CN103978307B - 一种用于精确控温的高分子材料紫外激光3d打印方法及装置 - Google Patents

一种用于精确控温的高分子材料紫外激光3d打印方法及装置 Download PDF

Info

Publication number
CN103978307B
CN103978307B CN201410181568.8A CN201410181568A CN103978307B CN 103978307 B CN103978307 B CN 103978307B CN 201410181568 A CN201410181568 A CN 201410181568A CN 103978307 B CN103978307 B CN 103978307B
Authority
CN
China
Prior art keywords
temperature
laser
control system
laser head
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410181568.8A
Other languages
English (en)
Other versions
CN103978307A (zh
Inventor
林学春
王文婷
张志研
赵树森
于海娟
马永梅
孙文华
徐坚
董金勇
李春成
符文鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Institute of Chemistry CAS
Original Assignee
Institute of Semiconductors of CAS
Institute of Chemistry CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS, Institute of Chemistry CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201410181568.8A priority Critical patent/CN103978307B/zh
Publication of CN103978307A publication Critical patent/CN103978307A/zh
Priority to US15/507,680 priority patent/US10518354B2/en
Priority to PCT/CN2015/077364 priority patent/WO2015165364A1/zh
Application granted granted Critical
Publication of CN103978307B publication Critical patent/CN103978307B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/277Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
    • B29C64/282Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED] of the same type, e.g. using different energy levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

本发明公开一种用于精确控温的高分子材料紫外激光3D打印方法及装置。其装置包括:恒温箱,激光头,非接触式温度监测装置,扫描振镜,加工平台,铺粉装置,加工材料,计算机控制系统。其中激光头采用双管芯结构,内管与外管同轴固定,并在两管之间固定一片或多片渐变中性滤波片,所述滤波片激光透过率由内管到外观的径向降低。其方法是:通过控制系统预设加工温度,加工过程中,所述非接触式温度检测装置实时监测激光照射下的待加工物体的温升情况,并反馈给控制系统,通过记录一定时间内温度的增加值,系统得出待加工材料的对激光的吸收能力和温升程度,从而根据预先设置的加工温度值,计算出激光输出功率,实时调节激光功率,精确控制加工温度。

Description

一种用于精确控温的高分子材料紫外激光3D打印方法及装置
技术领域
本发明属于3D打印成型技术领域,具体涉及一种用于精确控温的高分子材料紫外激光3D打印成型方法及装置。
背景技术
3D打印是一个通俗的概念,是快速成型技术的一种,产生于20世纪80年代后期。该技术集机械工程,材料工程,数控技术,激光技术等多项技术一体,采用材料累加法制造零件原型。其原理是先通过计算机辅助设计(CAD)或计算机动画建模软件建模,形成数字化模型,然后将三维模型分解为逐层的二维截面,通过软件与数控系统将打印材料逐层堆积固化,制造出实体产品。比较主流的方法包括光固化立体成形(Stereo Lithography Apparatus,SLA)、分层实体制造(Laminated Object Manufacturing,LOM)、选择性激光烧结(Selective Laser Sintering,LS)、熔积成形(Fused DepositionModeling,FDM)等。
相较于传统的制造方法,3D打印技术可以忽略产品部件的外形复杂程度;制造快速,可实现产品设计与模具生产的同步进行,提高研发效率,缩短设计周期;原材料利用率极高,接近100%。基于上述优点,该技术在汽车、家电、通讯、航空、工业造型、医疗、考古等行业得到日益广泛的应用。
3D打印使用的材料从光敏树脂、ABS、类ABS、蜡型、玻璃纤维等塑料类材料,到不锈钢、铝合金、铁镍合金、钴铬钼合金等金属类材料,种类相比过去已有所丰富,但是与传统制造所使用的材料相比仍有差距。由于部分高分子材料的熔融温度与分解温度接近,为了不改变加工材料的性质,对加工温度进行精确控制,提高该成型技术的成品率,成为需要解决的重要技术问题。
紫外激光具有波长短,分辨率高,能量聚焦集中、脉冲稳定、重复频率高的优点,具有“冷加工”的特性,能直接破坏连接物质的化学键,而不产生对外围的加热,通常利用紫外激光得到的加工表面良好,大多无热裂纹、无熔融沉渣、边缘锐利整洁、组织细化、热影响区小甚至可以忽略,因此成为加工脆弱物质的理想工具,可获得极高的加工质量和加工尺寸精度。同时,大多数材料能有效地吸收紫外光,如陶瓷、金属、聚合物等,因此,紫外激光成为3D激光打印技术中一种重要的波段。
公开号为CN1135731的专利,采用双束激光以减少由于温度梯度差过大造成的材料卷曲,但是其结构复杂,本发明提供一种更为简单、成本低的方法产生均匀的温度梯度。
发明内容
本发明针对现有3D打印中出现的问题,提出了一种用于精确控温的高分子材料紫外激光3D打印成型方法及装置,解决以上技术问题。
本发明通过以下技术方案解决以上问题:
一种用于精确控温的高分子材料紫外激光3D打印装置,其中包括有用于维持工作环境温度恒定的恒温箱;在该恒温箱中设置有用于支承待形成物体的加工平台,加工平台上设置有能将高分子材料涂敷到平台上的铺粉装置,在加工平台的上方设置有能发出定向的紫外激光射线的激光头,该激光射线通过扫描振镜偏转到加工平台上;其中在距加工平台上方的一段距离内设置一非接触式温度监测装置,该温度监测装置用于无接触地测量位于加工平台最上方的粉末层的温度;所述打印装置还包括用于控制和/或调节激光头的功率和运行轨迹,以及读取被温度监测装置测量的高分子材料的温度的计算机控制系统;所述计算机控制系统与激光头、温度监测装置相连接以实现对烧结温度进行闭环控制。
优选地,其中激光头采用双管芯结构,内管与外管同轴固定,并在两管之间固定一片或多片渐变中性滤波片,所述滤波片激光透过率由内管到外管的径向降低。
优选地,在内管和外管中分别出射有激光,其中外管激光低于加工材料的加工温度。
优选地,所述激光头功率在1W-100W之间线性可调,重复频率在1kHz-100kHz之间,脉宽在1ps-100ns之间,波长在190nm-380nm之间。
优选地,非接触式温度监测装置由控制系统操控,所述非接触式温度监测装置探头对准激光加工点。
优选地,所述恒温箱温度在20-30℃之间。
优选地,计算机控制系统控制激光头激光输出,扫描阵镜反射激光束进行扫描,接收非接触式温度监测装置反馈的温度信息,通过与预设加工温度对比,调节所述激光头的出射能量。
优选地,所述加工平台可在垂直方向垂直移动。
优选地,高分子材料选自:尼龙6(PA6)、尼龙12(PA12)、尼龙66(PA66)、丙烯腈-丁二烯-苯乙烯(ABS)、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)、聚乙烯(PE)、聚丙烯(PP)、聚甲醛(POM)、聚碳酸酯(PC)、聚氯乙烯(PVC)、聚对苯二甲酸丁二醇酯(PBT)、聚对苯二甲酸乙二醇酯(PET)、聚苯醚(PPO)、聚乳酸(PLA)、聚醚醚酮(PEEK)。
一种利用上述打印装置进行3D打印的方法,其中包括如下步骤:
步骤一:通过铺粉装置将高分子材料涂布到加工平台上;
步骤二:根据计算机控制系统提供的二维加工图,扫描振镜偏转到指定位置,出射激光,进行第一层材料加工;
步骤三:通过紫外脉冲激光头发射紫外光,照射在高分子材料上,加工过程中,通过激光头出射的激光内芯温度达到材料加工要求,外围激光加工温度渐次降低,防止由于温度梯度过大造成的材料卷曲;非接触式温度检测装置实时监测激光照射下的被加工物体的温升情况并反馈给控制系统,通过记录一定时间内温度的增加值,系统得出待加工材料的对激光的吸收能力和温升程度,从而根据预先设置的加工温度值,计算出激光输出功率,实时调节激光功率,精确控制加工温度;上述控制逻辑在加工工艺过程中间隔预定时期进行运行判断;
步骤四:完成对相应高度的2D截面的成型工作,通过主控制系统先后关闭温度监测装置与激光头;
步骤五:降低加工平台高度,在粉床上铺洒材料粉末,使粉床上表面与工作台上表面重新重合;
步骤六:重复步骤二~五,直至工件整体成型完成;
步骤七:取出工件,去掉多余的粉末,进行打磨、烘干处理,得到最终的成型工件。
本发明通过记录一定时间内温度的增加值,使计算机控制系统得出待加工材料的对激光的吸收能力和温升程度,从而根据预先设置的加工温度值,计算出激光输出功率,实时调节激光功率,精确控制加工温度。同时,由于本发明的激光头采用双管芯激光头,双管芯激光头内管提供达到烧结温度的激光光束,外管的激光经过渐变中性滤波片的衰减,能量降低,使得激光温度在低于烧结温度的情况下沿自内管至外管的轴向上均匀降低,降低烧结区域与其周围区域的温度梯度,由此极大地降低了由于温度梯度过大而引起的烧结材料发生卷曲的可能。同时,由于烧结周围区域未达到烧结温度点,并不会发生不期望的材料烧结,避免引入不必要的麻烦。
附图说明
图1为本发明的一种用于精确控温的高分子材料紫外激光3D打印成型装置的示意图;
图2为激光头的内部结构图;
图3为激光头的横截面图。
图1中:1、激光头;2、非接触式温度监测装置;3、扫描振镜;4、扫描振镜;5、加工平台;6、铺粉装置;7、加工材料;8、恒温箱;9、计算机控制系统;10、激光束;11、内管;12、外管;121、滤波片;13、固定件;111、内管中出射激光;122、外管中出射激光。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
本发明提供一种用于精确控温的高分子材料紫外激光3D打印的装置:其中在图1中示出了作为本发明的实施例的一种打印成型装置,其中该打印成型装置包括一恒温箱8,其中该恒温箱8的作用在于维持打印加工过程中待处理的高分子材料所处的工作环境温度保持恒定,以降低外界环境温度变化导致工艺参数改变的影响,其中恒温箱8例如可由隔热性能好的陶瓷材料制成,其中恒温箱8中保持的温度范围优选为20-30摄氏度。在该恒温箱8中设置有用于支承待形成物体的加工平台5,在加工平台5的上方设置有一激光头1形式的辐射装置,该辐射装置发出一定向的紫外激光射线10,该激光射线10通过两个扫描振镜3和4偏转到加工平台5上,其中如附图2-3所示,激光头1采用双管芯结构,内管11与外管12通过固定件13同轴固定,并在两管之间固定一片或多片渐变中性滤波片121,所述滤波片121激光透过率由内管到外管的径向降低,在内管中出射激光111,而在外管中出射激光122,其中通过激光头内管11出射的激光内芯温度达到材料加工要求,外管12中出射的外围激光加工温度渐次降低,防止由于温度梯度过大造成的材料卷曲。此外,设置一用于将待固结的粉末状的高分子材料涂敷到加工平台5上的铺粉装置6,其中铺粉装置6能够借助驱动装置在加工平台5上来回运动。
