CN103944570A - 可编程增益数模单元及模数转换器 - Google Patents

可编程增益数模单元及模数转换器 Download PDF

Info

Publication number
CN103944570A
CN103944570A CN201310020296.9A CN201310020296A CN103944570A CN 103944570 A CN103944570 A CN 103944570A CN 201310020296 A CN201310020296 A CN 201310020296A CN 103944570 A CN103944570 A CN 103944570A
Authority
CN
China
Prior art keywords
programmable
digital
analog
unit
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310020296.9A
Other languages
English (en)
Other versions
CN103944570B (zh
Inventor
刘术彬
朱樟明
丁瑞雪
杨银堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Institute Of Integrated Circuit Innovation Xi'an University Of Electronic Science And Technology
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201310020296.9A priority Critical patent/CN103944570B/zh
Publication of CN103944570A publication Critical patent/CN103944570A/zh
Application granted granted Critical
Publication of CN103944570B publication Critical patent/CN103944570B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Amplifiers (AREA)

Abstract

本发明提供一种可编程增益数模单元及模数转换器,属于模数转换器领域。其中,该可编程增益数模单元,应用于模数转换器中,其中,所述可编程增益数模单元的运放工作电流与所述模数转换器的采样频率成线性关系。本发明的技术方案能够使增益数模转换单元的运放工作电流与采样频率线性相关,达到模数转换器采样频率与功耗自适应的目的,同时由SPI端口控制的可编程电流源阵列可以在流片后对电路性能加以调整和优化。

Description

可编程增益数模单元及模数转换器
技术领域
本发明涉及模数转换器领域,特别是指一种可编程增益数模单元及模数转换器。
背景技术
由于无线通信的快速增长及图像、视频、音频等应用场合的多样化,对模数转换器(ADC)精度、速度的要求也不断提高,模拟带宽范围从200kHz到上百兆Hz,这就需要不同采样速率的模数转换器。
为实现采样速率可变的模数转换器,目前业内有两种传统方案:方案一是将几种专用的ADC并行地集成于一体,每种通信协议对应一种ADC,该方案的优点是低功耗,一种ADC工作时其它ADC关闭,每种协议都有优化过的专用ADC,缺点是面积大,研发周期长,多种专用ADC研发需要大量投入。
方案二是采用统一的AD,该通用ADC按照所有通信协议中的最坏情况进行设计。该方案的优点是面积小、低成本,对于不同的通信协议,都依靠一个ADC来解决,缺点是性能过剩,在多协议下耗费过多的能量,并且对很大范围的性能要求来说,技术上很难实现。
发明内容
本发明要解决的技术问题是提供一种可编程增益数模单元及模数转换器,能够使增益数模转换单元的运放工作电流与采样频率线性相关,达到模数转换器采样频率与功耗自适应的目的。
为解决上述技术问题,本发明的实施例提供技术方案如下:
一方面,提供一种可编程增益数模单元,应用于模数转换器中,其中,所述可编程增益数模单元的运放工作电流与所述模数转换器的采样频率成线性关系。
具体地,所述可编程增益数模单元的运放工作电流与所述模数转换器的采样频率成线性正比关系。
进一步地,所述可编程增益数模单元包括一频率电流转换电路,用于产生与采样频率对应的偏置电流。
进一步地,所述频率电流转换电路包括:由跨导运算放大器OTA、PMOS管和开关电容电路构成的单位增益负反馈结构,跨导运算放大器的输出Vout能被钳位到跨导运算放大器的输入Vbg;
其中,开关电容电路由对称的左、右支路组成,左支路包括有传输门T1、并联的电容C1和NMOS管MB5,右支路包括有传输门T2、并联的电容C2和NMOS管MB3,在时钟控制信号Clk为高时,T1导通,MB5关断,C1被充电到电压值Vcharge,同时,T2关断,MB3导通,C2上存储的电荷被释放,其两端的电压值从Vcharge变为0;在时钟控制信号Clk为低时,T1关断,MB5导通,C1上存储的电荷被释放,其两端的电压值从Vcharge变为0,同时,T2导通,MB3关断,C2被充电到电压值Vcharge。
进一步地,所述跨导运算放大器的输出节点连接有一接地的电容C3,用于去耦合和滤除高频的波动信号。
进一步地,所述可编程增益数模单元包括一可编程电流源阵列,用于调整运放的增益带宽积或相位裕度。
进一步地,所述可编程电流源阵列包括:串联的PMOS管阵列和NMOS管阵列,所述PMOS管阵列包括并联的至少一个PMOS管支路,每个PMOS管支路由串联的多个PMOS管和开关组成,所述NMOS管阵列包括并联的至少一个NMOS管支路,每个NMOS管支路由串联的多个NMOS管和开关组成。
本发明实施例还提供了一种模数转换器,包括如上所述的可编程增益数模单元。
本发明的实施例具有以下有益效果:
上述方案中,可编程增益数模单元包括有频率电流转换电路,使可编程增益数模单元的运放工作电流与模数转换器的采样频率成线性关系,达到模数转换器频率与功耗自适应的目的,避免了模数转换器在多协议下耗费过多的能量的问题。
附图说明
图1为本发明实施例可变成增益数模单元(MDAC)整体电路示意图;
图2为本发明实施例运算放大器的电路结构示意图;
图3为本发明实施例用于实现频率与电流相关的FCC电路示意图;
图4为本发明实施例可编程电流源阵列(PCS)的电路示意图。
具体实施方式
为使本发明的实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明的实施例提供了一种可编程增益数模单元及模数转换器,能够使增益数模转换单元的运放工作电流与采样频率线性相关,达到模数转换器采样频率与功耗自适应的目的。
本发明实施例的可编程增益数模单元,应用于模数转换器中,其中,所述可编程增益数模单元的运放工作电流与所述模数转换器的采样频率成线性关系。
具体地,所述可编程增益数模单元的运放工作电流与所述模数转换器的采样频率成线性正比关系。
具体地,所述可编程增益数模单元包括一频率电流转换电路,用于产生与采样频率对应的偏置电流。
所述频率电流转换电路包括:由跨导运算放大器OTA、PMOS管和开关电容电路构成的单位增益负反馈结构,跨导运算放大器的输出Vout能被钳位到跨导运算放大器的输入Vbg;
其中,开关电容电路由对称的左、右支路组成,左支路包括有传输门T1、并联的电容C1和NMOS管MB5,右支路包括有传输门T2、并联的电容C2和NMOS管MB3,在时钟控制信号Clk为高时,T1导通,MB5关断,C1被充电到电压值Vcharge,同时,T2关断,MB3导通,C2上存储的电荷被释放,其两端的电压值从Vcharge变为0;在时钟控制信号Clk为低时,T1关断,MB5导通,C1上存储的电荷被释放,其两端的电压值从Vcharge变为0,同时,T2导通,MB3关断,C2被充电到电压值Vcharge。
进一步地,所述跨导运算放大器的输出节点连接有一接地的电容C3,用于去耦合和滤除高频的波动信号。
所述可编程增益数模单元还包括一可编程电流源阵列,用于调整运放的增益带宽积或相位裕度。
其中,所述可编程电流源阵列包括:串联的PMOS管阵列和NMOS管阵列,所述PMOS管阵列包括并联的至少一个PMOS管支路,每个PMOS管支路由串联的多个PMOS管和开关组成,所述NMOS管阵列包括并联的至少一个NMOS管支路,每个NMOS管支路由串联的多个NMOS管和开关组成。
本发明实施例还提供了一种模数转换器,包括如上所述的可编程增益数模单元。
下面结合附图1~4对本发明的可编程增益数模单元及模数转换器进行详细介绍:
如图1所示,可编程增益数模单元(MDAC)包括有:4个由Clk1(第一时钟控制信号)控制的CMOS传输门开关分别与4个采样电容相连接,由Clk2(第二时钟控制信号)控制的2个CMOS传输门开关连接于采样电容与运算放大器的输出端之间,由sub_ADC控制的DAC连接于Vref与采样电容之间,FCC电路连接时钟控制信号Clk和Vbg,产生Ibias电流信号,输出到运算放大器和PCS电路,PCS电路输入端连接FCC产生的Ibias信号和SPI输入信号,输出连接到运算放大器。
在采样模式中,采样开关对输入信号Vin+和Vin-进行采样;在放大模式中,电路完成采样信号的差减和放大,子模数转换器的输出值H和L控制需要减去的参考值(为Vref、0和-Vref中的一个电压)。
图1中的运算放大器AMP具体结构如图2所示,该CMOS运算放大器电路中:M13,M14,M15,M16,M17做为各个支路的尾电流源,由Vbias1信号控制,M3,M4是输入级差分对管,输入端连接差分输入信号,漏端分别连接到M5和M6的漏极,M5~M10分别首尾相连,构成共源共栅结构,M7,M8的漏极分别连接到M1,和M2的栅极,同时两个弥勒补偿电容C0分别连接到M9,M10的源端与M11,M12的漏端,M11,M1,M16和M12,M2,M17分别首尾相连,构成输出级差分运放。增益达到90.8dB,增益带宽积达到927MHz,相位裕度达到62°,开关电容共模反馈电路用于稳定运放的输出共模电压。
如图3所示,频率电流转换电路(FCC)用于实现运放的偏置电流与采样频率的自适应,频率电流转换电路中:OTA的输入端分别连接Vbg和M0的漏极,输出连接到M0,MB1的栅极,构成单位增益结构,M0的漏端同时连接到C3和电阻构成的支路,和CMOS传输门开关T1,T2。电容C1,C2分别连接到T1,T2,以及由CLK和CLK~控制的放电开关,MB1的漏极连接到二极管接法的MB4的漏和栅极,产生偏置电压Vbias1,同时去耦电容C4连接到Vbias1。当频率电流转换电路正常工作时,开关电容电路可看做阻抗随频率变化的负载,跨导运算放大器OTA、PMOS管M0、开关电容电路构成单位增益负反馈结构,因而Vout能被钳位到Vbg。开关电容电路由左右相同的传输门、电容、NMOS管支路组成。当Clk为高时,T1导通,MB5关断,C1被充电到电压值Vcharge,与此同时,T2关断,MB3导通,C2上存储的电荷被释放,其两端的电压值从Vcharge变为0。当Clk为低时,T1关断,MB5导通,C1上存储的电荷被释放,其两端的电压值从Vcharge变为0,同时,T2导通,MB3关断,C2被充电到电压值Vcharge。
其中,模数转换器的时钟频率(即采样频率)决定电容释放的总电荷数,M0平均电流提供的电荷和电容释放的电荷必须保持动态平衡,因此频率电流转换电路所产生的平均电流即偏置电流Iavg跟随时钟频率变化。
跨导运算放大器OTA的输出节点Vout必须接一个容值远远大于C1的大电容C3,其作用是去耦合/滤除高频的波动信号,以稳定输出节点Vout的电压。如果没有大电容C3,Vout电压就会产生非常大的波动,使得PMOS管M0在截止/饱和区之间进出,频率电流转换电路将不能正常工作。
假设时钟控制信号Clk周期为T,在一个周期内开关电容电路释放的总电荷为Qtotal,由于释放的电荷只能通过M0的电流提供,假设M0的平均电流为Iavg,则
I avg = Q total T - - - ( 1 )
一个周期内开关电容电路所释放的总电荷为
Qtotal=2VchargeC1    (2)
假设Vout在整个过程中能稳定在Vbg这一电压值,且传输门T1、T2在充电过程中的等效电阻为Requel,则整个充电过程可以等效为恒定电压源对电阻、电容串联电路的充电过程。
因此 V out = V bg ( 1 - e - t τ ) = V bg ( 1 - e - 1 2 R equel C 1 f ) - - - ( 3 )
由以上可得,对于时钟频率f,频率电流转换电路产生的平均电流Iavg为
I avg = Q total T = 2 C 1 V out T = 2 C 1 V out f = 2 C 1 V bg f ( 1 - e - 1 2 R equel C 1 f ) - - - ( 4 )
f ≤ 1 9 R equel C 1 时,有 V ch arg e ≥ 9.9 V bg ≈ V bg ,此时
I avg ≈ 2 C 1 V bg f - - - ( 5 )
因此,当时,频率电流转换电路产生的偏置电流和时钟频率成线性正比,从而达到由模数转换器的采样频率控制工作电流的作用。
进一步地,本发明的可编程增益数模单元还包括有可编程电流源阵列,用于调整运放的增益带宽积或相位裕度。如图4所示,可编程电流源阵列(PCS)包括串联的PMOS管阵列和NMOS管阵列,所述PMOS管阵列包括并联的至少一个PMOS管支路,每个PMOS管支路由串联的多个PMOS管和开关组成,所述NMOS管阵列包括并联的至少一个NMOS管支路,每个NMOS管支路由串联的多个NMOS管和开关组成。具体地,PMOS管阵列有4条支路,从左到右每条支路分别由4、6、8、10个首尾相连的PMOS管构成,同时每条支路分别与由Bit0~Bit3控制的开关相连,每条支路P管的栅极都连在一起,并与MD1管的栅极相连;NMOS管阵列有3条支路,从左到右每条支路分别由4、6、8个首尾相连的NMOS管构成,同时每条支路分别与由Bit4~Bit6控制的开关相连,每条支路N管栅极都连在一起,并与MD2管的栅极相连。
相同尺寸的PMOS管和NMOS管根据实际电流的需求连接成并行和串行的关系,用于有效地提高或者降低每条电流支路晶体管的整体宽长比,每条支路的宽长比信号代表了可编程的二进制权重电流,各条支路的电流最终在Iout节点处求和,每条支路电流由逻辑信号高控制。控制可编程电流源阵列的逻辑信号来自SPI输入端口,这些控制信号输入到串行的移位寄存器中,移位寄存器的输出控制各条电流支路的开关。其中0-3位控制运放的尾电流,从而达到调整运放增益带宽积的功能,由公式(6)
GBW ∝ I bias / π C 0 V DSAT - - - ( 6 )
其中,GBW为运放的单位增益带宽,Ibias为偏置电流,C0为弥勒补偿电容,VDSAT为过驱动电压。
4-6位控制运放输出端的第二极点的位置。由于运放的相位裕度与其两个极点的相对位置相关,这里我们通过调整第二极点位置的方法来调整相位裕度,第二极点的位置受输出晶体管M2的跨导影响,所以通过对M2管的电流进行控制,即可达到调整第二极点的位置的目的。
第二极点位置的调整基于公式(7)
f nd ∝ g m 2 / 2 πC L - - - ( 7 )
其中,fnd为第二极点的位置,gm2为M2管的跨导,CL为输出端的负载电容。
本发明的技术方案中,可编程增益数模单元包括有频率电流转换电路,使可编程增益数模单元的运放工作电流与模数转换器的采样频率成线性关系,达到模数转换器频率与功耗自适应的目的,模数转换器的功耗能够随着采样频率的降低而减少,避免了模数转换器在多协议下耗费过多的能量的问题。另外,可编程增益数模单元还包括可编程电流源阵列,由SPI端口输入进行控制,能够对可编程增益数模单元的性能进行改进。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种可编程增益数模单元,应用于模数转换器中,其特征在于,所述可编程增益数模单元的运放工作电流与所述模数转换器的采样频率成线性关系。
2.根据权利要求1所述的可编程增益数模单元,其特征在于,所述可编程增益数模单元的运放工作电流与所述模数转换器的采样频率成线性正比关系。
3.根据权利要求1所述的可编程增益数模单元,其特征在于,所述可编程增益数模单元包括一频率电流转换电路,用于产生与采样频率对应的偏置电流。
4.根据权利要求3所述的可编程增益数模单元,其特征在于,所述频率电流转换电路包括:由跨导运算放大器OTA、PMOS管和开关电容电路构成的单位增益负反馈结构,跨导运算放大器的输出Vout能被钳位到跨导运算放大器的输入Vbg;
其中,开关电容电路由对称的左、右支路组成,左支路包括有传输门T1、并联的电容C1和NMOS管MB5,右支路包括有传输门T2、并联的电容C2和NMOS管MB3,在时钟控制信号Clk为高时,T1导通,MB5关断,C1被充电到电压值Vcharge,同时,T2关断,MB3导通,C2上存储的电荷被释放,其两端的电压值从Vcharge变为0;在时钟控制信号Clk为低时,T1关断,MB5导通,C1上存储的电荷被释放,其两端的电压值从Vcharge变为0,同时,T2导通,MB3关断,C2被充电到电压值Vcharge。
5.根据权利要求4所述的可编程增益数模单元,其特征在于,所述跨导运算放大器的输出节点连接有一接地的电容C3,用于去耦合和滤除高频的波动信号。
6.根据权利要求1所述的可编程增益数模单元,其特征在于,所述可编程增益数模单元包括一可编程电流源阵列,用于调整运放的增益带宽积或相位裕度。
7.根据权利要求5所述的可编程增益数模单元,其特征在于,所述可编程电流源阵列包括:串联的PMOS管阵列和NMOS管阵列,所述PMOS管阵列包括并联的至少一个PMOS管支路,每个PMOS管支路由串联的多个PMOS管和开关组成,所述NMOS管阵列包括并联的至少一个NMOS管支路,每个NMOS管支路由串联的多个NMOS管和开关组成。
8.一种模数转换器,其特征在于,包括如权利要求1-7中任一项所述的可编程增益数模单元。
CN201310020296.9A 2013-01-18 2013-01-18 可编程增益数模单元及模数转换器 Active CN103944570B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310020296.9A CN103944570B (zh) 2013-01-18 2013-01-18 可编程增益数模单元及模数转换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310020296.9A CN103944570B (zh) 2013-01-18 2013-01-18 可编程增益数模单元及模数转换器

Publications (2)

Publication Number Publication Date
CN103944570A true CN103944570A (zh) 2014-07-23
CN103944570B CN103944570B (zh) 2017-03-22

Family

ID=51192087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310020296.9A Active CN103944570B (zh) 2013-01-18 2013-01-18 可编程增益数模单元及模数转换器

Country Status (1)

Country Link
CN (1) CN103944570B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949664A (zh) * 2015-06-11 2015-09-30 工业和信息化部电子第五研究所 微机械陀螺仪电耦合抑制电路和方法
CN105187063A (zh) * 2015-09-28 2015-12-23 宁波帝洲自动化科技有限公司 一种可提升模数转换器精度的前端电路
CN108347163A (zh) * 2018-01-22 2018-07-31 江苏星宇芯联电子科技有限公司 一种新型电荷泵结构的自动增益控制电路及其控制方法
CN110149045A (zh) * 2019-05-17 2019-08-20 东南大学 一种高能效开关电容电源转换器
CN111193516A (zh) * 2020-02-24 2020-05-22 苏州迅芯微电子有限公司 一种用于流水线模数转换器中mdac的输出共模抑制电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1655272A (zh) * 2004-02-13 2005-08-17 罗姆股份有限公司 频率电流转换电路、均衡器和光盘设备
CN101465658A (zh) * 2007-12-20 2009-06-24 雷凌科技股份有限公司 具有适应性可配置的模拟到数字转换器的无线接收器系统
US20110291871A1 (en) * 2010-05-25 2011-12-01 Ming-Tse Lin Current-mode dual-slope temperature-digital conversion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1655272A (zh) * 2004-02-13 2005-08-17 罗姆股份有限公司 频率电流转换电路、均衡器和光盘设备
CN101465658A (zh) * 2007-12-20 2009-06-24 雷凌科技股份有限公司 具有适应性可配置的模拟到数字转换器的无线接收器系统
US20110291871A1 (en) * 2010-05-25 2011-12-01 Ming-Tse Lin Current-mode dual-slope temperature-digital conversion device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949664A (zh) * 2015-06-11 2015-09-30 工业和信息化部电子第五研究所 微机械陀螺仪电耦合抑制电路和方法
CN105187063A (zh) * 2015-09-28 2015-12-23 宁波帝洲自动化科技有限公司 一种可提升模数转换器精度的前端电路
CN105187063B (zh) * 2015-09-28 2018-06-29 宁波帝洲自动化科技有限公司 一种可提升模数转换器精度的前端电路
CN108347163A (zh) * 2018-01-22 2018-07-31 江苏星宇芯联电子科技有限公司 一种新型电荷泵结构的自动增益控制电路及其控制方法
CN108347163B (zh) * 2018-01-22 2024-02-23 江苏星宇芯联电子科技有限公司 一种新型电荷泵结构的自动增益控制电路及其控制方法
CN110149045A (zh) * 2019-05-17 2019-08-20 东南大学 一种高能效开关电容电源转换器
CN111193516A (zh) * 2020-02-24 2020-05-22 苏州迅芯微电子有限公司 一种用于流水线模数转换器中mdac的输出共模抑制电路
CN111193516B (zh) * 2020-02-24 2023-10-13 苏州迅芯微电子有限公司 一种用于流水线模数转换器中mdac的输出共模抑制电路

Also Published As

Publication number Publication date
CN103944570B (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
US9634685B2 (en) Telescopic amplifier with improved common mode settling
CN103248330B (zh) 一种高增益精度的可编程增益放大器
CN102195652B (zh) 采样保持放大器
CN101753159B (zh) 具有多种增益模式、能自动调谐的射频接收前端
CN101692603B (zh) 增益自举型c类反向器及其应用电路
CN103944570A (zh) 可编程增益数模单元及模数转换器
JP2009118049A (ja) 離散時間型増幅回路及びアナログ・ディジタル変換器
CN103051299B (zh) 一种应用于通信系统发射端的可编程增益放大器
CN103051298A (zh) 可编程增益放大电路和可编程增益放大器
CN101777916B (zh) 一种电荷耦合流水线模数转换器
CN101882929B (zh) 流水线模数转换器输入共模电压偏移补偿电路
CN103107790A (zh) 可编程增益放大器
CN101917195A (zh) 一种高精度低失调电荷比较器电路
US8754699B2 (en) Switched-capacitor filter
CN102624346A (zh) 一种带反指数特性型数字控制电路的自动增益放大电路
CN106656183B (zh) 流水线模数转换器输入共模误差前馈补偿电路
CN103414442A (zh) 基于斩波技术的高精度全差分放大器
CN106712730A (zh) 一种可调节信号且可编程的增益放大器
CN111555727B (zh) 一种高增益低噪声的开关电容可调增益放大器
CN103259493A (zh) 一种利用非对称电容实现低功耗开关放大电路的方法
CN103916098A (zh) 一种高增益精度可编程增益放大器
CN103944571A (zh) 一种高速可配置流水线模数转换器
CN102377421A (zh) 开关电容电路
CN103107791B (zh) 带宽恒定的增益线性可变增益放大器
CN102412724B (zh) 具有片内频率补偿的电压模dc/dc电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210727

Address after: 401332 unit 1, building 1, phase 3, R & D building, Xiyong micro power park, Shapingba District, Chongqing

Patentee after: Chongqing Institute of integrated circuit innovation Xi'an University of Electronic Science and technology

Address before: 710071 No. 2 Taibai South Road, Shaanxi, Xi'an

Patentee before: XIDIAN University