[0019] 1.采集图像: [0019] 1. Image acquisition:

采集同一人体的头部CT图像和MR图像。 Acquisition head CT and MR images of the same image of the human body.

[0020] 2.预处理MR图像: [0020] 2. Pretreatment MR image:

a)利用重定向和重采样算法对MR图像进行归一化处理,得到256 X 256 X 256大小的图 a) using a resampling algorithm redirection and MR images are normalized to give the size of 256 X 256 X 256 in FIG.

像; image;

b)利用非均匀性灰度校正算法对MR图像进行灰度校正。 b) the MR image of the gradation correction using a non-uniform gradation correction algorithm.

[0021] 3.CT图像和MR图像刚性配准: [0021] 3.CT image and the MR image rigid registration:

a)获取CT/MR图像大小、分辨率、原点坐标和灰度阶数等信息; a) obtaining information CT / MR image size, resolution, and gray scale number origin of the coordinate ORDER;

b)将MR图像作为参考图像,将CT图像作为浮动图像,插值CT图像,将CT图像的分辨率调整和MR图像一致,对齐CT/MR图像的坐标原点; b) the MR image as a reference image, floating image as CT images, the CT image interpolation, the resolution adjustment consistent with the CT image and the MR image, the coordinate origin is aligned CT / MR image;

c)使用图像灰度等特征信息构造相似性函数; d)最大化相似性函数,计算CT图像在X/Y/Z方向上的位移量、旋转矩阵和放缩量; c) using the image gradation characteristic information configured like the similarity function; D) to maximize the similarity function, the amount of displacement in the X / Y / Z direction of the CT image is calculated, and put rotation matrix shrinkage;

e)插值CT图像,计算得到配准后的MR图像。 e) interpolating the CT image, MR image is calculated after registration.

[0022] 4.分割CT图像: [0022] 4. The CT image segmentation:

a)设置CT的窗宽/窗位,二值化图像,得到皮肤、颅骨和脑组织所在的区域; a) providing a CT window width / level, the binarized image, to obtain regions of skin, skull and brain tissue located;

b)将二值化的结果作为水平集模型的初值位置; b) The result of binarization level set as the initial value the location model;

c)使用多水平集算法分割头部CT图像,同时分割得到皮肤和颅骨的内外表面,分割得到脑组织的外表面; c) using a multi-level set segmentation algorithm head CT images obtained by dividing the same time inner and outer surfaces of the skull and the skin, obtained by dividing the outer surface of the brain;

5.分割MR图像 The MR image segmentation

a)利用Marching Cubes算法对脑MR图像进行三维表面重建,由空间平滑力来平滑三维表面并获得均匀间距的顶点,接着基于图像灰度的驱动力来区分脑组织和非脑组织,然后由脑概率图来驱动顶点移向真实的脑组织边界,最后得到去除了颅骨的脑组织; a) using the Marching Cubes algorithm brain MR image reconstruction of three-dimensional surface, a three-dimensional spatial smoothing to smooth the surface and the force to obtain a uniform spacing of the vertex, then the brain tissue and to distinguish between non-brain tissues driving force based on the gray image, and then the brain probability plots to drive the apex toward the real brain tissue boundaries, and finally get the skull removed brain tissue;

b)采用FLIRT算法和Demons算法配准MR图像和丽I脑图谱,得到去除了小脑的大脑区域; b) using the algorithm and Demons algorithm FLIRT registration MR images and a brain atlas I Li, to give except cerebellum brain regions;

c)采用局部灰度约束和脑皮层厚度约束多水平集分割的方法,分割出大脑区域中的灰质、白质和背景目标; c) using the local gray cortical thickness constraint and constraint multi level set segmentation, segmentation of the brain gray matter areas, white and background objects;

d)使用非线性对称配准算法配准MR图像和丽I脑图谱,从而获得丽I脑图谱到MR图像的非线性变换。 d) using the registration algorithm Symmetric Nonlinear registration MR images and a brain atlas I Li, I Li to obtain a non-linear transformation to the brain atlas of MR images.