在距加工平台5上方的一段距离内设置一非接触式温度监测装置2,该温度监测装置用于无接触地测量位于加工平台最上方的粉末层的温度。在使用时,非接触式温度监测装置探测头对准加工点,当激光束射出时,非接触式温度监测装置开始工作,并在计算机上同步显示实时温度。根据加工材料属性,预设加工温度,计算机控制系统分析计算出输出激光功率,重复频率参数。激光头工作输出激光,非接触式温度检测装置与所述扫描阵镜位置相对固定,实时监测激光照射下的被加工材料的温升情况,并反馈给控制系统,通过记录一定时间内温度的增加值,系统得出被加工物体的对激光的吸收能力和温升程度,通过与预先设置的被加工物质的加工温度值进行对比,得出理想温度与实际温度的差值,从而计算出激光输出能量及重复频率,改变激光参数,满足精确控制温度的要求。
计算机控制系统9用于控制和/或调节激光头1的功率和运行轨迹,以及读取被温度监测装置2测量的高分子材料的温度。为此,计算机控制系统与激光头1、温度监测装置2相连接。
紫外激光头功率在1W-100W之间线性可调,重复频率在1kHz-100kHz之间,脉宽在1ps-100ns之间,波长在190nm-380nm之间。
下面,以具体的高分子材料:聚酰亚胺(PI)材料紫外激光3D打印为例子说明以上所述的打印成型装置的运行。
加工材料为聚酰亚胺,其加工温度范围为340-400℃,导热系数0.1-0.5w/m.K,热容1.09kJ/(kg K),比重1.3g/cm3,铺粉厚度0.1mm。
激光头参数为输出波长355nm,脉宽10ns,功率在1-100W之间连续可调,重复频率10kHz,光斑直径0.3mm。阵镜扫描速度为0.1m/s。
恒温箱内温度25℃。
预设加工温度为360℃。初步估计算出激光的功率为60W。
步骤一:通过铺粉装置6将聚酰亚胺材料涂布到加工平台上。
步骤二:根据计算机控制系统提供的二维加工图,扫描振镜偏转到制定位置,出射激光,进行第一层材料加工。
步骤三:所述激光束10通过紫外脉冲激光头2发射紫外光,照射在聚酰亚胺7上,其中在内管中出射激光111,而在外管中出射激光122,其中通过激光头内管11出射的激光内芯温度达到材料加工要求,外管12中出射的外围激光加工温度渐次降低,防止由于温度梯度过大造成的材料卷曲;非接触式温度检测装置2实时监测激光照射下的被加工物体的温升情况并反馈给控制系统,通过记录一定时间内温度的增加值,系统得出待加工材料的对激光的吸收能力和温升程度,从而根据预先设置的加工温度值,计算出激光输出功率,实时调节激光功率,精确控制加工温度,具体来说,当检测到的温度上升速率为5摄氏度/秒以上时,主控制系统降低激光头1的输出功率1个档位并且提高激光头的扫描速度5%;当检测到的温度上升速率为3-5摄氏度/秒时,主控制系统降低激光头1的输出功率1个档位;当检测到的温度上升速率为0.5-3摄氏度/秒时,主控制系统提高激光头的扫描速度5%;当检测到的温度上升速率为0-0.5摄氏度/秒时,主控制系统保持工艺运行参数不变;上述控制逻辑在加工工艺过程中间隔预定时期进行运行判断。
步骤四:完成对相应高度的2D截面的成型工作,通过主控制系统6先后关闭非接触式温度监测装置2与激光头1;
步骤五:降低加工平台5高度,粉床位置随之下降,在粉床上铺洒材料粉末,使粉床上表面与加工平台5上表面重新重合;
步骤六:重复步骤二~五,直至工件整体成型完成;
步骤七:取出工件,去掉多余的粉末,进行打磨、烘干处理,得到最终的成型工件。
由于在本发明中激光头采用双管芯激光头内管,所述双管芯激光头内管提供达到烧结温度的激光光束,外管的激光经过渐变中性滤波片的衰减,能量降低,使得激光温度在低于烧结温度的情况下沿自内管至外管的轴向上均匀降低,降低烧结区域与其周围区域的温度梯度,由此极大地降低了由于温度梯度过大而引起的烧结材料发生卷曲的可能。同时,由于烧结周围区域未达到烧结温度点,并不会发生不期望的材料烧结,避免引入不必要的麻烦。
在本发明中,上述实施例并不局限于通过用激光加工头来辐射粉末床的表面而使粉末熔化。产品原料可以由任何在相转变后形成固体的材料例如,由尼龙6(PA6)、尼龙12(PA12)、尼龙66(PA66)、丙烯腈-丁二烯-苯乙烯(ABS)、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)、聚乙烯(PE)、聚丙烯(PP)、聚甲醛(POM)、聚碳酸酯(PC)、聚氯乙烯(PVC)、聚对苯二甲酸丁二醇酯(PBT)、聚对苯二甲酸乙二醇酯(PET)、聚苯醚(PPO)、聚乳酸(PLA)、聚醚醚酮(PEEK)构成。

Claims (9)

1.一种用于精确控温的高分子材料紫外激光3D打印装置,其特征在于包括有用于维持工作环境温度恒定的恒温箱;在该恒温箱中设置有用于支承待形成物体的加工平台,加工平台上设置有能将高分子材料涂敷到平台上的铺粉装置,在加工平台的上方设置有能发出定向的紫外激光射线的激光头,该激光射线通过扫描振镜偏转到加工平台上,其中在距加工平台上方的一段距离内设置一非接触式温度监测装置,该温度监测装置用于无接触地测量位于加工平台最上方的粉末层的温度;所述打印装置还包括用于控制和/或调节激光头的功率和运行轨迹,以及读取被温度监测装置测量的高分子材料的温度的计算机控制系统;所述计算机控制系统与激光头、温度监测装置相连接以实现对烧结温度进行闭环控制。
2.根据权利要求1所述的打印装置,其特征在于:其中激光头采用双管芯结构,内管与外管同轴固定,并在两管之间固定一片或多片渐变中性滤波片,所述滤波片激光透过率由内管到外管的径向降低。
3.根据权利要求2所述的打印装置,其特征在于:在内管和外管中分别出射有激光,其中外管激光低于加工材料的加工温度。
4.根据权利要求1至3中任一项所述的打印装置,其特征在于:所述激光头功率在1W-100W之间线性可调,重复频率在1kHz-100kHz之间,脉宽在1ps-100ns之间,波长在190nm-380nm之间。
5.根据权利要求1所述的打印装置,其特征在于:非接触式温度监测装置由控制系统操控,所述非接触式温度监测装置探头对准激光加工点。
6.根据权利要求1所述的打印装置,其特征在于:所述恒温箱温度在20-30℃之间;
计算机控制系统控制激光头激光输出,扫描阵镜反射激光束进行扫描,接收非接触式温度监测装置反馈的温度信息,通过与预设加工温度对比,调节所述激光头的出射能量;
所述加工平台可在垂直方向垂直移动。
7.根据权利要求1所述的打印装置,其特征在于:所述高分子材料选自:尼龙6(PA6)、尼龙12(PA12)、尼龙66(PA66)、丙烯腈-丁二烯-苯乙烯(ABS)、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)、聚乙烯(PE)、聚丙烯(PP)、聚甲醛(POM)、聚碳酸酯(PC)、聚氯乙烯(PVC)、聚对苯二甲酸丁二醇酯(PBT)、聚对苯二甲酸乙二醇酯(PET)、聚苯醚(PPO)、聚乳酸(PLA)、聚醚醚酮(PEEK)。
8.一种利用权利要求1-7中任一项打印装置进行3D打印的方法,其中包括如下步骤:
步骤一:通过铺粉装置将高分子材料涂布到加工平台上;
步骤二:根据计算机控制系统提供的二维加工图,扫描振镜偏转到指定位置,出射激光,进行第一层材料加工;
步骤三:通过紫外脉冲激光头发射紫外光,照射在高分子材料上,加工过程中,通过激光头出射的激光内芯温度达到材料加工要求,外围激光加工温度渐次降低,防止由于温度梯度过大造成的材料卷曲;非接触式温度检测装置实时监测激光照射下的被加工物体的温升情况并反馈给控制系统,通过记录一定时间内温度的增加值,系统得出待加工材料的对激光的吸收能力和温升程度,从而根据预先设置的加工温度值,计算出激光输出功率,实时调节激光功率,精确控制加工温度;上述控制逻辑在加工工艺过程中间隔预定时期进行运行判断;
步骤四:完成对相应高度的2D截面的成型工作,通过主控制系统先后关闭非接触式温度监测装置与激光头;
步骤五:降低加工平台高度,在粉床上铺洒材料粉末,使粉床上表面与加工平台上表面重新重合;
步骤六:重复步骤二~五,直至工件整体成型完成;
步骤七:取出工件,去掉多余的粉末,进行打磨、烘干处理,得到最终的成型工件。
9.根据权利要求8所述的方法,其特征在于:所述步骤三中当检测到的温度上升速率为5摄氏度/秒以上时,主控制系统降低激光头的输出功率1个档位并且提高激光头的扫描速度5%;当检测到的温度上升速率为3-5摄氏度/秒时,主控制系统降低激光头的输出功率1个档位;当检测到的温度上升速率为0.5-3摄氏度/秒时,主控制系统提高激光头的扫描速度5%;当检测到的温度上升速率为0-0.5摄氏度/秒时,主控制系统保持工艺运行参数不变。
CN201410181568.8A 2014-04-30 2014-04-30 一种用于精确控温的高分子材料紫外激光3d打印方法及装置 Active CN103978307B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410181568.8A CN103978307B (zh) 2014-04-30 2014-04-30 一种用于精确控温的高分子材料紫外激光3d打印方法及装置
US15/507,680 US10518354B2 (en) 2014-04-30 2015-04-24 Ultraviolet laser 3D printing method for precise temperature control of polymer material and device thereof
PCT/CN2015/077364 WO2015165364A1 (zh) 2014-04-30 2015-04-24 一种用于精确控温的高分子材料紫外激光3d打印方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410181568.8A CN103978307B (zh) 2014-04-30 2014-04-30 一种用于精确控温的高分子材料紫外激光3d打印方法及装置

Publications (2)

Publication Number Publication Date
CN103978307A CN103978307A (zh) 2014-08-13
CN103978307B true CN103978307B (zh) 2015-08-05

Family

ID=51270609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410181568.8A Active CN103978307B (zh) 2014-04-30 2014-04-30 一种用于精确控温的高分子材料紫外激光3d打印方法及装置

Country Status (3)

Country Link
US (1) US10518354B2 (zh)
CN (1) CN103978307B (zh)
WO (1) WO2015165364A1 (zh)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103978307B (zh) * 2014-04-30 2015-08-05 中国科学院化学研究所 一种用于精确控温的高分子材料紫外激光3d打印方法及装置
CN108436082A (zh) 2014-06-20 2018-08-24 维洛3D公司 用于三维打印的设备、系统和方法
DE102014016679A1 (de) 2014-11-12 2016-05-12 Cl Schutzrechtsverwaltungs Gmbh Verfahren und Vorrichtung zur Belichtungssteuerung einer selektiven Lasersinter- oder Laserschmelzvorrichtung
JP6466585B2 (ja) * 2015-01-30 2019-02-06 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 3次元オブジェクトの作製
CN104658833A (zh) * 2015-03-04 2015-05-27 刘君才 用激光3d打印机制造微光夜视用微通道板的方法
JP6536199B2 (ja) * 2015-06-16 2019-07-03 セイコーエプソン株式会社 3次元形成装置
WO2017026221A1 (ja) * 2015-08-11 2017-02-16 京セラドキュメントソリューションズ株式会社 画像形成装置
CN106584832A (zh) * 2015-10-12 2017-04-26 黎世彬 3d激光打印机的光源调整方法
US10201964B2 (en) * 2015-11-02 2019-02-12 The Regents Of The University Of California Treatment for reducing the toxicity of 3D-printed parts
US10065270B2 (en) 2015-11-06 2018-09-04 Velo3D, Inc. Three-dimensional printing in real time
DE102015015651B3 (de) * 2015-12-02 2017-04-13 Lessmüller Lasertechnik GmbH Überwachungsvorrichtung, Bearbeitungssystem und Verfahren zur Arbeitsraumüberwachung für die Lasermaterialbearbeitung
US10286603B2 (en) 2015-12-10 2019-05-14 Velo3D, Inc. Skillful three-dimensional printing
US10434573B2 (en) 2016-02-18 2019-10-08 Velo3D, Inc. Accurate three-dimensional printing
US10831180B2 (en) * 2016-02-25 2020-11-10 General Electric Company Multivariate statistical process control of laser powder bed additive manufacturing
WO2017196331A1 (en) * 2016-05-12 2017-11-16 Hewlett-Packard Development Company, L.P. Cooling airflow for a sensor in a lamp assembly
CN106021795B (zh) * 2016-06-03 2019-03-08 南昌航空大学 一种凝固过程温度梯度可控的3d打印金属材料的方法
DE102016110593A1 (de) 2016-06-08 2017-12-14 Trumpf Laser- Und Systemtechnik Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Objekte durch selektives Verfestigen eines schichtweise aufgebrachten Aufbaumaterials
US10286452B2 (en) 2016-06-29 2019-05-14 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US20180095450A1 (en) 2016-09-30 2018-04-05 Velo3D, Inc. Three-dimensional objects and their formation
WO2018128695A2 (en) 2016-11-07 2018-07-12 Velo3D, Inc. Gas flow in three-dimensional printing
DE102016121594A1 (de) * 2016-11-10 2018-05-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur verbesserung der oberflächenqualität generativ hergestellter bauteile
CN108145160B (zh) * 2016-12-05 2019-11-22 航天特种材料及工艺技术研究所 一种梯度复合结构的激光成形方法
US20180186080A1 (en) 2017-01-05 2018-07-05 Velo3D, Inc. Optics in three-dimensional printing
EP3363562A1 (de) * 2017-02-16 2018-08-22 Siemens Aktiengesellschaft Verbesserte additive fertigung
US10888925B2 (en) 2017-03-02 2021-01-12 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
WO2018183396A1 (en) 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
US20190001658A1 (en) * 2017-06-30 2019-01-03 General Electric Company Systems and method for advanced additive manufacturing
CN108283521B (zh) * 2017-11-29 2021-08-06 北京华夏光谷光电科技有限公司 一种激光体表致声/激光腹内融脂复合型减肥装置
EP3501758A1 (de) * 2017-12-22 2019-06-26 Heraeus Additive Manufacturing GmbH Verfahren zur bestimmung mindestens eines druckprozessparameterwerts, computerlesbares speichermedium und additive fertigungsanlage
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) * 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
CN108312498A (zh) * 2018-03-13 2018-07-24 麦递途医疗科技(上海)有限公司 一种3d打印测温系统
WO2019206903A1 (en) * 2018-04-23 2019-10-31 Carl Zeiss Industrial Metrology, Llc Method and arrangement for producing a workpiece by using adaptive closed-loop control of additive manufacturing techniques
US11534961B2 (en) 2018-11-09 2022-12-27 General Electric Company Melt pool monitoring system and method for detecting errors in a multi-laser additive manufacturing process
CN109618497A (zh) * 2018-11-14 2019-04-12 西安电子科技大学 共形导电图形打印及闭环光子烧结一体控制系统及方法
CN109332907A (zh) * 2018-11-21 2019-02-15 爱柯迪股份有限公司 激光打标机
CN109571946A (zh) * 2018-12-27 2019-04-05 北京华夏光谷光电科技有限公司 双波长/双体制激光3d打印技术
CN110125403B (zh) * 2019-06-12 2023-10-13 广州瑞通增材科技有限公司 金属激光3d打印机
CN110340516A (zh) * 2019-06-21 2019-10-18 苏州市长峰激光技术有限公司 一种基于温度检测的激光加工设备及加工方法
KR20220031745A (ko) 2019-07-26 2022-03-11 벨로3디, 인크. 3차원 물체 형상화에 대한 품질 보증
US11306211B2 (en) 2019-08-21 2022-04-19 International Business Machines Corporation Porosity reduction by encapsulated polymerizing agents
US11020723B2 (en) 2019-08-21 2021-06-01 International Business Machines Corporation Degradable microcapsules for porosity reduction
CN112693110A (zh) * 2019-10-18 2021-04-23 阙锦山 一种fdm型3d打印机的打印头
CN110756805B (zh) * 2019-11-06 2023-06-30 北京科技大学 一种激光选区固化金属的3d打印装置及其使用方法
EP4107588A4 (en) * 2020-02-21 2024-03-20 Nanotronics Imaging, Inc. SYSTEMS, PROCESSES AND SUPPORTS FOR MANUFACTURING PROCESSES
US11472120B2 (en) 2020-05-07 2022-10-18 Kyndryl, Inc. Light-based 3D printing
CN111730861A (zh) * 2020-06-30 2020-10-02 北京闻亭泰科技术发展有限公司 一种基于数字光处理的3d打印激光处理模块
CN111976145A (zh) * 2020-07-16 2020-11-24 厦门理工学院 一种3d打印机模型脱落自动停机方法和装置
CN112743658B (zh) * 2020-12-16 2022-10-18 集美大学 一种陶瓷3d打印方法
CN112692430A (zh) * 2020-12-22 2021-04-23 中国工程物理研究院激光聚变研究中心 一种多镜片可换式激光真空加工防护装置
CN113515088A (zh) * 2021-05-18 2021-10-19 武汉科技大学 利用高温红外热成像实现工件优化加工的方法
CN115780826B (zh) * 2023-01-19 2023-05-05 杭州爱新凯科技有限公司 一种激光熔融3d打印方法及打印头

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4504089A (en) * 1988-10-05 1990-05-01 Michael Feygin An improved apparatus and method for forming an integral object from laminations
US5393482A (en) * 1993-10-20 1995-02-28 United Technologies Corporation Method for performing multiple beam laser sintering employing focussed and defocussed laser beams
JP2003080604A (ja) * 2001-09-10 2003-03-19 Fuji Photo Film Co Ltd 積層造形装置
US6815636B2 (en) * 2003-04-09 2004-11-09 3D Systems, Inc. Sintering using thermal image feedback
DE102005015870B3 (de) 2005-04-06 2006-10-26 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts
DE102005016940B4 (de) 2005-04-12 2007-03-15 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Auftragen von Schichten eines pulverförmigen Materials auf eine Oberfläche
US8602780B2 (en) * 2006-10-16 2013-12-10 Natural Dental Implants, Ag Customized dental prosthesis for periodontal or osseointegration and related systems and methods
US20080153947A1 (en) * 2006-12-21 2008-06-26 Richard Benton Booth Methods and systems for fabricating fire retardant materials
EP2368696B2 (de) 2010-03-25 2018-07-18 EOS GmbH Electro Optical Systems Auffrischoptimiertes PA 12-Pulver zur Verwendung in einem generativen Schichtbauverfahren
US8731343B2 (en) * 2011-02-24 2014-05-20 Xyratex Technology Limited Optical printed circuit board, a method of making an optical printed circuit board and an optical waveguide
US20130154160A1 (en) * 2011-12-15 2013-06-20 3D Systems, Inc. Stereolithography Systems and Methods Using Internal Laser Modulation
FR2987293B1 (fr) * 2012-02-27 2014-03-07 Michelin & Cie Procede et appareil pour realiser des objets tridimensionnels a proprietes ameliorees
CN203282706U (zh) * 2012-12-20 2013-11-13 上海显恒光电科技股份有限公司 采用小型大功率激光源的3d激光打印机
CN103522546A (zh) * 2013-09-26 2014-01-22 瑞安市麦田网络科技有限公司 一种高精度激光光固3d打印机
CN103692655A (zh) * 2014-01-10 2014-04-02 上海那恒新材料有限公司 彩色3d打印装置及相应的3d打印方法
CN103978307B (zh) * 2014-04-30 2015-08-05 中国科学院化学研究所 一种用于精确控温的高分子材料紫外激光3d打印方法及装置

Also Published As

Publication number Publication date
US20170259504A1 (en) 2017-09-14
WO2015165364A1 (zh) 2015-11-05
US10518354B2 (en) 2019-12-31
CN103978307A (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
CN103978307B (zh) 一种用于精确控温的高分子材料紫外激光3d打印方法及装置
CN106363171B (zh) 选择性激光熔化成形熔池实时监测装置及监测方法
CN103978684B (zh) 一种实现温度控制的高分子材料的3d打印方法
CN202591611U (zh) 一种可移动式激光快速成型预热装置
WO2016026415A1 (zh) 一种多波长激光选区快速成形系统及方法
JP2018536560A (ja) 付加製造プロセスおよび装置のための機械制御
CN104742376A (zh) 激光线阵列式3d打印设备及其成型方法
Franco et al. Characterization of laser energy consumption in sintering of polymer based powders
CN205097566U (zh) 一种激光3d打印机
CN106003726A (zh) 一种智能化激光3d打印装置及打印方法
CN206200123U (zh) 一种选择性激光熔化成形熔池实时监测装置
CN104972124A (zh) 基于飞秒激光复合技术的实时监控快速成型设备和方法
CN103978686B (zh) 一种应用光纤耦合输出激光的3d打印高分子材料系统
CN106346779A (zh) 一种激光烧结3d打印机
CN203695959U (zh) 一种选区激光烧结成型3d打印设备
CN103978685A (zh) 一种应用纳秒激光精确控温3d打印高分子材料的装置
CN205033593U (zh) 激光线阵列式3d打印设备
Zhang et al. Photodiode data collection and processing of molten pool of alumina parts produced through selective laser melting
CN107283829A (zh) 一种紫外点光源的高精度选区激光烧结方法及装置
Wang et al. Process parameters, product quality monitoring, and control of powder bed fusion
Gebhardt et al. Numerical and experimental investigation of selective laser melting of silver
WO2020023472A1 (en) Systems and methods for lateral material transfer in additive manufacturing system
CN106825571B (zh) 一种用于3d打印金属工件的同轴送粉装置
Wang et al. High-speed synchrotron X-ray imaging of directed energy deposition of titanium: effects of processing parameters on the formation of entrapped-gas pores
CN103358553A (zh) 超声聚焦三维快速成型方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant