CN103957722B - 从微生物质采收脂类的方法 - Google Patents

从微生物质采收脂类的方法 Download PDF

Info

Publication number
CN103957722B
CN103957722B CN201280058966.XA CN201280058966A CN103957722B CN 103957722 B CN103957722 B CN 103957722B CN 201280058966 A CN201280058966 A CN 201280058966A CN 103957722 B CN103957722 B CN 103957722B
Authority
CN
China
Prior art keywords
alpha
sulfonic acid
lipid
acid
hydroxy sulfonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280058966.XA
Other languages
English (en)
Other versions
CN103957722A (zh
Inventor
J·J·阿利舒斯基
R·L·布莱克博恩
P·R·韦德
P-C·王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN103957722A publication Critical patent/CN103957722A/zh
Application granted granted Critical
Publication of CN103957722B publication Critical patent/CN103957722B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B11/00Recovery or refining of other fatty substances, e.g. lanolin or waxes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/02Other edible oils or fats, e.g. shortenings, cooking oils characterised by the production or working-up
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/02Pretreatment
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/10Production of fats or fatty oils from raw materials by extracting

Abstract

提供了一种从微生物质如藻类获得脂类的方法,该方法通过用含有至少一种α-羟基磺酸的溶液处理微生物质以提取和采收脂溶组分。α-羟基磺酸可以从含有脂溶组分的产物中容易地被除去和回收。

Description

从微生物质采收脂类的方法
发明领域
本发明涉及从微生物质采收脂类的方法。
发明背景
微生物如真菌、酵母、细菌和藻类具有生产脂类的能力。脂类在天然分子中占据广泛部分,其包括脂肪、蜡、甾醇、脂溶性维生素(如维生素A、D、E和K)、甘油单酯、甘油二酯、甘油三酯、磷脂等。脂类的主要生物功能包括能量存储、作为细胞膜的结构组成和作为重要的信号分子。
脂类通常聚集在微生物的细胞中。因此,一直在实践各种方法以从具有生产脂类能力的微生物细胞提取脂类。为了从源材料分离脂类,需要在脂类提取前破坏细胞壁。破坏可以物理方式、酶催化方式和/或化学方式进行。优选,细胞破坏通过机械法进行。已使用过几种方法来物理破坏细胞,其中包括均化、超声处理、冷冻/解冻、挤出和机械研磨。然而,这些方法需要相当长的时间来采收足够量的脂类,因此不能进行有效提取。例如,湿微生物质的均化可形成乳液,该乳液使随后的提取步骤困难。
发明内容
在一个实施方案中,提供了一种生产脂类的方法,包括:(a)提供微生物质;(b)使所述微生物质与含有至少一种α-羟基磺酸的溶液接触,由此产生酸处理的生物质;和(c)从所述酸处理的生物质提取脂类。
在另一实施方案中,提供了一种生产脂类的方法,包括:(a)提供微生物质;(b)使所述微生物质与含有至少一种α-羟基磺酸的溶液接触,由此产生酸处理的生物质;(c)从所述酸处理的生物质中提取脂类;和(d)通过加热和/或减压从所述酸处理的生物质中以其组分形式除去α-羟基磺酸,产生含有酸处理的生物质且基本上不含α-羟基磺酸的除去酸的产物。
在另一实施方案中,所述方法包括将除去的α-羟基磺酸以组分形式或以其重组形式再循环至步骤(b)中。
本发明的特征和优点将对于本领域技术人员明显。尽管本领域技术人员可以对其进行多种改变,但这些改变在本发明的精神中。
附图说明
附图诠释了本发明的一些实施方案的某些形式,不应用于限制或定义本发明。
附图示意性说明了本发明处理方法的实施方案的方块流程图。
发明详述
已发现,通过使用α-羟基磺酸破坏微生物细胞显著地提高溶剂向细胞的渗透性和包含在微生物细胞中的脂类的提取效率。α-羟基磺酸有效破坏微生物细胞壁,从而改进从微生物质的脂类采收率。此外,α-羟基磺酸可逆地容易除去,并且是诸如通过高压下均化也不形成乳液的可再循环的材料。
通过本发明的方法可处理在微生物细胞中含有脂类的微生物,如微生物质。微生物质可光合或发酵生长。微生物质可包括例如微藻、酵母、真菌或细菌。
在本发明的处理中可使用具有如下通式的α-羟基磺酸:
其中R1和R2分别为氢或具有至多9个碳原子、可含有或不含氧的烃基。α-羟基磺酸可以为上述酸的混合物。所述酸一般可通过使至少一种羰基化合物或羰基化合物前体(例如三噁烷和低聚甲醛)与二氧化硫或二氧化硫前体(例如硫和氧化剂,或三氧化硫和还原剂)和水根据下式1反应来制备。
其中R1和R2分别为氢或具有至少9个碳原子的烃基或其混合物。
用于制备本发明中使用的α-羟基磺酸的羰基化合物的示例性实例有:
R1=R2=H(甲醛)
R1=H,R2=CH3(乙醛)
R1=H,R2=CH2CH3(丙醛)
R1=H,R2=CH2CH2CH3(正丁醛)
R1=H,R2=CH(CH3)2(异丁醛)
R1=H,R2=CH2OH(羟乙醛)
R1=H,R2=CHOHCH2OH(甘油醛)
R1=H,R2=C(=O)H(乙二醛)
(糠醛)
(邻羟苯甲醛)
(苯甲醛)
R1=R2=CH3(丙酮)
R1=CH2OH,R2=CH3(羟丙酮)
R1=CH3,R2=CH2CH3(甲基乙基酮)
R1=CH3,R2=CHC(CH3)2(异亚丙基丙酮)
R1=CH3,R2=CH2CH(CH3)2(甲基异丁酮)
R1,R2=(CH2)5(环己酮),或
R1=CH3,R2=CH2Cl(氯丙酮)。
所述羰基化合物及其前体可以是上述化合物的混合物。例如,所述混合物可以是羰基化合物或其前体,例如三噁烷(已知其可以在高温下热转化为甲醛),或醇(其可通过任何已知的方法将醇脱氢为醛而被转化为醛)。这种从醇向醛转化的实例描述如下。羰基化合物来源的实例可以是从快速高温分解油而产生的羟基乙醛和其它醛和酮的混合物,例如描述于“FastPyrolysisandBio-oilUpgrading,Biomass-to-DieselWorkshop",PacificNorthwestNationalLaboratory,Richland,Washington,2006年9月5-6中。羰基化合物及其前体也可以是酮和/或醛的混合物,其中含或不含可被转化为酮和/或醛的醇,优选具有1-7个碳原子。
通过混合有机羰基化合物、SO2和水制备α-羟基磺酸是一般性反应,并在下式2中以丙酮进行说明。
α-羟基磺酸表现为与HCl一样强或者比HCl更强,因为有记载该加合物的水溶液与NaCl反应,释放出较弱的酸HCl(参见US3,549,319)。在式1中的反应为真平衡,这导致酸的容易的可逆性。也就是说,当加热时,平衡朝着起始的羰基化合物、二氧化硫和水(组分形式)偏移。如果使挥发性组分(例如二氧化硫)经由蒸发或其它方法离开反应混合物,则酸反应完全逆转,溶液变为实际中性的。因此,通过升高温度和/或降低压力,可将二氧化硫排出和由于LeChatelier定律导致反应完全逆转,羰基化合物的去向取决于所用材料的性质。如果羰基也是挥发性的(例如乙醛),则该材料也能以气相容易地被除去。诸如苯甲醛的羰基化合物(其微溶于水)能形成第二有机相,并且可以通过机械法分离。因此,羰基化合物可通过常规方法除去,例如持续施加热和/或真空、蒸汽和氮气提、溶剂洗涤、离心等。因此,这些酸的形成是可逆的,随着温度的升高,二氧化硫和/或醛和/或酮可以从混合物中闪蒸出来并在其它地方冷凝或吸收以被再循环。已发现,这些可逆的酸(其大致与强无机酸一样强)能有效破坏微生物细胞。我们发现,这些处理提高了溶剂对细胞的渗透性和脂类的提取效率,由此增加了脂类采收率。另外,由于在处理后能有效地将酸从反应混合物中除去,所以基本上避免了用碱中和所带来的下游加工复杂化。逆转和再循环这些酸的能力还允许使用比经济上或环境上实用的更高的浓度。
已发现,在任何给定温度和压力下,式1中给出的平衡位点受到所用羰基化合物的性质的高度影响,空间和电荷效应对于酸的热稳定性具有强烈影响。羰基周围更多的空间体积倾向于促进酸形式的更低的热稳定性。因此,可以通过选择合适的羰基化合物来调节酸的强度和易分解的温度。
在一些实施方案中,下述反应在任何适当设计的系统中进行,其中包括:包含连续流的系统(如CSTR和活塞流反应器)、间歇、半间歇或多系统容器和反应器以及填充床流通反应器。出于严格经济实用性的原因,优选使用连续流系统在稳定态平衡下实施本发明。
附图示出了用于从微生物质采收脂类的本发明的实施方案100。在该实施方案中,将微生物质10加入含有α-羟基磺酸的酸处理系统20中,在其中使微生物质与含有至少一种α-羟基磺酸的溶液接触,由此产生酸处理的生物质22。该酸处理系统可包含许多组分,其中包括原位生成的α-羟基磺酸。在这里使用的术语“原位”是指在整个工艺内产生的组分;它不局限于特定的生产反应器或用途,并由此与工艺中产生的组分同义。酸处理的生物质22从20进入到酸去除系统30中,在此酸以其组分形式34被除去,然后回收(任选洗涤36)并经由再循环物流38再循环(作为组分或以其重组形式)至20中,和将含有酸处理的生物质且基本上不含α-羟基磺酸的酸处理的生物质产物流32提供至脂类提取区40中,在其中从提取的生物质44中提取脂类并回收42。
在将除去的酸再循环时,可根据需要任选添加另外的羰基化合物、SO2和水(共同在38中)。可以将以组分形式除去的酸以组分形式和/或以其重组形式(作为α-羟基磺酸)再循环至38中。
因此,典型的酸处理混合物含有(a)含有至少一种脂类的微生物质,(b)至少一种α-羟基磺酸,和(c)水。
可以通过多种已知的方法提取脂类。提取可以是物理提取或化学提取。在物理提取时,将微生物质干燥,然后可以用油压机将脂类压出(使用任选的机械粉碎)。可以使用各种压制构件,如螺杆、螺旋式压榨机和活塞。可单独使用机械粉碎或结合化学溶剂提取。用于化学溶剂提取的溶剂通常选择己烷,其在工业中被广泛地使用。也可以使用苯和醚来分离脂类。也可以使用许多其它溶剂。另一种化学溶剂提取法是Soxhlet萃取。在该方法中,通过重复洗涤,或在特殊玻璃器皿中用溶剂如己烷或石油醚在回流下渗滤,从微生物提取脂类。每次循环都再使用溶剂。超临界CO2也可用作溶剂。在该方法中,将CO2在压力下液化并加热至其超临界点(兼具液体和气体的性能),从而使其作为溶剂。通过化学方式改变脂类,例如通过水解和酯化/酯转移成脂肪酸甲酯(FAME)并将所得材料相分离,也可将脂类从藻类中除去。
各种因素影响微生物质的细胞破坏。应当在有效形成α-羟基磺酸的量和条件下添加羰基化合物或初始羰基化合物(如三噁烷)与二氧化硫和水。酸处理的温度和压力应当在形成α-羟基磺酸并破坏微生物质细胞的范围内。羰基化合物或其前体和二氧化硫的量应当产生1wt%、优选5wt%、最优选10wt%至55wt%、优选至50wt%、更优选至40wt%的α-羟基磺酸,基于总溶液计。对于反应,过量的二氧化硫不是必需的,但可使用任何过量的二氧化硫以促使式1中的平衡朝着有利于高温下形成酸。水解反应的接触条件可在优选至少50℃的温度下进行,这取决于所用的α-羟基磺酸,但该温度可低至室温,这取决于所用的酸和压力。水解反应的接触条件范围优选至多(并包括)150℃,这取决于所用的α-羟基磺酸。在更优选的条件下,温度为至少80℃,最优选至少100℃。在更加优选的条件下,温度范围多达(并包括)90℃至120℃。反应优选在尽可能低的压力下进行,因为需要含有过量的二氧化硫。反应也可在低至1barg、优选4barg至高达至多10barg的压力下进行。最佳使用温度和压力将取决于基于冶金学经济考虑和限制容器而选择和优化的特定α-羟基磺酸,如本领域技术人员所实践的。
可以选择酸处理的温度,使得可从微生物质提取出最大量的可提取的脂类,同时限制降解产物的形成。酸溶液至“干重”生物质的量决定获得的脂类的最终浓度。因此,尽可能高的生物质浓度是理想的。
在一些实施方案中,可使用多个容器来进行酸处理。这些容器可具有任何能够进行酸处理的设计。合适的容器设计可包括但不限于间歇、喷流床、并流、逆流、搅拌槽或流化床反应器。可使用反应器的分级以实现最经济的溶液。合适的反应器设计可包括但不限于:如果部分消化的生物基原料和液体反应介质的粘度和特性足以在生物基原料固体悬浮于过量液相中的情况下进行(与堆积堆消化器相反),则可以使用返混反应器(例如搅拌槽、鼓泡塔和/或喷射混合反应器)。还可理解到,可以使用滴流床反应器,微生物质作为静止相存在,α-羟基磺酸的溶液在材料上方经过。
通过施加热和/或真空,可将残留的α-羟基磺酸从酸处理的生物质中除去,以逆转α-羟基磺酸的形成为其起始材料,从而产生含有酸处理的生物质且基本上不含α-羟基磺酸的物流。特别地,产物物流基本上不含α-羟基磺酸是指在产物物流中存在不超过2wt%,优选在产物物流中存在不超过1wt%,更优选不超过0.2wt%,最优选不超过0.1wt%的α-羟基磺酸。温度和压力将取决于所用的特定的α-羟基磺酸,并希望最小化所用的温度,以保持在处理反应中获得糖。典型地,进行除去的温度范围为50℃、优选80℃、更优选90℃至110℃、至多150℃。压力范围为0.1bara至3bara,更优选1bara(大气压)至2bara。本领域技术人员能够理解,处理反应20和去除酸30能够在相同容器中或不同容器中或在许多不同类容器中进行,这取决于反应器的构造和分级,只要设计系统使得反应在有利于形成并维持α-羟基磺酸的条件以及有利于逆反应的除去下进行。举例来说,在α-羟基乙磺酸的存在下,反应容器20中的反应可在大约100℃和4barg的压力下进行,和除去容器30可在大约110℃和0.5barg的压力下操作。进一步预期到,通过反应蒸馏形成的α-羟基磺酸可促进逆转。在将除去的酸再循环中,可根据需要任选添加另外的羰基化合物、SO2和水。
虽然本发明易于进行多种修饰和替代形式,但是本文通过实施例方式详细示出了其具体实施方式。应该理解,详细描述不是意在限制本发明为所公开的特定形式,相反,本发明意在包括落在如权利要求书所定义的本发明精神和范围内的所有修饰、等同物和替代形式。本发明将通过如下示例性实施方案而诠释,提供它们仅仅是为了例示而不应被理解为以任何方式限制本发明。
说明性实施方案
一般方法和材料
在实施例中,醛或醛前体从Sigma-AldrichCo获得。
使用从ReedMaricultureInc.获得的市售微藻类产品来进行实验(Nannochloropsis绿藻类)。
分析方法
整个藻类材料的脂类测定
通过使用DinoexSolventExtractor(ASE350)测定总的脂类含量。将藻类样品冷冻干燥过夜。然后使提取器室(66ml)装满一克藻类样品以及沙子。在ASE提取器室的两端具有两个玻璃纤维过滤器(0.2微米),以便阻挡任何潜在的藻类滑向提取溶剂。使用甲醇和氯仿(65%:35%)的混合物作为溶剂体系,在1500psi压力下在60℃提取脂类10分钟的静态时间。在ASE提取后,通过用去离子水振荡,在分液漏斗中冲洗提取物中的任何盐。将分离的氯仿/甲醇溶剂在Genevac离心蒸发器中蒸干。在使用分析天平称量干燥的脂类后,计算脂类含量。
脂类含量报道为:脂类=(样品提取物重量-空白提取物重量)/干重。
实施例
形成α-羟基磺酸的一般工序
根据上式1,醛和酮在水中将容易地与二氧化硫反应,形成α-羟基磺酸。这些反应通常快速并略微放热。添加顺序(将SO2加至羰基化合物中或将羰基化合物加至SO2中)似乎不影响反应结果。如果羰基化合物能够进行醛醇反应,则制备浓缩的混合物(>30wt%)最好在低于环境的温度下进行以使副反应最小化。我们发现,使用原位红外光谱(ISIR)(其利用能够被插入压力反应容器或系统中的探针)跟踪反应进程是有益的。这种系统具有许多制造商,如MettlerToledoAutochem的Sentinal探针。除了能够看到起始材料:水(1640cm-1)、羰基化合物(约1750cm-1-1650cm-1,取决于有机羰基的结构)和SO2(1331cm-1)外,α-羟基磺酸的形成伴随着SO3-基团特征带的形成(约1200cm-1的宽带)和α-羟基的簇(stretches)(约1125cm-1的单至多个带)。除了监测α-羟基磺酸的形成,可通过起始组分和酸络合物的相对峰高度容易地评定任何温度和压力下的相对平衡位点。也可以使用ISIR确认α-羟基磺酸的确定存在。
实施例1
从乙醛形成40wt%的α-羟基乙磺酸
向12盎司Lab-Crest压力反应器(Fischer-Porter瓶)中放入260克氮脱气水。在搅拌下经由注射器向其中添加56.4克乙醛。乙醛/水混合物示出无表观蒸汽压。将Fischer–Porter瓶的内容物转入装有SiCompIR光学器件的冷藏的600mlC276钢制反应器中。向单末端的Hoke容器中装入81.9克二氧化硫,倒置并连接到反应器顶部。以单一部分将SO2添加至反应系统中。反应器中的压力增至大约3bar,然后迅速下降至大气压,如ISIR示出外观以及然后SO2的迅速消耗。反应混合物的温度在酸的形成过程中升高大约31℃(从14℃至45℃)。ISIR和反应压力表明反应在大约10分钟内完成。最终溶液示出出具有下列特征的红外光谱:中心为1175cm-1的宽带,1038cm-1和1015cm-1处的两个锐带。通过使用氮气加压至3bar将反应器吹扫两次,然后排气。这产生397克40wt%α-羟基乙磺酸的稳定溶液,无残余乙醛或SO2。将该物质的样品溶解于d6-DMSO中并通过13CNMR分析,这显示了在81.4和18.9ppm的两个碳吸收,对应于α-羟基乙磺酸的两个碳,在检测极限(800:1)无其它有机杂质。
实施例2
使用α-羟基乙磺酸溶液处理微藻类
向装配有DiCompIR探针的300ml高压釜中放入大约100克湿Nannochloropsis绿藻(含水量81.60%)。在搅拌下向其中添加大约6.16克乙醛。向单末端的Hoke容器中装入大约10.0克二氧化硫,倒置并连接到反应器的顶部。以单一部分将SO2添加至反应系统中。反应器现在含有混合物,其包含大约16wt%的与α-羟基磺酸溶液(17.64克总α-羟基磺酸)接触的绿藻。
搅拌反应混合物(1000-1500rpm,如I列中所示,使用45°向下倾斜叶轮),开始获取IR光谱。然后将反应混合物加热至100℃的靶温度并维持一小时。停止加热,使用压缩空气流使反应器冷却至室温。将反应器排气,然后使用缓慢的氮气流吹扫几分钟以除去气帽中的任何二氧化硫。打开反应器,使用真空抽吸器将内容物过滤通过中型玻璃漏斗。漂洗反应器三次,每次各使用25ml水(记录在所有漂洗液中的重量),漂洗用于使固体完全转移并漂洗漏斗中的固体。为了完全漂洗漏斗中的固体,需要关闭真空,加水,通过人工搅动使固体悬浮,然后重新建立真空以过滤。获得滤液和漂洗液的累积重量。将滤液干燥,然后用己烷提取以通过Soxhlet萃取采收脂类。在酸预处理、干燥和提取后,采收了基于干重计20.22%的脂类,与之相比的未处理的材料为3.06%。还将未处理的样品送入分析实验室以测定脂类含量。使用ASE(加速溶剂萃取)方法和己烷作为溶剂,仅仅采收了12.7%的脂类。通过13CNMR测定,所有3个提取的脂类样品显示相同的组成。

Claims (9)

1.一种生产脂类的方法,包括:(a)提供微生物质;(b)使所述微生物质与含有至少一种α-羟基磺酸的溶液接触,由此产生酸处理的生物质;和(c)从所述酸处理的生物质中提取脂类。
2.权利要求1的方法,还包括(d)通过加热和/或减压将α-羟基磺酸以其组分形式从酸处理的生物质中除去,产生含有酸处理的生物质且基本上不含α-羟基磺酸的除去酸的产物。
3.权利要求2的方法,还包括以组分或以其重组形式将除去的α-羟基磺酸再循环至步骤(b)中。
4.权利要求1-3任一项的方法,其中α-羟基磺酸基于溶液以1-55wt%的量存在。
5.权利要求1-3任一项的方法,其中α-羟基磺酸由(a)羰基化合物或羰基化合物的前体与(b)二氧化硫或二氧化硫的前体和(c)水生产。
6.权利要求1-3任一项的方法,其中α-羟基磺酸是原位生产的。
7.权利要求1-3任一项的方法,其中在50-150℃的温度和1-10barg的压力下进行步骤(b)。
8.权利要求1-3任一项的方法,其中至少一部分脂类被进一步转化为生物燃料组分。
9.一种组合物,包含(a)含有至少一种脂类的微生物质,(b)至少一种α-羟基磺酸,和(c)水。
CN201280058966.XA 2011-12-01 2012-11-28 从微生物质采收脂类的方法 Expired - Fee Related CN103957722B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161565554P 2011-12-01 2011-12-01
US61/565,554 2011-12-01
PCT/US2012/066838 WO2013082141A1 (en) 2011-12-01 2012-11-28 Method of recovering lipids from microbial biomass

Publications (2)

Publication Number Publication Date
CN103957722A CN103957722A (zh) 2014-07-30
CN103957722B true CN103957722B (zh) 2016-03-02

Family

ID=47279165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280058966.XA Expired - Fee Related CN103957722B (zh) 2011-12-01 2012-11-28 从微生物质采收脂类的方法

Country Status (9)

Country Link
US (1) US8900833B2 (zh)
EP (1) EP2785194B1 (zh)
JP (1) JP2015500019A (zh)
CN (1) CN103957722B (zh)
AU (1) AU2012346083B2 (zh)
BR (1) BR112014012915B1 (zh)
CA (1) CA2857273A1 (zh)
PL (1) PL2785194T3 (zh)
WO (1) WO2013082141A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102803649A (zh) 2009-06-25 2012-11-28 国际壳牌研究有限公司 注水系统和方法
EP2635712B1 (en) 2010-11-05 2014-07-02 Shell Oil Company Treating biomass to produce materials useful for biofuels
IN2014DN09244A (zh) * 2012-05-07 2015-07-10 Shell Int Research
BR112015000671A2 (pt) 2012-07-13 2017-06-27 Calysta Inc sistema de biorrefinaria, métodos e composições dos mesmos.
US20140373432A1 (en) * 2013-06-25 2014-12-25 Shell Oil Company Direct method of producing fatty acid esters from microbial biomass
KR101502355B1 (ko) * 2014-08-20 2015-03-16 주식회사 한울엔지니어링 초임계 이산화탄소 추출법에 의한 미세조류로부터 바이오디젤 전환용 지질의 추출 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2115380A (en) * 1934-03-05 1938-04-26 Standard Oil Co Insecticidal oil spray
US4306101A (en) * 1980-11-05 1981-12-15 Shell Oil Company Olefin hydration process
CN1217029A (zh) * 1996-03-28 1999-05-19 吉斯特-布罗卡迪斯股份有限公司 从用巴氏法灭菌的生物量中制备含有微生物多不饱和脂肪酸的油的方法
US8034391B2 (en) * 2005-07-01 2011-10-11 Martek Biosciences Corporation Polyunsaturated fatty acid-containing oil product and uses and production thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549319A (en) 1968-05-06 1970-12-22 Fraser Co Ltd Production of alkali metal sulfites or bisulfites
IT1392910B1 (it) * 2008-10-21 2012-04-02 Eni Spa Procedimento per la produzione di lipidi da biomassa
EP2635712B1 (en) * 2010-11-05 2014-07-02 Shell Oil Company Treating biomass to produce materials useful for biofuels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2115380A (en) * 1934-03-05 1938-04-26 Standard Oil Co Insecticidal oil spray
US4306101A (en) * 1980-11-05 1981-12-15 Shell Oil Company Olefin hydration process
CN1217029A (zh) * 1996-03-28 1999-05-19 吉斯特-布罗卡迪斯股份有限公司 从用巴氏法灭菌的生物量中制备含有微生物多不饱和脂肪酸的油的方法
US8034391B2 (en) * 2005-07-01 2011-10-11 Martek Biosciences Corporation Polyunsaturated fatty acid-containing oil product and uses and production thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
酸热法提取酵母油脂条件的研究;孔凡敏等;《山东食品发酵》;20091231(第04期);28-31 *

Also Published As

Publication number Publication date
PL2785194T3 (pl) 2016-01-29
US8900833B2 (en) 2014-12-02
CA2857273A1 (en) 2013-06-06
AU2012346083A1 (en) 2014-05-29
US20130144078A1 (en) 2013-06-06
JP2015500019A (ja) 2015-01-05
AU2012346083B2 (en) 2015-01-15
CN103957722A (zh) 2014-07-30
EP2785194B1 (en) 2015-08-05
EP2785194A1 (en) 2014-10-08
WO2013082141A1 (en) 2013-06-06
BR112014012915B1 (pt) 2020-03-10

Similar Documents

Publication Publication Date Title
CN103957722B (zh) 从微生物质采收脂类的方法
JP2013536266A (ja) 亜臨界状態で水を利用して藻から炭化水素系燃料を選択的に製造する方法
CN102281932B (zh) 用于溶解油的组合物和方法
US11845909B2 (en) Method for the extraction of bio-oil from algal biomass
JP4947961B2 (ja) キノコ栽培廃菌床の加圧熱水処理方法およびこれを利用した堆肥物の製造方法ならびにこの製造方法による堆肥物
Patel et al. A method of wet algal lipid recovery for biofuel production
Chetrariu et al. Pre-treatments used for the recovery of brewer’s spent grain—A minireview
CN108026502A (zh) 用于浓缩包含产油酵母的粘质生物质的细胞悬液的方法
US20100168411A1 (en) Method of producing fermentation product and fermentation product
WO2023073221A1 (en) Circular methods for manufacturing products from algal biomass and atmospheric carbon removal with long-lived storage using algae residual biomass using packing and spreaded sinkage
KR101022133B1 (ko) 함초유를 이용한 바이오디젤의 제조방법
CN105324471A (zh) 由微生物生物质生产脂肪酸酯的直接方法
US9399740B2 (en) Biodiesel production
Hwang et al. EXTRACTION SOLVENTS IN MICROALGAL LIPID EXTRACTION FOR BIOFUEL PRODUCTION: A REVIEW
Johar et al. Effect of Pre-treatment for Lipid Extraction from Tisochrysis Lutea (T-iso)
JP2023105440A (ja) キノコ栽培廃菌床の加圧熱水抽出物の製造方法、及びラジカル消去剤
Nehal et al. Biorefinery Green Polymeric Approaches for Value-added Products
Gay et al. Extraction Technologies from Diatoms
OA16369A (en) Tension buoyant tower.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160302

Termination date: 20201128

CF01 Termination of patent right due to non-payment of annual fee