[0023] 6.生成组织(器官)的三维模型 [0023] 6. generate the tissue (organ) is a three-dimensional model

a)根据CT图像的分割结果,为头部皮肤和颅骨生成双层的三维网格曲面,其中,皮肤的内层曲面即为颅骨的外层曲面; a) The results of segmentation of the CT image, generating a three-dimensional mesh surface of the double skin and the skull of the head, wherein the inner surface of the skin is the outer surface of the skull;

b)根据MR图像的分割结果,为头部皮肤、颅骨、脑灰质建立双层的三维网格曲面; b) The results of segmentation of MR images, is the head skin, skull, brain gray matter to establish a three-dimensional mesh surface bilayer;

c)建立白质的三维网格曲面,建立90个脑区的三维网格曲面; c) establishing a three-dimensional mesh surface of the white matter, dimensional mesh surface 90 brain regions;

d)平滑三维网格曲面; d) three-dimensional mesh surface smooth;

e)计算头部皮肤、颅骨和灰质的厚度; e) Calculate the head skin, and the thickness of the gray matter of the skull;

f)根据CT图像与MR图像信息、医学先验知识和分割结果,为三维网格曲面附件曲面厚度、密度、填充率和颜色等信息。 f) the CT image and the MR image information, and prior knowledge of medical segmentation results, a three-dimensional mesh surface attachment surface thickness, density, and color information filling rate.

[0024] 7.3D 打印: [0024] 7.3D print:

a)将三维曲面模型进行切片处理,设置切片厚度,将三维模型转换为分层的横截面数据。 a) the three-dimensional surface model to slice, slice thickness setting, converts three-dimensional model to cross-sectional data delamination.

[0025] b)选择磷酸钙作为颅骨打印材料,选择医用明胶打印皮肤和脑部的软组织; [0025] b) calcium phosphate to select the printing material as the skull, and selecting the soft tissue of the skin print brain medical gelatin;

c)设置3D打印的层厚为I毫米; c) providing a layer thickness of I mm for 3D printing;

d)设置打印速度、送料速度等参数后,上位机联机3D打印机进行打印。 D) After setting the printing speed, feed rate and other parameters, PC online 3D printer.

[0026] 以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。 [0026] The above description is only preferred embodiments of the present invention, it is not intended to limit the invention to those skilled in the art, the present invention may have various changes and variations. 凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。 Any modification within the spirit and principle of the present invention, made, equivalent substitutions, improvements, etc., should be included within the scope of the present invention.

Claims (10)

