CN103958392A - 超轻微格构及其形成方法 - Google Patents

超轻微格构及其形成方法 Download PDF

Info

Publication number
CN103958392A
CN103958392A CN201280040063.9A CN201280040063A CN103958392A CN 103958392 A CN103958392 A CN 103958392A CN 201280040063 A CN201280040063 A CN 201280040063A CN 103958392 A CN103958392 A CN 103958392A
Authority
CN
China
Prior art keywords
lattice
micro
hollow tube
born
same parents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280040063.9A
Other languages
English (en)
Other versions
CN103958392B (zh
Inventor
托拜厄斯·A·舍德勒
艾伦·J·雅各布森
威廉·卡特
克里斯托弗·罗珀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HRL Laboratories LLC
Original Assignee
HRL Laboratories LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HRL Laboratories LLC filed Critical HRL Laboratories LLC
Publication of CN103958392A publication Critical patent/CN103958392A/zh
Application granted granted Critical
Publication of CN103958392B publication Critical patent/CN103958392B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/1648Porous product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00126Static structures not provided for in groups B81C1/00031 - B81C1/00119
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1644Composition of the substrate porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1657Electroless forming, i.e. substrate removed or destroyed at the end of the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0015Production of aperture devices, microporous systems or stamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/1234Honeycomb, or with grain orientation or elongated elements in defined angular relationship in respective components [e.g., parallel, inter- secting, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12361All metal or with adjacent metals having aperture or cut
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12375All metal or with adjacent metals having member which crosses the plane of another member [e.g., T or X cross section, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12479Porous [e.g., foamed, spongy, cracked, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • Y10T428/24661Forming, or cooperating to form cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Chemically Coating (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及微格构并且,更具体地,涉及超轻微格构及其形成方法。微格构是由相互连接的中空管形成的胞格材料。该胞格材料具有0.001%至0.3%的范围内的相对密度,并且展现0.9mg/cc的密度。该胞格材料也有从超过50%应变的变形恢复的能力。

Description

超轻微格构及其形成方法
相关申请的交叉引用
这是在2011年8月17日提交的标题为“建筑超轻微格构:对低密度材料的极限的重新定义”的美国临时申请号61/524,714的非临时实用专利申请。
关于联邦资助的研究或开发的声明
本发明是用DARPA授予的合约号W91CRB-10-C-0305下的政府资助完成的。政府在本发明中具有特定的权利。
发明背景
(1)发明领域
本发明涉及胞格材料并且,更具体地,涉及超轻微格构(micro-lattice)及其形成方法。
(2)相关技术描述
通常,通过向建筑构成实体中引入显著的多孔性形成低密度材料。这些高多孔性的材料的有效性质由它们的胞格构造(孔隙和实体的空间构型)和实体成分的性质(例如硬度、强度等)两者决定。在低于10mg/cc的超轻领域中,一些现存的材料是传统的泡沫体和气凝胶。此前,二氧化硅气凝胶以1mg/cc保持着最低密度材料的记录(参见引用参考文献列表,参考文献号1)。然而,最近的创新已经得到了飞行石墨(aerographite),其以0.2mg/cc被记录为最低密度的材料(参见参考文献号24)。其他超轻材料包括:具有4mg/cc的密度的碳纳米管气凝胶(参见参考文献号2)、具有低至10mg/cc的密度的金属泡沫体(参见参考文献号3和4)和达到8mg/cc的聚合物泡沫体(参见参考文献号5和6)。对于比强度和硬度、能量吸收、绝热、阻尼、吸声、有效冷却和能量储存而言,这种超轻材料是非常需要的,并且其为大量的多功能应用提供出色的解决方案(参见参考文献号7)。上述现有超低密度材料具有无规的胞格构造,具有由内部系带的弯曲主导的力学性能,导致远低于大块成分的特征性质(参见参考文献号7)。超轻领域中唯一的例外是蜂窝结构,其具有周期性构造和出色的力学性质,但是,其是高度各向异性的,并且在~10mg/cc达到其制造极限(参见参考文献号8)。为了对于给定的构成实体最大化胞格材料的力学性质如强度、硬度和能量吸收,必须形成有序的并且力学有效的胞格构造。Deshpande等已经说明了,在适当设计的有序的、构架状的胞格构造中,可以抑制系带弯曲,得到拉伸主导的力学行为,在有效弹性模量和强度上有显著的增加(参见参考文献号9)。
然而,目前可行的技术中,没有任何一个得到具有超低的密度(例如,低于0.1%的相对密度)的材料和可以使具有所需的强度和实现可恢复变形的能力的材料成为可能的格构胞格构造。因此,对于超轻微格构和用于形成这种具有超低相对密度并且也具有实现可恢复变形的能力的格构的形成方法存在着持续的需要。
发明概述
本发明涉及微格构并且,更具体地,涉及超轻微格构及其形成方法。微格构是由中空管形成的胞格材料。该胞格材料具有0.001%至0.3%的范围内的极低相对密度。此外,该中空管具有使得直径在10至1000微米之间的直径。另一方面,该中空管由具有0.01至2微米之间的壁厚的管壁形成。
如本文提到的,该胞格材料能够有惊人的可恢复变形。例如,该胞格材料适于从2%至90%的范围内的变形恢复。
另一方面,中空管由金属材料形成,或由选自以下各项组成的组中的材料形成:镍、锌、铬、锡、铜、金、银、铂、铑、铝;陶瓷,包括金刚石、类金刚石碳、氧化铝、氧化锆、氧化锡、氧化锌、氧化硅、碳化硅、氮化硅、氮化钛、氮化钽、氮化钨;聚合物,包括ParyleneTM;或它们的任意组合或合金。本发明包括可以使用适当的沉积方法容易地在聚合物模板上沉积为薄膜的任意材料,这种方法的非限制性实例包括原子层沉积、化学气相沉积、物理气相沉积、电镀、无电镀覆、电泳沉积。材料的其他非限制性实例包括金属如钼、钽、钛、镍和钨,或者陶瓷如Al2O3、HfO2、La2O3、SiO2、TiO2、WN、ZnO、ZrO2、HfC、LaC、WC、ZrC、TaC,或聚合物,如聚(对-亚二甲苯)和官能化的聚(对-亚二甲苯),例如聚(单氯-对-亚二甲苯)、聚(氧化亚甲基)、聚(3,4-亚乙二氧基噻吩)、官能化的聚(丙烯酸酯)和甲基丙烯酸酯,例如聚(甲基丙烯酸五氟苯酯)、聚(吡咯-共聚-噻吩-3-乙酸)、聚(对-亚苯基对苯二甲酰胺)。
在再另一个方面,本发明涉及用于形成微格构的方法。该方法包括若干行为,如:形成微格构模板;用材料的膜涂覆该微格构模板;和移除微格构模板以留下由中空管形成的胞格材料,该胞格材料具有在0.001%至0.3%的范围内的相对密度。
通过将光聚合单体(photomonomer)通过图案化掩模暴露至平行UV光曝光形成微格构模板。微格构模板是相互连接的三维开放胞格光聚合物格构。
另一方面,在用材料的膜涂覆微格构模板中,材料的膜是金属、陶瓷或聚合物。此外,使用选自以下各项组成的组的技术涂覆微格构模板:电镀、电泳沉积、化学气相沉积、物理气相沉积、原子层沉积、溶液沉积或溶胶-凝胶沉积。
最后,且不暗示着限制,在移除微格构模板中,经由化学刻蚀移除微格构模板,从而留下由中空管形成的胞格材料。
附图简述
由结合参考以下附图对本发明的多个方面的以下详细描述,本发明的目的、特征和优点将是显然的,其中:
图1是根据本发明的超轻微格构的图示;
图2是描述了根据本发明的微格构的尺寸大小和可控的构造特征的图示;
图3是描述了根据本发明的用于形成超轻微格构的方法的图示;
图4A是在压缩之前的微格构样品的图示;
图4B是在第一次压缩之后的微格构样品的图示;
图4C是的微格构样品的图示,描述了处于50%压缩的样品;
图4D是描述了移除压缩负载之后的微格构样品的图示,其示例了超轻微格构恢复其原始高度的约98.6%并且恢复其原始形状;
图4E是微格构的单胞格在无载荷或未压缩的条件下的光学图像;
图4F是单胞格的光学图像,描述了当通过在其节点处压曲来提供压缩应变时的单胞格;
图4G是在测试前节点的扫描电子显微(SEM)图像;
图4H是在六次50%应变的压缩循环之后节点的SEM图像;
图5A是图示了在规定的10μm/秒的位移速率下测得的应力-应变曲线的图;
图5B是图示了硬度和强度如何随循环次数减小的图;
图5C是图示了具有1mg/cc的密度和较大单胞格的样品(L:4mm,D:500μm,t:120nm)在前两次压缩循环的应力-应变曲线的图;
图5D是图示了具有43mg/cc的样品(L:1050μm,D:150μm,t:1400nm)的压缩的应力-应变曲线的图;
图5E是在500nm厚的无电镀覆的镍膜中在纳米刻压后的痕迹的SEM显微照片,说明了脆性行为;并且
图6是包括了根据本发明的微格构的构造和性质概要的表格。
详述
本发明涉及微格构并且,更具体地,涉及超轻微格构及其形成方法。给出以下描述,使本领域技术人员能够制备和使用本发明并且能够将其结合到特定应用的情况中。各种变更以及在不同应用中多种使用将对于本领域技术人员容易地成为显然的,并且本文限定的一般原理可以用于宽范围的实施方案中。因此,本发明不意在限定于所给出的实施方案,而是符合与本文公开的原理和新颖特征一致的最宽范围。
在以下详细描述中,为了提供对本发明更彻底的理解,给出大量具体的细节。然而,对本领域技术人员将显然的是,本发明可以在不必须被限制在这些具体细节的情况下实施。在其他情况下,为了避免使本发明模糊难解,公知的结构和装置以框图形式而非详细示出。
请读者注意所有与本说明书同时提交并与本说明书一同公开供公众检视的论文和文献,所有这些论文和文献的内容通过引用结合在此。除非另外明确说明,本说明书中(包括任何附随的权利要求、摘要和附图)公开的所有特征可以被服务于相同、等价或类似目的的备选特征替换。因此,除非另外明确说明,所公开的每个特征仅是上位系列的等价或类似特征的一个实例。
此外,权利要求中的任何没有明确陈述“用于”进行特定功能的“手段”或“用于”进行特定功能的“步骤”的要素,均不被解释为如35U.S.C.第112节第6段中所规定的“手段”或“步骤”从句。尤其是,在本文的权利要求中使用“以下步骤”或“以下行动”不意在援引35U.S.C.112第6段的规定。
请注意,如果使用的话,标签左、右、前、后、顶、底、正、逆、顺时针和反时针仅是为了方便的目的而使用,并且不意在暗示任何特定的固定方向。相反,使用它们以反映在对象的各部分之间的相对位置和/或方向。
在详细描述本发明之前,首先提供所引用的参考文献的列表。随后,引言向读者提供对本发明的一般理解。接着,提供本发明的具体描述,以给出对具体方面的理解。最后,提供一个制备例的具体细节,以说明根据本发明的超轻微格构的产生。
(1)引用参考文献列表
贯穿本申请引用以下参考文献。为了清楚和方便,参考文献在此为读者作为集中来源列出。以下参考文献由此通过引用而被结合,如同在本文中完整陈述了一样。在本申请中,通过引用相应的参考文献号,引用参考文献。
1.吉尼斯世界纪录(Guinness Book of World Records),Least DenseSolid,2003。
2.J.Zou,J.Liu,A.S.Karakoti,A.Kumar,D.Joung,Q.Li,S.I.Khondaker,S.Seal,L Zhai,超轻多壁碳纳米管气凝胶(UltralightMultiwalled Carbon Nanotube Aerogel),ACS Nano47293-7302(2010)。
3.A.Verdooren,H.M.Chan,w J.L Grenestedt,M.P.Harmer,and H.S.Caram,通过化学键合陶瓷泡沫体的还原制备低密度含铁金属泡沫体(Fabrication of Low-Density Ferrous Metallic Foams by Reduction ofChemically Bonded Ceramic Foams),J.Am.Ceram.Soc.893101-3106(2006)。
4.B.C.Tappan,M.H.Huynh,M.A.Hiskey,D.E.Chavez,E.P.Luther,J.T.Mang,S.F.Son,超低密度纳米结构化的金属泡沫体:燃烧合成、形貌和组成(Ultralow-Density Nanostructured Metal Foams:CombustionSynthesis,Morphology,and Composition),J.Am.Chem.Soc.1286589-6594(2006)。
5.M.Chanda,S.K.Roy,塑料技术手册(Plastics Technology Handbook)(CRC Press,Boca Raton,FL,2007)。
6.BASF Corp.,用于Basotect V3012的材料安全数据单(MaterialsSafety Data Sheet for Basotect V3012)(2007)。
7.L.J.Gibson,M.FAshby,胞格固体:结构和性质(Cellular Solids:Structure and Properties)(Cambridge Univ.Press,Cambridge,UK,1997)。
8.Hexcel Corp.,HexWebTM蜂窝特征和性质(Honeycomb Attributes andProperties),(Datasheet,1999)。
9.V.S.Deshpande,M.F.Ashby,N.A.Fleck,泡沫体拓扑弯曲主导构造相对拉伸主导构造(Foam topology bending versus stretching dominatedarchitectures),Acta Materialia.491035-1040(2001)。
10.R.S.Lakes,具有结构层次的材料(Materials with structuralhierarchy)。Nature361511-515(1993)。
11.A.J.Jacobsen,W.B.Carter,S.Nutt,由自传播聚合物波导形成的微米尺度构架结构的压缩行为(Compression behavior of micro-scale trussstructures formed from self-propagating polymer waveguides)。ActaMaterialia556724-6733(2007)。
12.A.J.Jacobsen,W.B.Carter,S.Nutt,由自传播光聚合物波导形成的微米尺度构架结构(Micro-scale Truss Structures formed fromSelf-Propagating Photopolymer Waveguides)。Advanced Materials193892-3896(2007)。
13.A.J.Jacobsen,W.B.Carter,S.Nutt,由自传播聚合物波导形成的微米尺度构架结构的剪切行为(Shear behavior of polymer micro-scale trussstructures formed from self-propagating polymer waveguides)。ActaMaterialia562540-2548(2008)。
14.S.H.Park,D.N.Lee,对于无电镀覆的镍沉积物的微结构和相变的研究(A study on the microstructure and phase transformation of electrolessnickel deposits)。Journal of Materials Science231643-1654(1988)。
15.J.Lian,L.Valdevit,T.A.Schaedler,A.J.Jacobsen,W.Barvosa-Carter,J.R.Greer,作为微格构结构的构成块体的薄壁纳米晶体Ni圆柱体的灾难性崩塌对比逐渐崩塌(Catastrophic vs.gradual collapse ofthin-walled nanocrystalline Ni cylinders as building blocks of micro-latticestructures),Nano Letters11第4118页(2011)。
16.S.Y.Chang,Y.S.Lee,H.L.Hsiao,T.K.Chang,通过纳米刻压测试测量的非晶态镍-亚磷膜的力学性质和变形行为(Mechanical properties anddeformation behavior of amorphous nickel-phosphorous films measured bynanoindentation test)。Metall Mater Trans A37A2939-2945(2006)。
17.L.G.Brazier,伦敦皇家学会会议录:关于薄圆筒形壳和其他“薄”部件的挠曲(On the Flexure of Thin Cylindrical Shells and Other″Thin″Sections,Proceedings ofthe Royal Society ofLondon)。系列A,116,第773号(1927),第104-114页。
18.N.J.Mills,用于开孔聚氨酯泡沫体的粘弹性的有限元模型(FiniteElement Models for the viscoelasticity of open-cell polyurethane foam)。Cellular Polymers5293-316(2006)。
19.A.Cao,P.L.Dickrell,W.G.Sawyer,M.N.Ghasemi-Nejhad,P.M.Ajayan,超级可压缩的泡沫状碳纳米管膜(Super-Compressible FoamlikeCarbon Nanotube Films)。Science3101307-1310(2005)。
20.J.R.Trelewicz,C.A.Schuh,纳米晶体金属中的Hall-Petch破坏:向类玻璃变形的跨越(The Hall-Petch breakdown in nanocrystalline metals:Acrossover to glass-like deformation)。Acta Materialia555948-5958(2007)。
21.W.C.Young,R.G.Budynas,应力和应变罗克公式(Roark’sFormulas for Stress and Strain)(McGraw-Hill,纽约,第7版2002)第735页。
22.J.E.Butler,A.V.Sumant,纳米金刚石材料的CVD(The CVD ofNanodiamond Materials)。Chem.Vap.Deposition14145-160(2008)。
23.G.F.Smits,格构尺度减小对聚氨酯泡沫体物理性质降低的影响(Effect of Cellsize Reduction on Polyurethane Foam Physical PropertiesReduction)。Journal of Building Physics17309-329(1994)。
24.Mecklenburg等,飞行石墨:具有杰出力学性能的超轻质、挠性纳米壁、碳微管材料(Aerographite:Ultra Lightweight,Flexible Nanowall,Carbon Microtube Material with Outstanding Mechanical Performance),Advanced Materials(2012)。
25.Schaedler,T.A.,Jacobsen,A.J.,Torrents,A.,Sorensen,A.E.,Lian,J.,Greer,J.R.,Valdevit,L.,Carter,W.B.,(2011年11月),超轻金属微格构(Ultralight Metallic Microlattices)。Science334,962-965。
(2)引言
本发明涉及能够由大变形恢复的超轻金属胞格材料。该材料由具有超薄壁(0.1-1微米)的中空管的微格构形成。此结构对于镍允许0.01%-0.1%的相对密度,对应于0.9-9mg/cc,具有超过50%的可恢复的变形,这两点都是新颖的并且是此前从未实现的。
本发明使得比其他此前已知的材料更轻的金属材料成为可能。飞行石墨目前以0.2mg/cc保持着最低密度材料的记录,并且金属泡沫体以10mg/cc保持着最低密度金属材料的记录。以本发明,镍胞格材料已经达到具有0.9mg/cc的密度。应当注意到,如下文所述,本发明的方法可以用于产生具有甚至更低的密度的材料。
此外,本发明允许产生能够承受高达和超过50%的变形并从其恢复的金属材料。与当整体应变超过~1%时塑性变形并且将不能从这样的变形恢复的传统金属材料比较,这是一个进步。
本发明的材料可以用于宽范围的用途中,如用于航空器、汽车和其他交通工具的轻质多功能嵌板。例如,可逆变形性适用于多循环能量吸收,如交通工具的冲击保护。在这种模式下,超轻质的特点将允许它在不增加重量的情况下的应用,仍然填充空隙并且允许可恢复的变形。
(3)具体细节
如上文提到的和在图1中所示的,本发明涉及超轻微格构100和其形成方法。为了图示本发明的超轻性质,图1是静止在一朵蒲公英花102的花瓣的顶部的微格构100的图示。如本领域技术人员可以理解的,微格构100轻得令人难以置信,以至于竟然能够静置在蒲公英花102的顶部而不压碎其花瓣。微格构100的超轻构造是由其难以置信的低密度的设计提供的。
为了探索格构结构提供的低密度设计空间,根据本发明用在节点处连接的中空管的周期性构造制备金属微格构,形成八面体单胞格(如图1中所示)。该构造和制备方法提供了薄至100nm的中空管的壁厚,得到具有0.9mg/cc的密度的胞格材料。遵照对胞格材料的标准操作,使用实体结构体的重量计算密度,但不包括孔隙中空气的重量。在环境条件下空气的密度1.2mg/cc将需要被加入固体-空气复合材料的密度的表达式中。在这种情况下,本发明提供具有在0.001%至0.3%的范围内的相对密度的超轻胞格材料。相对密度是物质或对象的密度(单位体积的质量)与给定的参比材料的密度的比,在这种情况下,参比材料是包含微格构的构成材料(如中空管)。
图2图示了如何可以将微格构构造蒸馏(distill)进入在三个明显长度尺度的三个水平:单胞格(~mm-cm)200,中空管格构部件(~μm-mm)202(即,中空管或支柱)和中空管壁(~nm-μm)204。可以独立地控制每种构造要素,对所得的微格构的设计和性质提供特别的控制。
用本发明的方法(后文叙述),单胞格尺寸和拓扑、中空管直径和壁厚可以独立地改变;当与共形薄膜涂覆法结合时,具有宽范围的构成组分和微结构的微格构结构体成为可能。构造确定了格构的相对密度,并且膜材料随后限定了绝对密度。对构造的特别控制通过允许对特定性质的独立调整,促进了历史上相联系的性质(像是密度和硬度)的解耦。例如,在不显著改变密度的情况下,可以通过变更倾斜角度,改变这些微格构的压缩模量(参见参考文献号11)。与其中名义无规的过程支配多孔性形成的用于形成超轻质材料尤其是泡沫体和气凝胶的典型方法比较,在从nm到cm多个尺度上设计微格构构造的方法允许明显更多的控制。
如图3中所示,使用此前报道的自传播光聚合物波导技术(参见参考文献号12)制备微格构模板,此时,将合适的液体光聚合单体300通过图案化掩模304暴露至平行UV光302,产生相互连接的三维光聚合物格构306。合适的液体光聚合单体300的非限制性实例是硫醇-烯(thiol-ene)树脂。
利用此方法,可以通过改变掩模304的图案和入射光的角度制备具有0.1至>10mm的范围内的单胞格的宽系列不同构造(参见参考文献号13)。作为非限制性实例,可以生成具有1-4mm的格构部件长度L、100-500μm格构部件直径D、100-500nm壁厚t和60°倾斜角θ的构造,类似于图2中描述的微格构。
应当注意,聚合物格构306是开放胞格模板。在生成聚合物格构306后,通过无电镀覆308在聚合物格构306上沉积膜(例如,共形的镍-亚磷薄膜),并随后将聚合物刻蚀出310(经由化学刻蚀或任何其它足够柔和而不破坏微格构的刻蚀技术)。必须根据模板和涂覆材料选择刻蚀剂,即,模板的刻蚀速率需要比涂层的刻蚀速率充分地更快。对于在硫醇-烯模板上的镍涂层,氢氧化钠溶液是优选的刻蚀剂,对于其他材料组合,有机溶剂、等离子体刻蚀、热解或其他刻蚀剂是有益的。冷冻干燥用于在从溶液移除时受到毛细管力而变形的易碎的微格构。
自动催化无电镀镍反应使得在复杂形状上和空隙内部能够在没有传质限制的情况下沉积具有受控的厚度的薄膜成为可能。通过控制反应时间,可以实现100nm的壁厚,同时保持均匀的共形涂覆。所得的超轻微格构312基本上将沉积的纳米尺度的薄膜在三个维度中转化形成其中基本构造要素是中空管的宏观材料(如图2所示)。应当注意,可以将任何合适的材料沉积在聚合物格构306上,其非限制性实例包括:镍、锌、铬、锡、铜、金、银、铂、铑、铝;陶瓷,包括金刚石、类金刚石碳、氧化铝、氧化锆、氧化锡、氧化锌、氧化硅、碳化硅、氮化硅、氮化钛、氮化钽、氮化钨;聚合物,包括聚对亚苯基二甲基;或者它们的任意组合或合金,包括不同材料的多个层。
透射电子显微(TEM)显示,刚刚沉积的无电镀覆的镍薄膜是纳米晶体,具有和文献报道一致的~7nm的粒度(参见参考文献号14)。能量分散X射线谱确认了沉积物的组成是按重量计7%的亚磷和93%的镍。因为膜在沉积后不退火,它们保持为不存在Ni3P析出的亚磷在面心立方(fcc)镍晶格中的过饱和固溶体(参见参考文献号14)。7nm的晶粒使得无电镀覆的镍薄膜比典型的纳米和微米晶体镍更硬并且更脆。通过纳米刻压和中空管压缩测得6GPa的硬度和210GPa的模量(参见参考文献号15和16)。
具有这些极低密度的微格构展现独特的力学行为。对微格构的压缩试验显示从超过50%的应变恢复。
图4A到4D提供了具有14mg/cc的微格构样品400(L:1050μm,D:150μm,t:500nm)在压缩测试过程中的图像,而图5A给出了在预定的10μm/秒的位移速率下的相应的应力-应变曲线。在这些实验中,样品没有在底部或顶部放在面板或压缩压板上。图4A描述了压缩之前的微格构样品400。如在图4B中所示,在第一次压缩之后,格构展现529kPa的压缩模量,在10kPa的应力处开始偏离线性弹性行为。在与压曲和节点断裂的事件相关的峰之后,应力稍微下降,并且随后,因为压曲和局部节点断裂扩展至整个格构,在应力-应变曲线中形成宽的平台。图4C显示了在50%压缩时的微格构。当卸载后,应力迅速下降,但不接近零,直到压板接近其原始位置。在移除载荷后,微格构恢复至其原始高度的98.6%,并且恢复其原始形状(如图4D中所示)。为了更进一步的说明,图4E到4H提供了在其压缩和恢复过程中的微格构样品的图像。更具体地,图4E是微格构的单胞格在无载荷或未压缩条件下的光学图像。图4F是单胞格的光学图像,描述了单胞格如何通过在节点处压曲来提供压缩应变。图4G是在测试前节点的扫描电子显微(SEM)图像,而图4H是在六次50%应变的压缩循环之后节点的SEM图像。
有趣的是,对应于第1次循环的应力-应变行为在后续测试的过程中再也不被重复。相反,在第二次压缩过程中,峰值应力不存在,并且“假硬化”行为改变,但是在50%应变获得的应力水平仅比在第一次循环之后低10%。连续压缩循环展现,应力-应变曲线与第二次压缩几乎相同。
如图5B中所示,硬度和强度随着循环次数减小,但在第三次循环后是几乎恒定的(如图5B中所示)。在压缩实验过程中,微格构显示显著的滞后,这允许能量吸收的测量,其对于第一次循环被估计为2.2mJ。在三次循环之后,通过用所吸收的能量除以用于压缩所需的总能量,计算~0.4的几乎恒定的能量损失系数(如图5B中所示)。
图5C显示具有1mg/cc的密度和较大单胞格的样品(L:4mm,D:500μm,t:120nm)在前两次压缩循环的应力-应变曲线,说明了在超低密度领域中不同的微格构的相似行为。增加密度和壁厚将最终导致对金属胞格材料更加典型的压缩行为。图5D示出了具有43mg/cc的样品(L:1050μm,D:150μm,t:1400nm)的压缩:注意到在从50%应变卸载后,应变恢复基本上不存在。
在变形过程中对超轻微格构的光学检测暗示了通过在节点处的Brazier压曲产生变形(如图4E和4F中所示)(参见参考文献号17)。通过SEM对微格构的更接近的检查显示,在50%压缩过程中,主要在节点处引入了裂纹和皱折(如图4G和4H中所示)。该破坏是在第一次压缩循环后观察到的1-2%的残余应变的原因,并且是在后续压缩循环过程中屈服强度和模量下降的原因。一旦在节点处形成了稳定的缓和(relief)裂纹,大块微格构材料可以经受大的压缩应变而在实体镍-亚磷材料中不经历进一步的断裂或塑性变形,因此展现图4A至5D中所示的可逆压缩行为。尽管关于变形机理的精确细节目前还处于研究中,但清楚的是,通过允许构架部件承受大的围绕剩余节点系带的旋转而不累积明显的塑性,中空管壁与直径的极小纵横比在几乎完全的恢复能力中起到关键作用。增加此纵横比导致过多的断裂和可恢复的变形行为的丧失(如图5D中所示)。
尽管与图5A中所给出的相类似的应力-应变曲线对于粘弹性聚合物的泡沫体(参见参考文献号18)和碳纳米管森林(参见参考文献号19)是典型的,它们对于基于金属的材料是前所未有的。两种能量损失机制可能可以解释在压缩循环过程中的能量耗散:(1)由于突然折断的事件(例如,构架的扭折或Brazier压曲)导致的结构减振和(2)通过相接触的部件的机械或库仑摩擦(或两者的组合)。考虑到构成材料相对脆的性质,该力学行为特别出人意料。已知无电镀覆的镍薄膜是脆的,正如通过在残留的刻压痕迹附近的裂纹形成(如图5E中所示)以及在单个中空构架部件压缩之后迅速崩塌(参见参考文献号15)所展示的。具体地,图5E是在500nm厚的无电镀覆的镍膜中的纳米刻压痕迹的SEM显微照片,说明了脆性行为。这很可能是由于~7nm的超精细粒度,其通过位错运动阻碍了塑性变形(参见参考文献号20)。
然而,微格构显示完全不同的整体性质:通过使得充分的变形自由和对局部应力如形成在反复压缩循环中稳定的缓和裂纹的容忍成为可能,同时仍然维持结构体保持连贯,胞格构造有效地将脆的薄膜性质转变为韧性的和超弹性的格构行为。因此,胞格材料构造可以从根本上改变材料性质并且在整体规模上产生功能化的韧性和功能化的超弹性。
尽管本发明已经说明了迄今已知的最轻材料的形成,但可以通过以下相同的方法制备具有甚至更低密度的微格构材料。合成的微格构的密度可以通过下式近似:
ρ = 2 π cos 2 θ sin θ ( D L ) ( t L ) ρ S - - - ( 1 )
其中ps是构成材料的密度。使用目前的制备方法,壁厚t达到最小为100nm的值,因为它需要可以承受与聚合物模板的移除相联系的机械力的连续和鲁棒的膜。当然,随着增加胞格尺寸或格构部件长度L,密度降低。通过将L增加四倍并且保持L/D大致恒定,密度减小了大约相同的倍数,暗示着随着甚至更大的胞格尺寸可以获得密度上的进一步减少。可以达到的密度将受到微格构结构体在加工过程中和对环境负载(例如重力、空气流)这两种情况下的力学稳定性限制。
为了评估力学稳定性极限,假设格构的压缩强度与中空管的局部压曲强度σlb成比例(参见参考文献号21):
σ lb = 2 E s 3 ( 1 - v s 2 ) ( t D ) - - - ( 2 )
其中Es是固体构成材料的杨氏模量并且vs是固体构成材料的泊松比。
使用图5C中具有1mg/cc以及29Pa的强度的微格构作为参照,可以通过将L增加至2cm同时保持3Pa的压缩强度将t=100nm和L/D=8的类似的微格构的密度降低至0.2mg/cc。用具有更高的比硬度和比强度的构成薄膜材料,可以将密度推至更低。金刚石可能是最好的候选者之一,其具有超高的硬度和强度,并且良好建立的能够形成<50nm厚度的膜的沉积路线(参见参考文献号20)。具有50nm壁厚和L/D=8的金刚石微格构的计算密度为0.01mg/cc,这表示通过将镍换成金刚石,密度降低五倍。
如本文所述的,通过在三个结构层次水平上设计中空管微格构材料的构造,可以获得前所未有的力学性质和低密度,重新定义了材料可以有多轻。将此方法扩展到通过例如原子层沉积(ALD)电泳沉积(EPD)或化学气相沉积(CVD)沉积的其他材料以及发展合适的计算机工具用于构造的优化,无疑将得到重新定义低密度材料极限的另外的特别胞格材料。
(4)制备实施例
(4.1)聚合物微格构制备
如在别处(参见参考文献号12和13)详细描述的,从自传播光聚合物波导的相互连接的图案制备聚合物微格构模板。在无电镀覆之前,将所有样品在120℃在空气中后热固化12小时。
(4.2)中空的镍微格构形成
随后使用聚合物微格构模板样品作为直接模板,用于使用商业可得的方法,如由位于127Public Square,1500Key Tower,Cleveland,Ohio44114的OM Group Inc所提供的方法的无电镀镍。为准备用于无电镀覆沉积的表面,首先在大于120摄氏度对聚合物样品热处理,并随后浸入1摩尔氢氧化钠溶液中,随后通过浸渍在含有盐酸和氯化锡(II)的活化剂溶液(Fidelity1018,OM Group Inc.)中,沉积钯催化剂,随后在含有氟硼酸的促进剂溶液(Fidelity1019,OM Group Inc.)中刻蚀。随后,将样品浸入用硫酸镍作为镍源、次磷酸钠作为还原剂和苹果酸钠和乙酸作为络合剂的无电镀镍溶液(9026M,OM Group Inc.)中。通过添加氢氧化铵,将无电镀镍浴保持在pH4.9,并在80℃进行镀覆。选择不同的镀覆时间以达到不同的涂层厚度(如图6中所报道的)。通过无电镀镍约3分钟,获得500nm的壁厚t。在镍沉积之后,将每个样品的顶面和底面砂磨,以暴露各节点处下面的聚合物。随后,在碱溶液(在60℃的3M NaOH)中将聚合物化学刻蚀24小时,制成图2中的中空管镍微格构样品。不能将具有低于~150nm壁厚的样品从NaOH水溶液直接移出,因为毛细管力使格构变形。在这种情况下,在将NaOH溶液交换为去离子水并随后交换为叔丁醇之后,将样品冷冻干燥。
应当注意,在化学刻蚀过程中的条件必须小心地调节,以提供足够的搅拌以溶解中空管中的聚合物,但是限制作用于微格构的力以避免断裂。通过在微格构周围插入防护物以保护其不受溶液流的影响获得成功的刻蚀条件。低于一定的壁厚,取决于构造,微格构太脆而不能将它们从液体移出。在这种情况下,采用冷冻干燥除去液体。如上文提到的,进行溶剂交换,以将NaOH水溶液交换为叔丁醇并且随后将含有微格构的叔丁醇冷冻。叔丁醇在冻结时展现比水低得多的体积变化,导致对微格构较小的破坏。随后施加真空,以将叔丁醇升华,留下本发明的干燥微格构。

Claims (25)

1.一种微格构,所述微格构包含:
由中空管形成的胞格材料,所述胞格材料具有在0.001%至0.3%的范围内的相对密度。
2.如权利要求1所述的微格构,其中所述中空管具有使得直径在10至1000微米之间的直径。
3.如权利要求2所述的微格构,其中所述中空管通过具有0.01至2微米之间的壁厚的管壁形成。
4.如权利要求3所述的微格构,其中所述胞格材料适合于从2%至90%的范围内的变形恢复。
5.如权利要求4所述的微格构,其中所述中空管由选自以下各项组成的组中的材料形成:镍、锌、铬、锡、铜、金、银、铂、铑、铝;陶瓷,包括金刚石、类金刚石碳、氧化铝、氧化锆、氧化锡、氧化锌、氧化硅、碳化硅、氮化硅、氮化钛、氮化钽、氮化钨;聚合物,包括聚对亚苯基二甲基;或它们的任意组合或合金。
6.如权利要求1所述的微格构,其中所述中空管通过具有0.01至2微米之间的壁厚的管壁形成。
7.如权利要求1所述的微格构,其中所述胞格材料适合于从2%至90%范围内的变形恢复。
8.如权利要求1所述的微格构,其中所述中空管由选自以下各项组成的组中的材料形成:镍、锌、铬、锡、铜、金、银、铂、铑、铝;陶瓷,包括金刚石、类金刚石碳、氧化铝、氧化锆、氧化锡、氧化锌、氧化硅、碳化硅、氮化硅、氮化钛、氮化钽、氮化钨;聚合物,包括聚对亚苯基二甲基;或它们的任意组合或合金。
9.一种微格构,所述微格构包含:
由中空管形成的胞格材料,其中所述中空管具有使得直径在10至1000微米之间的直径。
10.如权利要求9所述的微格构,其中所述胞格材料适合于从2%至90%的范围内的变形恢复。
11.如权利要求10所述的微格构,其中所述中空管由选自以下各项组成的组中的材料形成:镍、锌、铬、锡、铜、金、银、铂、铑、铝;陶瓷,包括金刚石、类金刚石碳、氧化铝、氧化锆、氧化锡、氧化锌、氧化硅、碳化硅、氮化硅、氮化钛、氮化钽、氮化钨;聚合物,包括聚对亚苯基二甲基;或它们的任意组合或合金。
12.如权利要求9所述的微格构,其中所述中空管由选自以下各项组成的组中的材料形成:镍、锌、铬、锡、铜、金、银、铂、铑、铝;陶瓷,包括金刚石、类金刚石碳、氧化铝、氧化锆、氧化锡、氧化锌、氧化硅、碳化硅、氮化硅、氮化钛、氮化钽、氮化钨;聚合物,包括聚对亚苯基二甲基;或它们的任意组合或合金。
13.如权利要求9所述的微格构,其中所述中空管通过具有在0.01至2微米之间的壁厚的管壁形成。
14.一种微格构,所述微格构包含:
由中空管形成的胞格材料,其中所述中空管通过具有0.01至2微米之间的壁厚的管壁形成。
15.如权利要求13所述的微格构,其中所述胞格材料适合于从2%至90%范围内的变形恢复。
16.如权利要求14所述的微格构,其中所述中空管由选自以下各项组成的组中的材料形成:镍、锌、铬、锡、铜、金、银、铂、铑、铝;陶瓷,包括金刚石、类金刚石碳、氧化铝、氧化锆、氧化锡、氧化锌、氧化硅、碳化硅、氮化硅、氮化钛、氮化钽、氮化钨;聚合物,包括聚对亚苯基二甲基;或它们的任意组合或合金。
17.如权利要求13所述的微格构,其中所述中空管由选自以下各项组成的组中的材料形成:镍、锌、铬、锡、铜、金、银、铂、铑、铝;陶瓷,包括金刚石、类金刚石碳、氧化铝、氧化锆、氧化锡、氧化锌、氧化硅、碳化硅、氮化硅、氮化钛、氮化钽、氮化钨;聚合物,包括聚对亚苯基二甲基;或它们的任意组合或合金。
18.一种用于形成微格构的方法,所述方法包括以下过程:
形成微格构模板;
用材料的膜涂覆所述微格构模板;
移除所述微格构模板,以留下由中空管形成的胞格材料,所述胞格材料具有0.001%至0.3%的范围内的相对密度。
19.如权利要求18所述的方法,其中通过将光聚合单体通过图案化的掩模暴露至平行UV光形成所述微格构模板。
20.如权利要求19所述的方法,其中所述微格构模板是相互连接的三维开放胞格光聚合物格构。
21.如权利要求20所述的方法,其中在用材料的膜涂覆所述微格构模板中,所述材料的膜是金属、陶瓷或聚合物。
22.如权利要求21所述的方法,其中在移除所述微格构模板中,经由化学刻蚀移除所述微格构模板。
23.如权利要求22所述的方法,其中在用材料的膜涂覆所述微格构模板中,使用选自以下各项组成的组中的技术涂覆所述微格构模板:电镀、电泳沉积、化学气相沉积、物理气相沉积、原子层沉积、溶液沉积或溶胶-凝胶沉积。
24.如权利要求18所述的方法,其中所述微格构模板是相互连接的三维开放胞格光聚合物格构。
25.如权利要求18所述的方法,其中在用材料的膜涂覆所述微格构模板中,所述材料的膜是金属、陶瓷或聚合物。
CN201280040063.9A 2011-08-17 2012-08-15 超轻微格构及其形成方法 Active CN103958392B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161524714P 2011-08-17 2011-08-17
US61/524,714 2011-08-17
US13/584,108 US9415562B1 (en) 2011-08-17 2012-08-13 Ultra-light micro-lattices and a method for forming the same
US13/584,108 2012-08-13
PCT/US2012/050936 WO2013025800A2 (en) 2011-08-17 2012-08-15 Ultra-light micro-lattices and a method for forming the same

Publications (2)

Publication Number Publication Date
CN103958392A true CN103958392A (zh) 2014-07-30
CN103958392B CN103958392B (zh) 2019-03-08

Family

ID=47715682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280040063.9A Active CN103958392B (zh) 2011-08-17 2012-08-15 超轻微格构及其形成方法

Country Status (4)

Country Link
US (2) US9415562B1 (zh)
EP (2) EP2744744B1 (zh)
CN (1) CN103958392B (zh)
WO (1) WO2013025800A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113806989A (zh) * 2021-09-30 2021-12-17 喜临门家具股份有限公司 沙发座面弹性材料的应力应变关系的有限元分析方法
WO2024109567A1 (zh) * 2022-11-25 2024-05-30 梧州三和新材料科技有限公司 具有敞开式骨架的多孔金属、制造方法、用途和相应产品

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10119589B2 (en) 2011-08-17 2018-11-06 Hrl Laboratories, Llc Microlattice damping material and method for repeatable energy absorption
US9527261B1 (en) * 2012-09-14 2016-12-27 Hrl Laboratories, Llc Hollow polymer micro-truss structures containing pressurized fluids
WO2014168662A2 (en) * 2013-01-17 2014-10-16 Hrl Laboratories, Llc Microlattice damping material and method for repeatable energy absorption
US9405067B2 (en) 2013-03-13 2016-08-02 Hrl Laboratories, Llc Micro-truss materials having in-plane material property variations
US9590228B1 (en) 2013-11-01 2017-03-07 HRL Laboratroies, LLC Three-dimensional micro-lattice battery structures with convective flow of electrolytes
US9925440B2 (en) 2014-05-13 2018-03-27 Bauer Hockey, Llc Sporting goods including microlattice structures
US10427336B2 (en) 2014-11-20 2019-10-01 Baker Hughes, A Ge Company, Llc Periodic structured composite and articles therefrom
US10933609B2 (en) * 2016-03-31 2021-03-02 The Regents Of The University Of California Composite foam
US10034519B2 (en) 2016-06-16 2018-07-31 Adidas Ag UV curable lattice microstructure for footwear
US10611278B2 (en) * 2017-11-29 2020-04-07 B/E Aerospace, Inc. Lattices for use in aircraft seat assemblies
US11390527B2 (en) 2017-12-28 2022-07-19 Texas Instruments Incorporated Multi-layered SP2-bonded carbon tubes
US11370662B2 (en) 2017-12-28 2022-06-28 Texas Instruments Incorporated Hexagonal boron nitride structures
US11938715B2 (en) 2017-12-28 2024-03-26 Texas Instruments Incorporated SP2-bonded carbon structures
US11254775B2 (en) 2017-12-28 2022-02-22 Texas Instruments Incorporated Filler particles for polymers
FR3077814B1 (fr) 2018-02-09 2020-03-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Structure metallique et/ou ceramique en micro-treillis et son procede de fabrication
US11318435B2 (en) 2018-09-21 2022-05-03 California Institute Of Technology 3D printing of metal containing structures
US10748999B2 (en) 2018-12-21 2020-08-18 Texas Instruments Incorporated Multi-super lattice for switchable arrays
CA3140503C (en) 2019-05-21 2022-06-14 Bauer Hockey Ltd. Helmets comprising additively-manufactured components
CN111056846B (zh) * 2019-12-06 2021-04-20 西安交通大学 一种采用冷冻干燥和燃烧合成法快速制备的定向多孔氮化铝蜂窝陶瓷及其方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030065238A (ko) * 2002-01-31 2003-08-06 (주)퓨얼셀 파워 얇은 두께를 갖는 콤포지트 멤브레인
CN1446772A (zh) * 2002-03-25 2003-10-08 三洋电机株式会社 具有精细结构的元件及其制造方法
US20060084942A1 (en) * 2004-10-15 2006-04-20 Board Of Regents, The University Of Texas System Tapered hollow metallic microneedle array assembly and method of making and using the same
US20100159303A1 (en) * 2008-12-22 2010-06-24 Gm Global Technology Operations, Inc. Fuel cell fabrication using photopolymer based processes

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694325A (en) * 1971-06-21 1972-09-26 Gen Motors Corp Process for uniformly electroforming intricate three-dimensional substrates
US4053371A (en) * 1976-06-01 1977-10-11 The Dow Chemical Company Cellular metal by electrolysis
US4390599A (en) * 1980-07-31 1983-06-28 Raychem Corporation Enhanced recovery memory metal device
FR2558485B1 (fr) * 1984-01-25 1990-07-13 Rech Applic Electrochimique Structure metallique poreuse, son procede de fabrication et applications
US4752498A (en) * 1987-03-02 1988-06-21 Fudim Efrem V Method and apparatus for production of three-dimensional objects by photosolidification
US5109589A (en) * 1991-03-11 1992-05-05 United Technologies Corporation Processes for making metal prototype parts
US6472210B1 (en) * 1997-11-14 2002-10-29 Bonetec Corporation Polymer scaffold having microporous polymer struts defining interconnected macropores
CA2221195A1 (en) * 1997-11-14 1999-05-14 Chantal E. Holy Biodegradable polymer matrix
US7022522B2 (en) * 1998-11-13 2006-04-04 Limin Guan Macroporous polymer scaffold containing calcium phosphate particles
US6503564B1 (en) * 1999-02-26 2003-01-07 3M Innovative Properties Company Method of coating microstructured substrates with polymeric layer(s), allowing preservation of surface feature profile
WO2002006747A1 (en) * 2000-07-14 2002-01-24 University Of Virginia Patent Foundation Heat exchange foam
MXPA03000732A (es) * 2000-07-28 2003-07-14 Univ Brigham Young Estructura armada isometrica.
NL1016779C2 (nl) * 2000-12-02 2002-06-04 Cornelis Johannes Maria V Rijn Matrijs, werkwijze voor het vervaardigen van precisieproducten met behulp van een matrijs, alsmede precisieproducten, in het bijzonder microzeven en membraanfilters, vervaardigd met een dergelijke matrijs.
AU2002322041A1 (en) 2001-06-06 2002-12-16 University Of Virginia Patent Foundation Multifunctional periodic cellular solids and the method of making the same
AU2003256714A1 (en) * 2002-07-25 2004-02-16 University Of Virginia Patent Foundation Method for manufacture of cellular materials and structures for blast and impact mitigation and resulting structure
US7704644B2 (en) * 2005-01-25 2010-04-27 University Of Delaware Zero-alignment method for tunable fabrication of three-dimensional photonic crystals by multiple-exposure laser interference using diffraction gratings patterned on a single mask
US7736724B1 (en) * 2005-05-13 2010-06-15 The University Of Tulsa Fabrication of nanobaskets by sputter deposition on porous substrates and uses thereof
US7421159B2 (en) * 2005-12-13 2008-09-02 Board of Supervisor of Louisiana State University and Agricultural and Mechanical College Integral pre-aligned micro-optical systems
US7382959B1 (en) * 2006-10-13 2008-06-03 Hrl Laboratories, Llc Optically oriented three-dimensional polymer microstructures
US7687132B1 (en) * 2008-03-05 2010-03-30 Hrl Laboratories, Llc Ceramic microtruss
US7653276B1 (en) * 2008-03-06 2010-01-26 Hrl Laboratories, Llc Composite structures for storing thermal energy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030065238A (ko) * 2002-01-31 2003-08-06 (주)퓨얼셀 파워 얇은 두께를 갖는 콤포지트 멤브레인
CN1446772A (zh) * 2002-03-25 2003-10-08 三洋电机株式会社 具有精细结构的元件及其制造方法
US20060084942A1 (en) * 2004-10-15 2006-04-20 Board Of Regents, The University Of Texas System Tapered hollow metallic microneedle array assembly and method of making and using the same
US20100159303A1 (en) * 2008-12-22 2010-06-24 Gm Global Technology Operations, Inc. Fuel cell fabrication using photopolymer based processes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A.G. EVANS, ET AL.: ""Concepts for enhanced energy absorption using hollow micro-lattices"", 《INTERNATIONAL JOURNAL OF IMPACT ENGINEERING》, vol. 37, 11 April 2010 (2010-04-11), pages 947 - 959 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113806989A (zh) * 2021-09-30 2021-12-17 喜临门家具股份有限公司 沙发座面弹性材料的应力应变关系的有限元分析方法
CN113806989B (zh) * 2021-09-30 2024-05-07 喜临门家具股份有限公司 沙发座面弹性材料的应力应变关系的有限元分析方法
WO2024109567A1 (zh) * 2022-11-25 2024-05-30 梧州三和新材料科技有限公司 具有敞开式骨架的多孔金属、制造方法、用途和相应产品

Also Published As

Publication number Publication date
EP2744744B1 (en) 2017-05-10
US9415562B1 (en) 2016-08-16
EP2744744A4 (en) 2015-03-25
EP3263518B1 (en) 2021-04-07
WO2013025800A2 (en) 2013-02-21
EP2744744A2 (en) 2014-06-25
CN103958392B (zh) 2019-03-08
US9938623B1 (en) 2018-04-10
WO2013025800A3 (en) 2013-04-25
EP3263518A1 (en) 2018-01-03

Similar Documents

Publication Publication Date Title
CN103958392A (zh) 超轻微格构及其形成方法
Davami et al. Ultralight shape-recovering plate mechanical metamaterials
Schaedler et al. Ultralight metallic microlattices
Du et al. Carbon nanomaterials enhanced cement-based composites: advances and challenges
Cheng et al. Self-assembled one-dimensional nanostructure arrays
Lee et al. Enhanced energy dissipation in periodic epoxy nanoframes
US8641839B2 (en) Method for imprinting and erasing amorphous metal alloys
Hart et al. Force output, control of film structure, and microscale shape transfer by carbon nanotube growth under mechanical pressure
Han et al. Tunable piezoelectric nanogenerators using flexoelectricity of well-ordered hollow 2D MoS2 shells arrays for energy harvesting
Ahn et al. High-performance functional nanocomposites using 3D ordered and continuous nanostructures generated from proximity-field nanopatterning
Li et al. 3D printing of ultralow-concentration 2D nanomaterial inks for multifunctional architectures
Meija et al. Nanomechanics of individual aerographite tetrapods
Lee et al. Designing hierarchical nanostructures from conformable and deformable thin materials
Bae et al. Scalable fabrication of high-performance thin-shell oxide nanoarchitected materials via proximity-field nanopatterning
Singer et al. Multiscale patterning of a metallic glass using sacrificial imprint lithography
Lee et al. Designs and processes toward high-aspect-ratio nanostructures at the deep nanoscale: unconventional nanolithography and its applications
Yang et al. Probing buckling and post-buckling deformation of hollow amorphous carbon nanospheres: In-situ experiment and theoretical analysis
Xie et al. Single gyroid self-assembled by linear BABAB pentablock copolymer
Park et al. Extreme-Pressure Imprint Lithography for Heat and Ultraviolet-Free Direct Patterning of Rigid Nanoscale Features
Endo et al. Fabrication and functionalization of periodically aligned metallic nanocup arrays using colloidal lithography with a sinusoidally wrinkled substrate
Zheng et al. Nanoengineering microstructure of hybrid C–S–H/silicene gel
Sadek et al. Bioinspired nanonetwork hydroxyapatite from block copolymer templated synthesis for mechanical metamaterials
Singer et al. Nanoimprinting sub-100 nm features in a photovoltaic nanocomposite using durable bulk metallic glass molds
Mishra et al. Gallol-based block copolymer with a high flory–huggins interaction parameter for next-generation lithography
Nesbitt et al. A review: methods to fabricate vertically oriented metal nanowire arrays

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant