CN103971183B - 一种光伏电站的优化选址与容量配置方法 - Google Patents

一种光伏电站的优化选址与容量配置方法 Download PDF

Info

Publication number
CN103971183B
CN103971183B CN201410226922.4A CN201410226922A CN103971183B CN 103971183 B CN103971183 B CN 103971183B CN 201410226922 A CN201410226922 A CN 201410226922A CN 103971183 B CN103971183 B CN 103971183B
Authority
CN
China
Prior art keywords
photovoltaic
mrow
node
electric energy
msub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410226922.4A
Other languages
English (en)
Other versions
CN103971183A (zh
Inventor
姚建曦
齐程
马天琳
朱红路
李旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201410226922.4A priority Critical patent/CN103971183B/zh
Publication of CN103971183A publication Critical patent/CN103971183A/zh
Application granted granted Critical
Publication of CN103971183B publication Critical patent/CN103971183B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了电网规划技术领域中的一种光伏电站的优化选址与容量配置方法。包括:建立规划区域的电网静态拓扑模型;建立规划区域的光伏电能动态分配模型;设置光伏电站选址及容量配置的备选方案;根据光伏电能动态分配模型达到平衡状态时,各个备选方案的电能分配效率指标,确定光伏电站的选址与容量配置最优方案。本发明可以在规划区域同时建设多个光伏电站的情况下,防止光伏电站规划过于集中而引发的局部装机过剩问题,有效减小电能传输距离及远距离传输的电量,提高电能分配效率,为电网的规划和设计,特别是光伏电站的规划设计提供科学的决策依据。