1.基于3D打印的头部医学模型快速成型方法,其特征在于包含以下步骤:多模态医学图像配准、基于多模态图像的组织/器官精确分割、组织/器官的三维模型建立和3D打印,其中,所述多模态医学图像,包含以下任意一种模态的图像或任意组合:CT图像和MR图像,或衍生自CT的成像技术获取的图像和衍生自MR的成像技术获取的图像的任一组合。 1. A method of rapid prototyping 3D printing head based on the medical model, characterized by comprising the steps of: a multi-modal medical image registration, multimodal image-based tissue / organ accurate segmentation, and to establish a three-dimensional 3D model tissue / organ printing, wherein the multi-modal medical images, comprising any one modality image or any combination of: CT images and MR images, or derived from the acquired MR images derived from the imaging of CT imaging technique acquired a combination of any of the image.
2.根据权利要求1所述的基于3D打印的头部医学模型快速成型方法,其特征在于:所述的衍生自CT的成像技术,包含以下任意一种成像技术:灌注CT成像技术、功能CT成像技术和计算机断层血管造影。 The 3D model based on the print head Medical rapid prototyping method according to claim 1, wherein: said derived from CT imaging techniques, including any of the following imaging techniques: CT perfusion imaging, CT function imaging and computed tomography angiography.
3.根据权利要求1所述的基于3D打印的头部医学模型快速成型方法,其特征在于:所述的衍生自MR的成像技术,包含以下任意一种成像技术:灌注MR成像技术,功能MR成像技术、弥散张量MR成像技术和磁共振血管造影技术。 The 3D model based on the print head Medical rapid prototyping method according to claim 1, wherein: said derived from MR imaging techniques, including any of the following imaging techniques: MR perfusion imaging, MR function imaging, MR diffusion tensor imaging and magnetic resonance angiography.
4.根据权利要求1所述的基于3D打印的头部医学模型快速成型方法,其特征在于:所述的多模态医学图像配准步骤包括: (I)构造或选择参考图像,并提取多模态图像的相关信息; (II)构造图像的相似性测度; (III)最大化相似性测度,计算得到图像的位移向量; (IV)将多模态图像所在的空间变换到参考图像的坐标空间; 其中所述的参考图像是待配准的多模态图像中的其中之一,或是参考图像是标准的模板图像,或是由若干幅图像构造的模板图像,或是由多模态图像构造的先验结构图像,或是由健康人体采集而得的高精度图像; 其中所述的多模态图像的相关信息,包含以下任一一种或若干种信息的任意组合: 图像像素的灰度、图像梯度、图像局部梯度方向、互相关系数、互信息、图像局部熵、拉普拉斯邻域图和自相似性特征,以及基于以上信息的改进; 其 According to claim 1, the 3D model based on the print head Medical rapid prototyping method, characterized in that: the medical image registration step comprises Multimodal: (the I) or configured to select a reference image, and extracts multiple infos imaging modality; (II) configured image similarity measure; (III) to maximize the similarity measure, the image displacement vector is calculated; (IV) multimodal image space where the coordinates of the reference image is transformed into space; wherein the reference image is one of a multi-modality image registration to be in, or standard reference image is the template image, an image or several images by the template structure, or a multi-state mode structure of image configuration prior to, or collected by the high-precision image obtained healthy volunteers; wherein said multimodal image-related information, including any combination of any one or several of the following information: the image pixels gradation, the image gradient, the local gradient direction image, cross-correlation, mutual information, entropy partial image, and the neighborhood graph Laplacian self-similarity characteristics, and improvements based on the above information; it 所述的空间变换是以下任--种:刚性变换、仿射变换、弹性变换或非刚性变换,以及在不同图像尺度上上述变换的任意组合。 The spatial transformation is one of the following - species: a rigid transformation, affine transformation, elastic or non-rigid transformation transform, and any combination of the conversion of the image at different scales.
5.根据权利要求1所述的基于3D打印的头部医学模型快速成型方法,其特征在于:所述的多模态医学图像的组织/器官精确分割步骤包括: 对于MR图像的处理,具体指的是对MR图像或衍生自MR的成像技术获取的图像进行如下处理: (I)预处理MR图像或衍生自MR的成像技术获取的图像,得到预处理后的图像; (II)去除MR图像或衍生自MR的成像技术获取的图像中的颅骨和小脑等组织; (III)分割得到灰质、白质、脑脊液和背景等区域,并计算灰质等组织的厚度; (IV)分割大脑中的感兴趣区域; 对于CT图像的处理,具体指的是对CT图像或衍生自CT的成像技术获取的图像进行如下处理: (I)预处理CT图像或衍生自CT的成像技术获取的图像,去除图像噪声和灰度分布不均匀性; (II)分割头部的颅骨组织; (III)分割头部的皮肤; (IV)分割得到整体的脑部组织。 The 3D model based on the print head Medical rapid prototyping method according to claim 1, wherein: said tissue multimodal medical images / organ accurate segmentation step comprises: for processing the MR image, the specific means or MR images is derived as follows from the image processing the acquired MR imaging techniques: (I) pre-MR images or MR images derived from the imaging techniques acquire, obtain the preprocessed image; (II) MR images removed or derived from the image MR imaging technology acquired skull and cerebellum tissue; (III) obtained by dividing the gray matter, white matter, cerebrospinal fluid and the background region, and calculates the thickness of the gray matter and the like tissue; (IV) division of interest in the brain region; CT images for processing, in particular referring to the CT image or an image derived from the following processing acquired CT imaging techniques: (I) pre-CT image or from an image acquired by CT imaging techniques, removing an image noise and a gradation distribution nonuniformity; (II) dividing the skull tissue header; (III) dividing the head skin; (IV) obtained by dividing the entire brain tissue.
6.根据权利要求5所述的基于3D打印的头部医学模型快速成型方法,对于MR图像的处理步骤(III)中采用MR图像分割算法,其特征在于:使用多水平集方法分割灰质、白质和脑脊液;对于MR图像的处理步骤(IV)中采用非线性对称配准算法分割大脑的感兴趣区域,其特征在于:所述的非线性对称配准算法,可将大脑区域分割成90个脑区。 The 3D model based on the print head Medical rapid prototyping method according to claim 5, MR image segmentation algorithm for the processing step (III) employed in the MR image, wherein: level set method using a multi-division gray, white matter and cerebrospinal fluid; for process step (IV) MR image region of interest using the registration algorithm nonlinear symmetric division of the brain, characterized in that: said non-linear symmetry registration algorithm can be divided into regions of the brain 90 brain Area.
7.根据权利要求1所述的基于3D打印的头部医学模型快速成型方法,其特征在于:所述的组织/器官的三维模型建立步骤包括: (I)基于图像分割的结果,生成可精确描述各组织/器官表面的三角网格曲面; (II)根据多模态医学图像的信息和先验解剖知识,生成各组织/器官的信息,并附加到网格曲面中; (III)将三维模型转换为逐层横截面数据; 其中所述的三角网格曲面,其特征在于:存储该三角网格曲面的文件格式是STL,或3MF,或自定位的包含三角网格曲面和其他附加信息; 其中所述的可附加到网格曲面的信息,可包含以下内容:网格曲面对应的组织/器官的密度、曲面的厚度、曲面所包围区域的填充率和曲面所代表组织/器官的颜色; 其中所述的逐层横截面数据地厚度是0.1毫米I毫米; 生成其所述的逐层横截面数据,可使用的软件是Cura,或是Slicr,或是netfabb The 3D model based on the print head Medical rapid prototyping method according to claim 1, wherein: three-dimensional model of the tissue / organ establishing step comprises: (the I) based on a result of image segmentation, generating accurate description of organizations / triangular mesh surface of the organ; (II) according to the multi-modal medical image information and a priori anatomical knowledge, the information generated for each tissue / organ, and attached to the mesh surface; (III) a three-dimensional model to cross-sectional data layer by layer; wherein said triangular mesh surface, wherein: storing the triangular mesh is the STL file format, or 3 mf, or self-contained positioning triangular mesh and other additional information ; wherein the information may be attached to the mesh surface, may include the following: mesh surface corresponding to tissue / organ density, the thickness of the curved surface and the curved surface region of the filling factor represented surrounded by tissue / organ color ; wherein the cross-sectional data layer by layer a thickness of 0.1 mm and I mm; generating layer by layer according to its cross-sectional data, the software may be used Cura, or Slicr, or netfabb 或是Skeinforge,或是基于Windows8.1及后续版本提供的SDK开发的软件。 Or Skeinforge, or SDK to develop software based on Windows8.1 and later provided.
8.根据权利要求1所述的基于3D打印的头部医学模型快速成型方法,其特征在于:所述的3D打印方法,包含以下步骤: (I)为不同的组织/器官选择合适的3D打印材料; (II)根据权利要求13所述的附加信息,设置3D打印的参数; (III)执行3D打印过程; 其所述的3D打印材料,其特征在于:打印颅骨的材料是磷酸钙、或是磷酸钙生物陶瓷、或是含磷酸钙的混合材料、或是聚乳酸、或是含有聚乳酸的混合物、或是丙烯腈-丁二烯-苯乙烯共聚物、或是含丙烯腈-丁二烯-苯乙烯共聚物的混合物,打印皮肤和脑组织的材料是硅胶、或是橡胶、或是明胶、或是工业淀粉、或是含有上述任一一种或若干种材料的混合物。 The medical model 3D printing head based rapid prototyping method according to claim 1, wherein: the 3D printing method, comprising the steps of: (the I) to select the appropriate 3D printing different tissue / organ material; (II) according to claim 13 additional information, setting parameters of 3D printing; (III) performing 3D printing process; 3D which the printing material, wherein: the printing material is a calcium phosphate skull, or calcium phosphate bioceramics, or a mixed material containing calcium phosphate, or polylactic acid, or a mixture containing polylactic acid, or acrylonitrile - butadiene - styrene copolymer, or acrylonitrile containing - butadiene alkenyl - styrene copolymer, skin and brain print material is a silicone, or rubber, or gelatin, or industrial starch, or mixtures of any one or several materials containing.
9.根据权利要求8所述的基于3D打印的头部医学模型快速成型方法,其特征在于:所述的3D打印材料,包括:3D打印的材料和人体组织/器官的颜色一致或较为接近;或可根据不同组织(器官),或根据大脑中的不同脑区,可选用不同颜色的材料。 According to claim 8 based on the 3D model of the printing head medical rapid prototyping method, wherein: said 3D printing material, comprising: a uniform material and relatively close to the body or tissue / organ 3D color print; or according to different tissues (organs), according to the brain, or in different brain regions, the choice of materials of different colors.
10.根据权利要求1所述的基于3D打印的头部医学模型快速成型方法,其特征在于:所述的3D打印过程中,3D打印的层厚是0.1毫米I毫米。 According to claim 1, said print head based medical 3D model rapid prototyping methods, wherein: the 3D printing process, the printed layer thickness of 0.1 mm 3D I mm.
CN201410218464.XA 2014-05-22 2014-05-22 Rapid prototyping 3d printing head based on the medical model CN103978789B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410218464.XA CN103978789B (en) 2014-05-22 2014-05-22 Rapid prototyping 3d printing head based on the medical model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410218464.XA CN103978789B (en) 2014-05-22 2014-05-22 Rapid prototyping 3d printing head based on the medical model

Publications (2)

Publication Number Publication Date
CN103978789A true CN103978789A (en) 2014-08-13
CN103978789B CN103978789B (en) 2016-05-11

Family

ID=51271069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410218464.XA CN103978789B (en) 2014-05-22 2014-05-22 Rapid prototyping 3d printing head based on the medical model

Country Status (1)

Country Link
CN (1) CN103978789B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104436382A (en) * 2014-11-16 2015-03-25 吴青平 Thermal plasticity child infusion hand and foot protection device
CN104688387A (en) * 2015-03-17 2015-06-10 华南协同创新研究院 Large bone defect assist bone graft magnesium alloy stent and production method thereof
CN104739513A (en) * 2015-03-12 2015-07-01 徐贵升 Method for producing human tissue simulated operation model and guide plate
CN104814795A (en) * 2015-04-22 2015-08-05 王国华 Method for manufacturing auxiliary model for cervical vertebra operation
CN104908324A (en) * 2015-06-10 2015-09-16 中国科学技术大学 3D printing device of biological tissue optical simulation
CN105243945A (en) * 2015-11-19 2016-01-13 王峻峰 Tumor grid organ model 3D printing method
CN105232151A (en) * 2015-11-19 2016-01-13 王峻峰 Method for 3D printing of model with coordinates
CN105500720A (en) * 2016-01-29 2016-04-20 吉林大学 3D printing method suitable for multiple materials and multiple processes and used printing device
CN105931290A (en) * 2016-05-10 2016-09-07 上海辰光医疗科技股份有限公司 Electromagnetic model on dielectric properties of personalized human tissues by using hybrid modal, method for establishing same and applications of same
CN106504245A (en) * 2016-10-28 2017-03-15 东北大学 Multi-modal brain-image injured pathological tissue image segmentation method
CN107049484A (en) * 2017-01-21 2017-08-18 绍兴市人民医院 Intracranial aneurysm 3D (three-dimensional) model printing method based on DSA (digital subtraction angiography) data
CN107716855A (en) * 2017-09-08 2018-02-23 机械科学研究总院先进制造技术研究中心 Self-adaptation sand mould gradient printing forming method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1618412A (en) * 2004-08-24 2005-05-25 上海倍尔康生物医学科技有限公司 Technique for making restitution skull and jawbone by using biological artificial bone material combined with CAD/CAM technology
US20070197902A1 (en) * 2004-06-25 2007-08-23 Medicim N.V. Method for deriving a treatment plan for orthognatic surgery and devices therefor
CN101216953A (en) * 2008-01-04 2008-07-09 西北工业大学 Skull 3D model construction method
CN102663820A (en) * 2012-04-28 2012-09-12 清华大学 Three-dimensional head model reconstruction method
CN103198521A (en) * 2013-04-16 2013-07-10 大连理工大学 Caput femoris surface three-dimensional model reconstruction method for individualized design
CN103393486A (en) * 2013-08-13 2013-11-20 华中科技大学同济医学院附属同济医院 Method for preparing to-be-repaired skull flap by 3D printing
CN103679808A (en) * 2013-12-24 2014-03-26 通号通信信息集团有限公司 Method and system for rebuilding three-dimensional head model by two-dimensional nuclear magnetic images
CN103707507A (en) * 2013-12-13 2014-04-09 吉林大学 Polyether-ether-ketone biomimetic artificial bone 3D printing manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070197902A1 (en) * 2004-06-25 2007-08-23 Medicim N.V. Method for deriving a treatment plan for orthognatic surgery and devices therefor
CN1618412A (en) * 2004-08-24 2005-05-25 上海倍尔康生物医学科技有限公司 Technique for making restitution skull and jawbone by using biological artificial bone material combined with CAD/CAM technology
CN101216953A (en) * 2008-01-04 2008-07-09 西北工业大学 Skull 3D model construction method
CN102663820A (en) * 2012-04-28 2012-09-12 清华大学 Three-dimensional head model reconstruction method
CN103198521A (en) * 2013-04-16 2013-07-10 大连理工大学 Caput femoris surface three-dimensional model reconstruction method for individualized design
CN103393486A (en) * 2013-08-13 2013-11-20 华中科技大学同济医学院附属同济医院 Method for preparing to-be-repaired skull flap by 3D printing
CN103707507A (en) * 2013-12-13 2014-04-09 吉林大学 Polyether-ether-ketone biomimetic artificial bone 3D printing manufacturing method
CN103679808A (en) * 2013-12-24 2014-03-26 通号通信信息集团有限公司 Method and system for rebuilding three-dimensional head model by two-dimensional nuclear magnetic images

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
姚均营: "医学影像三维立体可视化系统研究", 《中国优秀硕士学位论文全文数据库》, 30 June 2009 (2009-06-30) *
杨海涛: "医学影像三维重建系统的研究与实现", 《中国优秀硕士学位论文全文数据库》, 31 October 2013 (2013-10-31) *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104436382A (en) * 2014-11-16 2015-03-25 吴青平 Thermal plasticity child infusion hand and foot protection device
CN104739513A (en) * 2015-03-12 2015-07-01 徐贵升 Method for producing human tissue simulated operation model and guide plate
CN104739513B (en) * 2015-03-12 2017-04-12 徐贵升 Method of making human tissue surgical simulation models and guides
CN104688387A (en) * 2015-03-17 2015-06-10 华南协同创新研究院 Large bone defect assist bone graft magnesium alloy stent and production method thereof
CN104814795B (en) * 2015-04-22 2017-05-24 青岛市市立医院 A method for manufacturing cervical spine surgery assisted model
CN104814795A (en) * 2015-04-22 2015-08-05 王国华 Method for manufacturing auxiliary model for cervical vertebra operation
CN104908324A (en) * 2015-06-10 2015-09-16 中国科学技术大学 3D printing device of biological tissue optical simulation
CN105243945A (en) * 2015-11-19 2016-01-13 王峻峰 Tumor grid organ model 3D printing method
CN105232151A (en) * 2015-11-19 2016-01-13 王峻峰 Method for 3D printing of model with coordinates
CN105500720A (en) * 2016-01-29 2016-04-20 吉林大学 3D printing method suitable for multiple materials and multiple processes and used printing device
CN105500720B (en) * 2016-01-29 2017-12-01 吉林大学 Materials suitable for use in multi-multi-printing method and a printing process 3d apparatus used
CN105931290A (en) * 2016-05-10 2016-09-07 上海辰光医疗科技股份有限公司 Electromagnetic model on dielectric properties of personalized human tissues by using hybrid modal, method for establishing same and applications of same
CN106504245A (en) * 2016-10-28 2017-03-15 东北大学 Multi-modal brain-image injured pathological tissue image segmentation method
CN107049484A (en) * 2017-01-21 2017-08-18 绍兴市人民医院 Intracranial aneurysm 3D (three-dimensional) model printing method based on DSA (digital subtraction angiography) data
CN107716855A (en) * 2017-09-08 2018-02-23 机械科学研究总院先进制造技术研究中心 Self-adaptation sand mould gradient printing forming method

Also Published As

Publication number Publication date
CN103978789B (en) 2016-05-11

Similar Documents

Publication Publication Date Title
Bauer et al. A survey of MRI-based medical image analysis for brain tumor studies
Cai et al. Four‐dimensional magnetic resonance imaging (4D‐MRI) using image‐based respiratory surrogate: a feasibility study
Fang et al. Tetrahedral mesh generation from volumetric binary and grayscale images
Sermesant et al. Deformable biomechanical models: Application to 4D cardiac image analysis
Oliveira et al. Medical image registration: a review
Klein et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration
He et al. Fabrication of low cost soft tissue prostheses with the desktop 3D printer
Acar et al. Neuroelectromagnetic forward head modeling toolbox
Cevidanes et al. Cranial base superimposition for 3-dimensional evaluation of soft-tissue changes
Kaus et al. Assessment of a model-based deformable image registration approach for radiation therapy planning
US20160210779A9 (en) Single Action Three-Dimensional Model Printing Methods
US20100047752A1 (en) Anatomically and functionally accurate soft tissue phantoms and method for generating same
Doshi et al. Multi-atlas skull-stripping
Desai et al. Volumetric vs. surface-based alignment for localization of auditory cortex activation
Rohlfing et al. The INIA19 template and NeuroMaps atlas for primate brain image parcellation and spatial normalization
Tavakoli et al. A survey of shaped-based registration and segmentation techniques for cardiac images
Liu et al. Reconstruction of central cortical surface from brain MRI images: method and application
Schnabel et al. Validation of non-rigid registration using finite element methods
Iacono et al. MIDA: a multimodal imaging-based detailed anatomical model of the human head and neck
Iglesias et al. Is synthesizing MRI contrast useful for inter-modality analysis?
Dokládal et al. Topologically controlled segmentation of 3D magnetic resonance images of the head by using morphological operators
Barber et al. Efficient computational fluid dynamics mesh generation by image registration
Chen et al. Automated 3D motion tracking using Gabor filter bank, robust point matching, and deformable models
Tosun et al. Cortical surface segmentation and mapping
Wirth et al. Nonrigid mammogram registration using mutual information

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model