Description

一种光伏电站的优化选址与容量配置方法
技术领域
本发明属于电网规划技术领域,尤其涉及一种光伏电站的优化选址与容量配置方法。
背景技术
根据统计,从2010年开始,随着我国经济的回升向好,电力需求保持较快增长,特别是2010年用电量增长达到14.56%,全年用电量比上年增长了5000亿kWh(千瓦时)。虽然电力装机连续5年保持9000万kW(千瓦)以上的高水平增长,但是电力短缺现象仍普遍存在,此外环境气候变化也加剧了电能的供需矛盾。然而,纵观我国的装机总量,在2010年底全国总装机容量就已达到9.62亿kW,与近6亿kW的最高用电负荷相比,装机容量看起来是充足的,并且还存在一定的过剩。研究表明,我国目前存在的缺电有相当一部分是由于电网规划不合理造成的。电力作为重要基础保障性行业,需要电源与电网协调发展才能达到资源的最高效利用。目前,我国电源结构和布局与电网消纳能力不协调,新增风电和光伏发电等并没有有效地缓解电力供需压力,局部地区装机过剩导致出现窝电、风电场弃风、光伏电站弃光等资源的浪费现象。由此可见,一味地通过增加装机容量来缓解供电紧张不仅不能从根本解决问题,还会增加用电成本。合理规划电网电源布局,实现电能高效分配与利用才是解决供电紧张的关键。
目前光伏电站的选址,特别是大型并网光伏电站的选址主要基于太阳能资源评估,考虑的因素包括气候、地形、环境与经济效益等。但是,当规划区域的太阳能资源水平相当、地形与气候条件相近时,这种规划方式显然失去了价值。并且在传统规划方法下,缺乏对一个区域内光伏电能生产的整体性考虑,容易造成光伏电站远离负荷中心,电源分布与电网的负荷水平不匹配,导致电网无法就地消纳光伏电能,而远距离输送增加了电量损失并加大了电网调度难度。更严重的是,如果大量剩余的光伏电能无法上网甚至会导致光伏电站弃光、被迫限制发电等现象。科技部调研报告显示,青海地区多数电站的年利用小时数仅为1500小时左右,但在这些光伏电站的可行性研究报告中,规划年利用小时数均超过2000小时,有些电站被“弃光”的比例已经达到40%以上,1/4以上的电站无法上网。综上所述,有必要从电能分配平衡的角度对规划区域内多个光伏电站的选址与容量配置问题进行深入研究。
发明内容
本发明的目的在于,提供一种光伏电站的优化选址与容量配置方法,用于解决目前光伏电站由于选址和容量配置不合理导致的光伏能源利用率低的问题。
为了实现上述目的,本发明提出的技术方案是,一种光伏电站的优化选址与容量配置方法,其特征是所述方法包括:
步骤1:建立规划区域的电网静态拓扑模型,包括:
获取规划区域的行政区域地理位置划分图;
以各个行政区为节点,边跨过行政区边界连接地理位置相邻的地区;所建网络模型为无向网络,各节点均有自连接;
步骤2:建立规划区域的光伏电能动态分配模型;
步骤3:分析电网静态拓扑特性,设置光伏电站选址及容量配置的备选方案,包括选择光伏发电节点和分配总装机容量;
步骤4:根据光伏电能动态分配模型达到平衡状态时,各个备选方案的电能分配效率指标,确定光伏电站的选址与容量配置最优方案。
所述光伏电能动态分配模型为Z(t)=αTZ(t-1);
其中,Z(t)和Z(t-1)分别为规划区域内t时段和t-1时段各地的光伏电能列向量,α为吸引因子矩阵。
所述选择光伏发电节点为,选择电网静态拓扑模型中节点的度最大的节点作为光伏发电节点。
所述选择光伏发电节点为,选择电网静态拓扑模型中聚类系数最小的节点作为光伏发电节点。
所述选择光伏发电节点为,选择电网静态拓扑模型中耗电量最大的节点作为光伏发电节点。
所述选择光伏发电节点为,选择电网静态拓扑模型中介数最大的节点作为光伏发电节点。
所述分配总装机容量为按所述选择的光伏发电节点的度的比例、聚类系数的比例、耗电量的比例或者介数的比例分配总装机容量。
所述步骤4包括如下子步骤:
子步骤A1:根据光伏电能动态分配模型,确定各个备选方案的光伏电能动态分配模型的平衡状态;
子步骤A2:当光伏电能动态分配模型达到平衡状态时,计算各个备选方案的电能分配效率指标;
子步骤A3:选择电能分配效率指标最大的备选方案作为光伏电站的选址与容量配置最优方案。
所述计算各个备选方案的电能分配效率指标采用公式:
其中,Ztotal为网络中的光伏电能总量;
zij为电能分配达到平衡状态时,节点i输送给节点j的电量;
dij为节点i与节点j之间的距离;
n为网络中的节点总数。
所述步骤4具体为:
当光伏电站的数量较少且建设规模不大时,规划方案的重点应该放在站点的地址选择上,恰当的站点选址能大幅度提高电网电能传输与分配的效率;
当光伏电站的建设规模较大时,规划方案的重点应该放在站点的容量规划上,恰当的容量分配能大幅度提高电网电能传输与分配的效率。
本发明利用复杂网络理论,建立贴近电力系统实际的宏观光伏电能生产分配系统,可以在规划区域同时建设多个光伏电站的情况下,防止光伏电站规划过于集中而引发的局部装机过剩问题,有效减小电能传输距离及远距离传输的电量,提高电能分配效率,为电网的规划和设计,特别是光伏电站的规划设计提供科学的决策依据。
附图说明
图1是本发明提供的光伏电站的优化选址与容量配置方法流程图;
图2是江苏省行政区域地理位置划分图;
图3是江苏省电网静态拓扑模型图;
图4是江苏省各市(地)年均太阳辐射强度统计表;
图5是备选方案选址情况及容量配置数据表;
图6是不同规划组合方案的能量分配效率及传输距离、传输量统计表;
图7是不同选址方案光伏节点的统计特性表;
图8是相同容量配置方案下不同选址方案随光伏发电节点比例增长的分配效率变化趋势图;其中,a)是依据聚类系数分配容量时分配效率变化图,b)是依据耗电量分配容量时分配效率变化图,c)是依据度分配容量时分配效率变化图,d)是依据介数分配容量时分配效率变化图;
图9是相同选址方案下不同容量配置方案随光伏节点比例增长的分配效率变化趋势图;其中,a)是依据聚类系数选址时分配效率变化图,b)是依据耗电量选址时分配效率变化图,c)是依据度选址时分配效率变化图,d)是依据介数选址时分配效率变化图。
具体实施方式
下面结合附图,对优选实施例作详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
本实施例以江苏省为规划区域,以建立4个光伏电站,总装机容量为513MW为例,进行MATLAB仿真实验,如图1所示,包括如下步骤:
步骤1:建立规划区域的电网静态拓扑模型。
首先,获取江苏省的行政区域地理位置划分图,如图2所示。
其次,以各个行政区为节点,边跨过行政边界连接地理位置相邻的地区,所建网络模型为无向网络,各节点均有自连接。所建立的江苏省电网静态拓扑模型图如图3所示。
步骤2:建立规划区域的光伏电能动态分配模型。
令列向量Z(t)=Zj(t)(j=1,2,...,n,n为网络中的节点总数)表示规划区域t时段(t=0,1,2,...)的能源分布,则迭代初始时段各地拥有的光伏电能为本地光伏组件总装机所产生的电能:
Zj(0)=Pj (1)
其中,Pj为单位时段内第j个地区的光伏发电量:
式中,γ为光伏组件的综合效率,取0.75;ISTC为标准测试条件下的太阳辐射强度,取1kW/m2为规划区域内第j个地区相应时段内的平均太阳辐射强度,如图4给出的表所示,qj为规划区域内第j个地区所有光伏组件的总装机容量。则t时段第j个地区的光伏电能总量为第j个地区t-1时段的电能与相邻地区传输给第j个地区的电能之和,即:
其中,αij为吸引因子,用来描述相邻地区j对i地电能的吸引程度且:
式中,cj为j地的年均耗电量,单位为kWh/a,可以用j地的人口总量与人均用电量的乘积求得(计算数据来源:江苏省统计局http://www.jssb.gov.cn/jstj/djgb/);aij为能量传输网络邻接矩阵A第i行j列元素,即A={aij}(i,j=1,2,...,n)。若节点i与j之间存在连接,则aij=1,否则aij=0。k=1,2,...,n,n为网络中节点总数。
将式(3)写成矩阵形式亦即:
式中,α={αij}表示吸引因子矩阵,上标T表示矩阵转置。
根据递推公式(5)以及平衡条件得平衡时有:
Z(t)-Z(t-1)=[(αT)t-(αT)t-1]Z(0) (6)
对于式(6),当t很大时有(αT)t≈(αT)t-1,此时Z(t)≈Z(t-1)=Z*,网络达到平衡态。
步骤3:分析电网静态拓扑特性,设置光伏电站选址及容量配置的备选方案。
分析电网的静态拓扑特性,包括计算网络中各节点的度(D)、聚类系数(C)、介数(B)等统计参数。
其中,节点i的度Di等于该节点的相邻节点数目。如果一个节点与另一个节点间存在一条边将它们连接起来,则称这两个节点为相邻节点。
节点i拥有Di个相邻节点,若这Di个节点之间相互连接,应有Di(Di-1)/2条边。然而在实际网络中,Di个节点之间并非都存在连接,假设它们之间拥有mEi条边,则节点i的聚类系数为:
节点i的介数为经过该节点的最短路径数占网络中最短路径总数的比例:
式中,σjk为节点j和k之间的最短路径总数,σjk(i)为节点j和k之间经过节点i的最短路径数目。
在本实施例中,给出如下备选方案,包括:
方案1:选择节点度(D)最大的节点作为光伏发电节点,并按所选发电节点的度(D)的比例分配总装机容量。
分配总装机容量采用下式:
其中,ql为所选光伏发电节点l的装机容量,yl等于所选光伏发电节点l的度Dl,NPV为所选光伏发电节点集合,为所选光伏发电节点的度的总数,G为整个规划区域规划的总装机容量,取513MW。
方案2:选择节点度(D)最大的节点作为光伏发电节点,并按所选光伏发电节点的聚类系数(C)的比例分配总装机容量。
分配总装机容量采用公式(9),其中,Cl为所选光伏发电节点l的聚类系数,Cmin为网络中所有节点的聚类系数的最小值。
方案3:选择节点度(D)最大的节点作为光伏发电节点,并按所选光伏发电节点的耗电量(c)的比例分配总装机容量。
光伏发电节点的耗电量容易获得,分配总装机容量时,采用公式(9),此时yl为所选光伏发电节点l的耗电量。
方案4:选择节点度(D)最大的节点作为光伏发电节点,并按所选光伏发电节点的介数(B)的比例分配总装机容量。
分配总装机容量时,采用公式(9),此时yl为所选光伏发电节点l的介数。
方案5:选择聚类系数(C)最小的节点作为光伏发电节点,并按所选光伏发电节点的度(D)的比例分配总装机容量。分配总装机容量采用公式(9),此时yl为所选光伏发电节点l的度。
方案6:选择聚类系数(C)最小的节点作为光伏发电节点,并按所选发电节点的聚类系数(C)的比例分配总装机容量。分配总装机容量采用公式(9),此时
方案7:选择聚类系数(C)最小的节点作为光伏发电节点,并按所选光伏发电节点的耗电量(c)的比例分配总装机容量。分配总装机容量采用公式(9),此时yl为所选光伏发电节点l的耗电量。
方案8:选择聚类系数(C)最小的节点作为光伏发电节点,并按所选光伏发电节点的介数(B)的比例分配总装机容量。分配总装机容量采用公式(9),此时yl为所选光伏发电节点l的介数。
方案9:选择耗电量(c)最大的节点作为光伏发电节点,并按所选光伏发电节点的度(D)的比例分配总装机容量。分配总装机容量采用公式(9),此时yl为所选光伏发电节点l的度。
方案10:选择耗电量(c)最大的节点作为光伏发电节点,并按所选发电节点的聚类系数(C)的比例分配总装机容量。分配总装机容量采用公式(9),此时
方案11:选择耗电量(c)最大的节点作为光伏发电节点,并按所选发电节点的耗电量(c)的比例分配总装机容量。分配总装机容量采用公式(9),此时yl为所选光伏发电节点l的耗电量。
方案12:选择耗电量(c)最大的节点作为光伏发电节点,并按所选发电节点的介数(B)的比例分配总装机容量。分配总装机容量采用公式(9),此时yl为所选光伏发电节点l的介数。
方案13:选择介数(B)最大的节点作为光伏发电节点,并按所选发电节点的度(D)的比例分配总装机容量。分配总装机容量采用公式(9),此时yl为所选光伏发电节点l的度。
方案14:选择介数(B)最大的节点作为光伏发电节点,并按所选发电节点的聚类系数(C)的比例分配总装机容量。分配总装机容量采用公式(9),此时
方案15:选择介数(B)最大的节点作为光伏发电节点,并按所选光伏发电节点的耗电量(c)的比例分配总装机容量。分配总装机容量采用公式(9),此时yl为所选光伏发电节点l的耗电量。
方案16:选择介数(B)最大的节点作为光伏发电节点,并按所选光伏发电节点的介数(B)的比例分配总装机容量。分配总装机容量采用公式(9),此时yl为所选光伏发电节点l的介数。
为了与传统规划方式作对比,本实施例设立一组备选方案17作为参照。方案17:选取规划区域中光照强度(I)最大的节点作为光伏发电节点,总装机容量平均分配到各个光伏节点。
具体的备选方案选址情况及容量配置数据如图5所示。
步骤4:根据光伏电能动态分配模型达到平衡状态时,各个备选方案的电能分配效率指标,确定光伏电站的选址与容量配置最优方案。
子步骤A1:根据光伏电能动态分配模型,确定各个备选方案的光伏电能动态分配模型的平衡状态。
通过公式Z(t)=αTZ(t-1)(式5)不断地进行迭代计算,当Z(t)≈Z(t-1)=Z*时,认为光伏电能动态分配模型达到平衡状态,Z*即为这个平衡状态的能量分布。
子步骤A2:当光伏电能动态分配模型达到平衡状态时,计算各个备选方案的电能分配效率指标,公式如下:
式中,E为电能分配效率指标,n为网络中的节点总数。Ztotal为网络中的光伏电能总量,单位为MW。zij为电能分配达到平衡状态时,节点i输送给节点j的电量,单位为MW。dij为节点i与节点j之间的距离,本发明中采用i与j间的最短路径长度作为节点i与节点j之间的距离,即节点i与节点j的所有路径中经过边的数目最少的路径所含的边数。
子步骤A3:选择电能分配效率指标最大的备选方案作为光伏电站的选址与容量配置最优方案。
MATLAB仿真结果如图6和图7给出的表所示。
图6给出的表按网络平衡的光伏电能分配效率E由大到小对各个备选方案进行了排序,除了传输平衡效率外,还列出了不同备选方案在电能分配平衡时,电能的平均传输距离<L>、总传输距离Ltotal及总传输量Ztotal(Ztotal中不包含传输距离为0的电量,即就地消耗的部分不计及)。从图6给出的表中可以看出,拥有较高分配效率的规划方案,其实际的电能平均传输距离<L>与总传输距离Ltotal一般也较小。随着分配效率的逐渐减小,网络平衡时的总传输量也是总体呈增长趋势。根据图6给出的表可以看出,本发明实施例中,最优光伏选址与容量配置方案为备选方案7,备选方案5、6也较优。
图7给出的表列出了根据5个不同选点方案优选出的光伏节点的平均度<kPV>、平均介数<BPV>、平均聚类系数<CPV>及平均耗电量<cPV>等统计参数。结合图6和图7,可看出选择度大/介数大/聚类系数小/负荷大的节点作为光伏节点有利于缩短电能传输距离,有助于提高电能的分配效率;度大/介数大/聚类系数小/负荷大的节点分配较大的装机容量,有助于提高电能的分配效率。图6给出的表显示按照这样的方式进行选点和能量分配,与传统规划方式(备选方案17)相比确实能够减少传输距离和提高分配效率。
在总装机容量不变的情况下,光伏电站建设规模影响电能分配效率,从而影响决策者对规划策略的选择。本发明实施例以光伏发电节点占网络中总节点数的比例p来描述光伏电站建设规模。
图8是相同容量配置方案下不同选址方案随光伏发电节点比例增长的分配效率变化趋势图。从图8中可以看出p小于10%左右时,选择聚类系数小的节点作为光伏电站时电能分配效率比其他选点方案较高;当p在10%~50%之间时,相同装机分配方案下,选择负荷较大的节点建立光伏电站,网络的电能分配效率比其他选点方案要高出很多,甚至能达到一倍左右;而当p在约60%之后,相同装机分配方案下各个选址方案的分配效率相差不大。这说明,当光伏电站的数量较少、建设规模不大时,规划方案的重点应该放在站点的地址选择上,恰当的站点选址能大幅度提高电网电能传输与分配的效率。
图9是相同选址方案下不同容量配置方案随光伏节点数增加的分配效率变化趋势图。图9显示,相同选点方案下,整体来看p小于20%时,各个方案的分配效率随着光伏节点数的增加而较为稳定地增长。说明总装机容量一定时,适当增加光伏电站的数目能够使光伏电站的规划有利于电网电能分配。
总体来说按各地耗电水平来分配装机容量时,网络的电能分配效率最高,特别是当p在50%左右电能分配效率有一次大幅提高。之后再增加光伏节点的数量,分配效率就不再有稳定的增长,而是在某个范围内剧烈波动甚至大幅下降。这说明此时分散投资可能不会使电网获得更高的效率,分散投资反而会有一定的风险。同时图9反映出,当光伏电站的建设规模较大时,规划方案的重点应该放在站点的容量规划上,恰当的容量分配能大幅度提高电网电能传输与分配的效率。
与现有技术相比,本发明:
1)利用复杂网络理论,建立贴近电力系统实际的宏观光伏电能生产分配系统,研究光伏电能从生产到分配的动态过程及在网络中的传输与平衡,充分考虑区域之间及光伏电站之间的电能生产与消耗的相互作用,可以在规划区域同时建设多个光伏电站的情况下,防止光伏电站规划过于集中而引发的局部装机过剩问题。
2)研究不同光伏电站选址和容量配置策略对电能分配效率的影响,提出提高电能分配效率的光伏电站选址策略和容量布置方案,可以有效减小电能传输距离及远距离传输的电量,为电网的规划和设计,特别是光伏电站的规划设计提供科学的决策依据。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (9)

1.一种光伏电站的优化选址与容量配置方法,其特征是所述方法包括:
步骤1:建立规划区域的电网静态拓扑模型,包括:
获取规划区域的行政区域地理位置划分图;
以各个行政区为节点,边跨过行政区边界连接地理位置相邻的地区;所建网络模型为无向网络,各节点均有自连接;
步骤2:建立规划区域的光伏电能动态分配模型;
步骤3:分析电网静态拓扑特性,设置光伏电站选址及容量配置的备选方案,包括选择光伏发电节点和分配总装机容量;
步骤4:根据光伏电能动态分配模型达到平衡状态时,各个备选方案的电能分配效率指标,确定光伏电站的选址与容量配置最优方案。
所述光伏电能动态分配模型为Z(t)=αTZ(t-1);
其中,Z(t)和Z(t-1)分别为规划区域内t时段和t-1时段各地的光伏电能列向量,α为吸引因子矩阵,上标T表示矩阵转置;
其中,α={αij},αij为吸引因子,用来描述相邻地区j对i地电能的吸引程度且:
<mrow> <msub> <mi>&amp;alpha;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>c</mi> <mi>j</mi> </msub> </mrow> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <msub> <mi>c</mi> <mi>k</mi> </msub> </mrow> </mfrac> </mrow>
2.根据权利要求1所述的方法,其特征是所述选择光伏发电节点为,选择电网静态拓扑模型中度最大的节点作为光伏发电节点。
3.根据权利要求1所述的方法,其特征是所述选择光伏发电节点为,选择电网静态拓扑模型中聚类系数最小的节点作为光伏发电节点。
4.根据权利要求1所述的方法,其特征是所述选择光伏发电节点为,选择电网静态拓扑模型中耗电量最大的节点作为光伏发电节点。
5.根据权利要求1所述的方法,其特征是所述选择光伏发电节点为,选择电网静态拓扑模型中介数最大的节点作为光伏发电节点。
6.根据权利要求2-5中任意一项权利要求所述的方法,其特征是所述分配总装机容量为按所述选择的光伏发电节点的度的比例、聚类系数的比例、耗电量的比例或者介数的比例分配总装机容量。
7.根据权利要求6所述的方法,其特征是所述步骤4包括如下子步骤:
子步骤A1:根据光伏电能动态分配模型,确定各个备选方案的光伏电能动态分配模型的平衡状态;
子步骤A2:当光伏电能动态分配模型达到平衡状态时,计算各个备选方案的电能分配效率指标;
子步骤A3:选择电能分配效率指标最大的备选方案作为光伏电站的选址与容量配置最优方案。
8.根据权利要求7所述的方法,其特征是所述计算各个备选方案的电能分配效率指标采用公式:
<mrow> <mi>E</mi> <mo>=</mo> <mfrac> <msub> <mi>Z</mi> <mrow> <mi>t</mi> <mi>o</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&amp;times;</mo> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>/</mo> <mi>n</mi> </mrow> </mfrac> </mrow>
其中,Ztotal为网络中的光伏电能总量;
zij为电能分配达到平衡状态时,节点i输送给节点j的电量;
dij为节点i与节点j之间的距离;
n为网络中的节点总数。
9.根据权利要求7所述的方法,其特征是所述步骤4具体为:
当光伏电站的数量较少且建设规模不大时,规划方案的重点应该放在站点的地址选择上,恰当的站点选址能大幅度提高电网电能传输与分配的效率;
当光伏电站的建设规模较大时,规划方案的重点应该放在站点的容量规划上,恰当的容量分配能大幅度提高电网电能传输与分配的效率。
CN201410226922.4A 2014-05-27 2014-05-27 一种光伏电站的优化选址与容量配置方法 Expired - Fee Related CN103971183B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410226922.4A CN103971183B (zh) 2014-05-27 2014-05-27 一种光伏电站的优化选址与容量配置方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410226922.4A CN103971183B (zh) 2014-05-27 2014-05-27 一种光伏电站的优化选址与容量配置方法

Publications (2)

Publication Number Publication Date
CN103971183A CN103971183A (zh) 2014-08-06
CN103971183B true CN103971183B (zh) 2017-10-27

Family

ID=51240648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410226922.4A Expired - Fee Related CN103971183B (zh) 2014-05-27 2014-05-27 一种光伏电站的优化选址与容量配置方法

Country Status (1)

Country Link
CN (1) CN103971183B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107590560B (zh) * 2017-09-04 2020-09-22 佛山佳牧乐科技有限公司 一种配送中心的选址方法和装置
CN108681786B (zh) * 2018-04-24 2021-11-09 西交利物浦大学 基于供电社团结构的分布式发电选址规划方法
CN109460845B (zh) * 2018-05-24 2022-03-11 国网浙江省电力有限公司嘉兴供电公司 一种风光微电网站选址方式
CN112084609B (zh) * 2020-08-13 2023-12-26 广东电网有限责任公司广州供电局 电力行业的供电分区划分方法
CN113393152B (zh) * 2021-06-30 2024-05-14 阳光新能源开发股份有限公司 一种光伏组件排布地块确定方法及装置
CN115545794A (zh) * 2022-10-31 2022-12-30 中国电建集团成都勘测设计研究院有限公司 光伏电站重点开发区域规划方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5896281A (en) * 1997-07-02 1999-04-20 Raytheon Company Power conditioning system for a four quadrant photovoltaic array with an inverter for each array quadrant
JP2012147530A (ja) * 2011-01-07 2012-08-02 Takenaka Komuten Co Ltd 電力供給仲介システム
CN103426039A (zh) * 2013-09-08 2013-12-04 云南师范大学 一种山地光伏电站选址模型建立的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5896281A (en) * 1997-07-02 1999-04-20 Raytheon Company Power conditioning system for a four quadrant photovoltaic array with an inverter for each array quadrant
JP2012147530A (ja) * 2011-01-07 2012-08-02 Takenaka Komuten Co Ltd 電力供給仲介システム
CN103426039A (zh) * 2013-09-08 2013-12-04 云南师范大学 一种山地光伏电站选址模型建立的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
基于机会约束规划的并网光伏电站极限容量研究;王一波 等;《中国电机工程学报》;20100805;第30卷(第22期);22-28 *
并网太阳能光伏电站选址研究述评;肖建华 等;《中国沙漠》;20111130;第31卷(第6期);1598-1605 *
考虑电动汽车充电站选址定容的配电网规划;陈婷 等;《电力系统及其自动化学报》;20130630;第25卷(第3期);1-7 *

Also Published As

Publication number Publication date
CN103971183A (zh) 2014-08-06

Similar Documents

Publication Publication Date Title
CN103971183B (zh) 一种光伏电站的优化选址与容量配置方法
Das et al. Techno-economic optimization of an off-grid hybrid renewable energy system using metaheuristic optimization approaches–case of a radio transmitter station in India
CN106230026B (zh) 基于时序特性分析的含分布式电源的配电网双层协调规划方法
Liu et al. Coordinated operation of multi-integrated energy system based on linear weighted sum and grasshopper optimization algorithm
CN107681654B (zh) 考虑新能源消纳和环境效益的多目标电网规划方法和装置
CN108764552B (zh) 一种配电网分布式电源的选址定容规划的确定方法
CN103903073A (zh) 一种含分布式电源及储能的微电网优化规划方法及系统
CN106374515B (zh) 一种有源配电网中储能系统双层递阶优化配置方法
CN105870949B (zh) 一种基于分布式梯度算法的微电网储能单元优化控制方法
CN105186500B (zh) 一种基于重加权加速Lagrangian的配电网能量分散协调优化方法
CN105140958A (zh) 含光伏电源的配电网规划方法
CN109818369B (zh) 一种计及出力模糊随机性的分布式电源规划方法
CN107069814A (zh) 配网分布式电源容量布点的模糊机会约束规划方法与系统
CN106786753A (zh) 多用户的区域能源互联网的系统及其调节方法
CN110135662B (zh) 一种考虑减小峰谷差的储能选址定容多目标优化方法
CN108039722A (zh) 一种适用于交直流混合的分布式可再生能源系统优化配置方法
CN104218578A (zh) 一种分布式供电系统的规划方法及装置
CN103593711A (zh) 一种分布式电源优化配置方法
CN114595868A (zh) 一种综合能源系统源网荷储协同规划方法及系统
CN104538992A (zh) 一种大小水电及风电协调优化调度方法
CN105956693B (zh) 一种基于分布式梯度算法的虚拟电厂经济调度方法
Murray et al. Optimal design of multi-energy systems at different degrees of decentralization
Javadi et al. Optimal planning and operation of hybrid energy system supplemented by storage devices
CN116402210A (zh) 一种综合能源系统多目标优化方法、系统、设备和介质
CN105550770A (zh) 基于综合资源战略规划的主动配电网多源优化配置方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171027

Termination date: 20180527

CF01 Termination of patent right due to non-payment of annual fee