CN103943745A - 一种使用陶瓷散热的高功率led灯具 - Google Patents
一种使用陶瓷散热的高功率led灯具 Download PDFInfo
- Publication number
- CN103943745A CN103943745A CN201410157363.6A CN201410157363A CN103943745A CN 103943745 A CN103943745 A CN 103943745A CN 201410157363 A CN201410157363 A CN 201410157363A CN 103943745 A CN103943745 A CN 103943745A
- Authority
- CN
- China
- Prior art keywords
- type electrode
- layer
- type
- dissipating
- led lamp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 37
- 229910010293 ceramic material Inorganic materials 0.000 claims abstract description 11
- 230000005855 radiation Effects 0.000 claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims description 60
- 239000002184 metal Substances 0.000 claims description 60
- 239000010409 thin film Substances 0.000 claims description 30
- 239000000758 substrate Substances 0.000 claims description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 27
- 239000011248 coating agent Substances 0.000 claims description 26
- 238000000576 coating method Methods 0.000 claims description 26
- 239000010408 film Substances 0.000 claims description 23
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims description 15
- 239000000377 silicon dioxide Substances 0.000 claims description 14
- 235000012239 silicon dioxide Nutrition 0.000 claims description 13
- -1 cyclic n nitroso compound Chemical class 0.000 claims description 10
- 229910002114 biscuit porcelain Inorganic materials 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 7
- 238000005530 etching Methods 0.000 claims description 4
- 238000002955 isolation Methods 0.000 claims description 2
- 229910000679 solder Inorganic materials 0.000 claims description 2
- 230000000704 physical effect Effects 0.000 abstract 1
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 229920002120 photoresistant polymer Polymers 0.000 description 37
- 238000004519 manufacturing process Methods 0.000 description 33
- 238000010586 diagram Methods 0.000 description 31
- 239000000463 material Substances 0.000 description 17
- 239000003292 glue Substances 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 238000000034 method Methods 0.000 description 12
- 229910052742 iron Inorganic materials 0.000 description 7
- 229910052594 sapphire Inorganic materials 0.000 description 7
- 239000010980 sapphire Substances 0.000 description 7
- 238000012800 visualization Methods 0.000 description 7
- 238000004070 electrodeposition Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 238000005538 encapsulation Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 4
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 229910001092 metal group alloy Inorganic materials 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910017083 AlN Inorganic materials 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- MRNHPUHPBOKKQT-UHFFFAOYSA-N indium;tin;hydrate Chemical compound O.[In].[Sn] MRNHPUHPBOKKQT-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004943 liquid phase epitaxy Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/64—Heat extraction or cooling elements
- H01L33/641—Heat extraction or cooling elements characterized by the materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/38—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/505—Wavelength conversion elements characterised by the shape, e.g. plate or foil
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
Abstract
本发明涉及一种使用陶瓷散热的高功率LED灯具,包括陶瓷散热基座(6),在所述陶瓷散热基座(6)的一面固定电路板,在所述电路板连接有白光LED倒装芯片(5),在所述白光LED倒装芯片(5)上方固定设有一非透明灯罩;在所述陶瓷散热基座(6)的另一面设有向外突出的散热鳍片(61),所述散热鳍片(61)也为陶瓷材质。本发明由于散热鳍片与陶瓷散热基座的材质为陶瓷材质,利用陶瓷材质的高传导和高辐射物理特性,可以将白光LED倒装芯片产生的热能快速吸收并散去,确保白光LED倒装芯片处于一恒定低温状态,并且可稳定并持续运作,因而可以延长了LED的使用寿命。
Description
技术领域
本发明申请为申请日2012年02月27日,申请号为:201210044889.4 ,名称为“一种使用陶瓷散热的高功率LED灯具”的发明专利申请的分案申请。本发明涉及一种LED灯具,尤其是涉及一种使用陶瓷散热的高功率LED灯具。
背景技术
LED灯具由于散热大,如果不能及时进行散热,尤其是大功率LED时间久后将会烧毁电子元器件,影响到LED灯具正常的使用和寿命。现在市场上的使用散热装置通常是使用金属散热方式,但是金属散热没有使用陶瓷材料散热的效果更佳。
此外,使用蓝宝石衬底其优点是化学稳定性好,不吸收可见光、价格适中、制造技术相对成熟,因此成为用于GaN生长最普遍的衬底。在LED的封装过程中,都把蓝宝石衬底面直接固定在散热板上。在LED的工作过程中,其发光区是器件发热的根源。由于蓝宝石衬底本身是一种绝缘体材料,且导热性能比GaN材料较差,所以对这种正装的LED器件其工作电流都有一定的限制,以确保LED的发光效率和工作寿命。为改善器件的散热性能,人们设计了一种LED芯片结构,即倒装结构的LED芯片。
另外,传统的蓝宝石衬底的GaN芯片的结构,电极刚好位于芯片的出光面。由于p-GaN层有限的电导率,因此要求在 p-GaN层表面沉淀一层用于电流扩散的金属层,这个电流扩散层由 Ni和 Au组成,会吸收部分光,从而降低出光效率。如果将芯片倒装,那么电流扩散层 (金属反射层)就成为光的反射层,这样光可通过蓝宝石衬底发射出去,从而提高出光效率。
自从提出芯片的倒装设计之后,人们针对其可行性进行了大量的研究和探索。由于LED芯片设计的局限性,封装良率一直很低,原因如下:第一、N型电极区域相对小,很难与PCB板的相应区域对位;第二、N型电极位置比P型电极位置高很多,很容易造成虚焊、脱焊情形;第三、为制作N型电极,往往要人为地去掉很大一部分有源区,这样大大地减少了器件的发光面积,直接影响了LED发光效率。
再者,虽然LED的发光效率已经超过日光灯和白炽灯,但商业化LED发光效率还是低于钠灯(150lm/W)。那么,哪些因素影响LED的发光效率呢?就白光LED来说,其封装成品发光效率是由内量子效率, 电注入效率, 提取效率和封装效率的乘积决定的。 如图35所示,利用MOCVD、VPE、MBE或LPE技术在衬底30上生长器件(如LED、LD等)结构,从上至下依次分别为衬底30、N型材料层31、发光区32、P型材料层33、P型电极34、P级焊锡层35、PCB板36以及散热板40。其中N型材料层31与散热板40之间还依次连接N型电极37、N级焊锡层38和PCB板39。
该传统的LED倒装芯片存在的技术缺陷如下:
1、在水平方向N型电极37所处位置与P型电极34相距较远,N型电极37对其下方的PCB板39的位置设计有苛刻的要求,影响到封装优良率。
2、N型电极37位置比P型电极34位置高很多,导致其与下方的PCB板39之间的间隙较大,在焊锡时很容易使得N级焊锡层38过长而造成虚焊或脱焊的发生。
3、为了使得N型电极37与其下方的PCB板39可以进行焊接,需要去掉很大一部分发光区,影响到LED芯片的发光效率。
4、电极区域不够大,影响注入电流效率进而影响到LED芯片的发光效率。
5、P型电极与N型电极位在芯片两侧,造成电子流动路径不一,如图36,形成电阻不均匀,芯片发光区发光不均匀,影响到LED芯片的发光效率。
发明内容
本发明设计了一种使用陶瓷散热的高功率LED灯具,其解决了以下技术问题是:
(1)大功率LED灯具由于散热大,如果不能及时进行散热,尤其是大功率LED时间久后将会烧毁电子元器件,影响到LED灯具正常的使用和寿命。
(2)N型电极区和P型电极区相对小,很难与PCB板的相应区域对位,会影响到封装效果和LED产品的优良率;
(3)N型电极位置比P型电极位置高很多,很容易造成虚焊、脱焊情形;
(4)为制作N型电极,往往要人为地去掉很大一部分有源区,这样大大地减少了器件的发光面积,直接影响了LED发光效率;
(5)P型电极及N型电极区域不够大,影响注入电流,直接影响了LED芯片发光效率;
(6)P型电极与N型电极位在芯片两侧,造成电子流动路径不一,形成电阻不均匀,芯片发光区发光不均匀,影响到LED芯片的发光效率。
为了解决上述存在的技术问题,本发明采用了以下方案:
一种使用陶瓷散热的高功率LED灯具,包括陶瓷散热基座(60),在所述陶瓷散热基座(60)的一面固定电路板,在所述电路板连接有白光LED倒装芯片(50),在所述白光LED倒装芯片(50)上方固定设有一非透明灯罩;在所述陶瓷散热基座(60)的另一面设有向外突出的散热鳍片(61),所述散热鳍片(61)也为陶瓷材质,其特征在于:所述白光LED倒装芯片(13)层结构依次包括衬底(1)、缓冲层(2)、N型层(3)、N型分别限制层(4)、发光区层(5)、P型分别限制层(6)、P型层(7)、P型欧姆接触层(8)、光穿透层(9)、二氧化硅层(10)、金属层(11),在衬底(1)表面涂敷一层纳米荧光粉层(28),其特征在于:该芯片蚀刻成梯台结构并形成环状N型电极和柱形P型电极,柱形P型电极被环状N型电极包围,所述环状N型电极和所述柱形P型电极与PCB板连接的焊锡面处于同一水平面高度。
进一步,N型电极主要包括N型电极光穿透层ITO薄膜(191)和N型电极金属合金层(23),其中N型电极光穿透层ITO薄膜(191)为阶梯结构,阶梯结构下部与芯片两侧的N型层(3)暴露区连接;阶梯结构上部与N型电极金属合金层(23)、金属层(11)以及绝缘介质膜(16)连接,其中N型电极金属合金层(23)位于阶梯结构上部的上方,金属层(11)和绝缘介质膜(16)位于阶梯结构上部的下方;P型电极主要包括P型电极金属合金层(24)和P型电极光穿透层ITO薄膜(192),P型电极光穿透层ITO薄膜(192)上方与P型电极金属合金层(24)连接,P型电极光穿透层ITO薄膜(192)四周向下延伸至光穿透层(9)并且将金属层(11)和二氧化硅层(10)限制于其中;
N型电极金属合金层(23)与P型电极金属合金层(24)位于同一水平面。
进一步,所述绝缘介质膜(16)与阶梯结构的中间部分和下部相平行,起到隔离N型电极光穿透层ITO薄膜(191)的作用。
进一步,在所述衬底(1)中形成一层凹凸面(12)。
进一步,所述衬底(1)与所述缓冲层(2)通过凹凸面(12)结构过渡。
进一步,所述环状N型电极和所述P型电极通过各自的PCB板与散热结构(26)连接。
进一步,在所述衬底(1)上通过刻蚀形成多个附着孔(27),纳米荧光粉层(28)通过所述多个附着孔(27)粘附在所述衬底(1)表面。
进一步,所述散热鳍片(61)为圆柱状的散热凸块。
进一步,所述散热鳍片(61)为方块状的散热凸块。
该使用陶瓷散热的高功率LED灯具与普通的高功率LED灯具相比,具有以下有益效果:
(1)本发明由于散热鳍片与陶瓷散热基座的材质为陶瓷材质,利用陶瓷材质的高传导和高辐射物理特性,可以将白光LED倒装芯片产生的热能快速吸收并散去,确保白光LED倒装芯片处于一恒定低温状态,并且可稳定并持续运作,因而可以延长了LED的使用寿命。
(2)本发明由于在衬底上通过附着孔附着一层环形纳米荧光粉层,该纳米荧光粉层与普通的荧光粉相比,可以使得芯片发出的白光更加明亮可靠。
(3)本发明由于将P型电极下方的二氧化硅层和金属层被P型电极光穿透层ITO薄膜完全包裹,增加了P型电极光穿透层ITO薄膜暴露面积,因而也就增加了光穿透层面积,提高了LED发光效率。
(4)本发明由于芯片结构包括N型电极和P型电极,使得P电极和N电极层面积最大,得到最大注入电流,提升发光效率。
(5)本发明由于N型电极采用了阶梯结构,只要求去掉很小一部分有源区,确保了光反射层面积的最大化,得到最佳发光效率。
(6)本发明由于采用环形N型电极层包围柱形P型电极层,可以实现最均匀的电流,使得发光区最为均匀。
(7)本发明还由于N型电极层与P型电极层处于同一平面,封装优良率更高。
附图说明
图1:本发明中的LED芯片制作工艺步骤1示意图;
图2:本发明中的LED芯片制作工艺步骤2示意图;
图3:本发明中的LED芯片制作工艺步骤3示意图;
图4:本发明中的LED芯片制作工艺步骤4示意图;
图5:本发明中的LED芯片制作工艺步骤5示意图;
图6:本发明中的LED芯片制作工艺步骤6示意图;
图7:本发明中的LED芯片制作工艺步骤7示意图;
图8:本发明中的LED芯片制作工艺步骤8示意图;
图9:本发明中的LED芯片制作工艺步骤9示意图;
图10:本发明中的LED芯片制作工艺步骤10示意图;
图11:本发明中的LED芯片制作工艺步骤11示意图;
图12:本发明中的LED芯片制作工艺步骤12示意图;
图13:本发明中的LED芯片制作工艺步骤13示意图;
图14:本发明中的LED芯片制作工艺步骤14示意图;
图15:本发明中的LED芯片制作工艺步骤15示意图;
图16:本发明中的LED芯片制作工艺步骤16示意图;
图17:本发明中的LED芯片制作工艺步骤17示意图;
图18:本发明中的LED芯片制作工艺步骤18示意图;
图19:本发明中的LED芯片制作工艺步骤19示意图;
图20:本发明中的LED芯片制作工艺步骤20示意图;
图21:本发明中的LED芯片制作工艺步骤21示意图;
图22:本发明中的LED芯片制作工艺步骤22示意图;
图23:本发明中的LED芯片制作工艺步骤23示意图;
图24:本发明中的LED芯片制作工艺步骤24示意图;
图25:本发明中的LED芯片制作工艺步骤25示意图;
图26:本发明中的LED芯片制作工艺步骤26示意图;
图27:本发明中的LED芯片制作工艺步骤27示意图;
图28:本发明中的LED芯片制作工艺步骤28示意图;
图29:本发明中的LED芯片制作工艺步骤29示意图;
图30:本发明使用陶瓷散热的高功率LED灯具结构示意图;
图31:图30的俯视图;
图32:图28中光反射示意效果图;
图33:本发明使用陶瓷散热的高功率LED灯具与散热结构连接示意图;
图34:本发明使用陶瓷散热的高功率LED灯具立体结构示意图;
图35:现有技术中LED芯片结构示意图;
图36:图34中电子流向示意图。
附图标记说明:
1—衬底;2—缓冲层;3—N型层;4—N型分别限制层;5—发光区层;6—P型分别限制层;7—P型层;8—P型欧姆接触层;9—光穿透层;10—二氧化硅层;11—金属层;12—凹凸面;13—第一光刻胶层;14—第二光刻胶层;15—第三光刻胶层;16—绝缘介质膜;17—第四光刻胶层;18—第五光刻胶层;19—光穿透层ITO薄膜;191—N型电极光穿透层ITO薄膜;192—P型电极光穿透层ITO薄膜;20—第六光刻胶层;21—金属合金层;22—第七光刻胶层;23—N型电极金属合金层;24—P型电极金属合金层;25—PCB板;26—散热结构;27—附着孔;28—纳米荧光粉层;
30—衬底;31—N型材料层;32—发光区;33—P型材料层;34—P型电极;35—P级焊锡层;36—PCB板;37—N型电极;38—N级焊锡层;39—PCB板;40—散热板;
50—白光LED倒装芯片;51—安装基座;52—螺栓;60—陶瓷散热基座;61—散热鳍片。
具体实施方式
下面结合图1至图34,对本发明做进一步说明:
如图1所示,衬底1是载体,一般是蓝宝石、碳化硅、硅、GaAs、AlN、ZnO或GaN等材料。
在衬底1上,先以蚀刻形成一层凹凸面12,此凹凸面12可以减少光在芯片内的全反射,增加出光率。
缓冲层2是一个过渡层,在此基础上生长高质量的N、P、量子阱等其它材料。
LED由pn结构成,缓冲层2、N型层3层、N型分别限制层4、P型分别限制层6以及P型层7是为了形成制作LED所需的P和N型材料。发光区层5是LED的发光区,光的颜色由有源区的材料决定。
P型欧姆接触层8是材料生长的最后一层,这一层的载流子搀杂浓度较高,目的是为制作较小的欧姆接触电阻。
P型金属欧姆接触层不是由生长形成的,而是通过蒸镀或溅射等方法形成的,目的之一是制作器件的电极,目的之二是为了封装打线用。
再通过蒸镀、溅射或其它薄膜制作方法,在P型欧姆接触层8表面形成一层ITO薄膜,用于制作发光二极管的光穿透层9,ITO薄膜一般为氧化铟锡材质,是一种透明的半导体导电薄膜,一般可使LED 的出光效率提高20%—30%。再通过蒸镀、溅射或其它薄膜制作方法,在光穿透层9形成二氧化硅层10和金属层11多层结构的全反射镜,二氧化硅层10可以改进发光区的电流扩展,降低电流堆积效应,而金属层11作为反射镜可以降低P电极对光的吸收,增加蓝宝石衬底边光的提取,并可以做为芯片的导热板;金属依需求可选用铝、银或金等材料。
如图2所示,在图1结构的金属层11表面涂布第一光刻胶层13(正胶或负胶),涂布速度在2500-5000转/分,并对涂布温度控制90摄氏度-100摄氏度之间,在烘箱里或铁板表面烘烤,烘烤时间分别为30分钟和2分钟。
如图3所示,LED倒装芯片周边的第一光刻胶层13通过曝光或显影方式去除,并且形成环形金属层暴露区。
如图4所示,利用干刻或化学腐蚀的方法,将暴露部分的N型分别限制层4、发光区层5、P型分别限制层6、P型层7、P型欧姆接触层8、光穿透层9 、二氧化硅层10、金属层11以及部分的N型层3去除使得整个LED芯片形成梯台结构。
如图5所示,将LED芯片中间剩余的第一光刻胶层13全部去除。
如图6所示,在图5结构的表面涂布第二光刻胶层14(正胶或负胶),涂布速度在2500-5000转/分,并对涂布温度控制90摄氏度-100摄氏度之间,在烘箱里或铁板表面烘烤,烘烤时间分别为30分钟和2分钟。
如图7所示,将LED倒装芯片梯台结构上的部分第二光刻胶层14通过曝光或显影方式去除,并且形成环形金属层暴露区。
如图8所示,利用干刻或化学腐蚀的方法,将暴露部分的金属层11和二氧化硅层10去除,形成环形凹槽。
如图9所示,将LED倒装芯片剩余的第二光刻胶层14全部去除。
如图10所示,在图9中所得LED芯片结构的表面涂布第三光刻胶层15(正胶或负胶),涂布速度在2500-5000转/分,并对涂布温度控制90摄氏度-100摄氏度之间,在烘箱里或铁板表面烘烤,烘烤时间分别为30分钟和2分钟。
如图11所示,将LED芯片表面的第三光刻胶层15通过曝光或显影方式部份去除,形成梯台外壁暴露区以及在梯台上形成环形暴露区。
如图12所示,利用PECVD或其它镀膜技术,在图11所示的结构表面直接制备一层绝缘介质膜16,绝缘介质膜16材质为二氧化硅层或其它透光性佳的绝缘介质,厚度在100nm-500nm之间。绝缘介质膜16通过镀膜的方式均匀地覆盖在阶梯结构的LED芯片上及第三光刻胶层15表面。
如图13所示,在图12的LED结构表面涂布第四光刻胶层17(正胶或负胶),涂布速度在2500-5000转/分,并对涂布温度控制90摄氏度-100摄氏度之间,在烘箱里或铁板表面烘烤,烘烤时间分别为30分钟和2分钟。
如图14所示,将LED芯片表面的第四光刻胶层17通过曝光或显影方式部份去除,仅保留梯台外壁垂直涂布的第四光刻胶层17。
如图15所示,利用干刻或化学腐蚀的方法,除去部分绝缘介质膜16,仅保留梯台外壁垂直布置的绝缘介质膜16和梯台上环形凹槽中的绝缘介质膜16,梯台上环形凹槽中的绝缘介质膜16高度等于金属层11和二氧化硅层10的厚度。
如图16所示,将LED芯片剩余的第三光刻胶层15和第四光刻胶层17全部去除。
如图17所示,在图16芯片结构的表面涂布第五光刻胶层18(正胶或负胶),涂布速度在2500-5000转/分,并对涂布温度控制90摄氏度-100摄氏度之间,在烘箱里或铁板表面烘烤,烘烤时间分别为30分钟和2分钟。
如图18所示,将LED芯片环形凹槽上方的第五光刻胶层18通过曝光或显影方式部份去除,并且形成环形绝缘介质膜暴露区。
如图19所示,利用干刻或化学腐蚀的方法,将芯片上方靠两侧暴露部分的绝缘介质膜16完全去除。
如图20所示,将LED芯片剩余的第五光刻胶层18全部去除。
如图21所示,再通过蒸镀、溅射或其它薄膜制作方法,在图20芯片结构上形成一层光穿透层ITO薄膜19,用于制作发光二极管的光穿透层及导电。
如图22所示,在图21芯片结构的表面涂布第六光刻胶层20(正胶或负胶),涂布速度在2500-5000转/分,并对涂布温度控制90摄氏度-100摄氏度之间,在烘箱里或铁板表面烘烤,烘烤时间分别为30分钟和2分钟。
如图23所示,将LED芯片梯台顶部的第六光刻胶层20通过曝光或显影方式部份去除,并且形成光穿透层ITO薄膜暴露区。
如图24所示,利用PECVD或其它镀膜技术,在图23所示的芯片结构表面制备一层金属合金层21。
如图25所示,在图24结构的表面涂布第七光刻胶层22(正胶或负胶),涂布速度在2500-5000转/分,并对涂布温度控制90摄氏度-100摄氏度之间,在烘箱里或铁板表面烘烤,烘烤时间分别为30分钟和2分钟。
如图26所示,将LED芯片上方靠两侧表面的第七光刻胶层22通过曝光或显影方式部份去除,在倒装芯片梯台顶部保留环状和方形的第七光刻胶层22。并且形成梯台下方和梯台上的环形金属合金层暴露区。图26中可以看出,剩下的第七光刻胶层22分成两个部分,都位于LED芯片的台阶上,环状的第七光刻胶层22和方形的第七光刻胶层22之间的金属合金层暴露区用于P型电极和两个N型电极进行隔离。
如图27所示,利用干刻或化学腐蚀的方法,去除没有被第七光刻胶层22覆盖的金属合金层21,同时也去除环状第七光刻胶层22和方形第七光刻胶层22之间的二氧化硅层10、金属层11以及光穿透层ITO薄膜19。原有的光穿透层ITO薄膜19将被分成N型电极光穿透层ITO薄膜191和P型电极光穿透层ITO薄膜192。
如图28所示,将LED芯片剩余的第六光刻胶层20和第七光刻胶层22全部去除,并形成环状N型电极和一个P型电极,P型电极被环状N型电极包围。
如图29所示,为了进一步提高LED芯片的发光效率,利用ICP、RIE或其它刻蚀技术对衬底1进行刻蚀,并且形成多个附着孔27。
如图30所示,利用涂胶方法把配制好的纳米荧光粉液均匀地涂布在衬底1表面。然后在100-180摄氏度的烘箱内进行烘烤,时间为10分钟-1个小时,最终在衬底1表面形成一层均匀的纳米荧光粉层28。
至图30中的LED芯片为止,本发明使用陶瓷散热的高功率LED灯具的主要制作步骤已经完成。
该发明使用陶瓷散热的高功率LED灯具的N型电极主要包括N型电极光穿透层ITO薄膜191和N型电极金属合金层23,其中N型电极光穿透层ITO薄膜191为阶梯结构,阶梯结构下部与芯片两侧的N型层3暴露区连接;阶梯结构上部与N型电极金属合金层23、金属层11以及绝缘介质膜16连接,其中N型电极金属合金层23位于阶梯结构上部的上方,金属层11和绝缘介质膜16位于阶梯结构上部的下方。
LED芯片的P型电极主要包括P型电极金属合金层24和P型电极光穿透层ITO薄膜192,P型电极光穿透层ITO薄膜192上方与P型电极金属合金层24连接,P型电极光穿透层ITO薄膜192四周向下延伸至光穿透层9并且将金属层11和二氧化硅层10限制于其中;N型电极金属合金层23与P型电极金属合金层24位于同一水平面。
此外,可以看出包括透过大面积的金属层11、N型电极金属合金层23以及P型电极金属合金层24,亦可达到散热最大面积。
如图31所示,N型电极包围P型电极,达到最均匀电流,并且使得发光区和发光效果达到最均匀的理想状态。
如图32所示,从芯片上方及两侧四面出光及金属层11反射,可以大大提升芯片发光效率。
如图33所示,两个N型电极金属合金层23和P型电极金属合金层24分别通过PCB板25与散热结构26进行连接。由于两个N型电极金属合金层23和P型电极金属合金层24位置在同一水平面上,使得它们与PCB板25锡焊时,锡焊层的厚度可以进行有效的控制,避免虚焊或脱焊。
如图34所示,一种使用陶瓷散热的高功率LED灯具,包括陶瓷散热基座60,在陶瓷散热基座60的一面固定电路板,在电路板连接有白光LED倒装芯片50,在白光LED倒装芯片50上方固定设有一非透明灯罩;在陶瓷散热基座60的另一面设有向外突出的散热鳍片61,散热鳍片61也为陶瓷材质。安装基座51、陶瓷散热基座6以及散热鳍片61通过螺栓52进行固定。
本发明由于散热鳍片与陶瓷散热基座的材质为陶瓷材质,利用陶瓷材质的高传导和高辐射物理特性,可以将白光LED倒装芯片产生的热能快速吸收并散去,确保白光LED倒装芯片处于一恒定低温状态,并且可稳定并持续运作,因而可以延长了LED的使用寿命。
上面结合附图对本发明进行了示例性的描述,显然本发明的实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种改进,或未经改进将本发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围内。
Claims (6)
1.一种使用陶瓷散热的高功率LED灯具,包括陶瓷散热基座(60),在所述陶瓷散热基座(60)的一面固定电路板,在所述电路板连接有白光LED倒装芯片(50),在所述白光LED倒装芯片(50)上方固定设有一非透明灯罩;在所述陶瓷散热基座(60)的另一面设有向外突出的散热鳍片(61),所述散热鳍片(61)也为陶瓷材质,其特征在于:所述白光LED倒装芯片(13)层结构依次包括衬底(1)、缓冲层(2)、N型层(3)、N型分别限制层(4)、发光区层(5)、P型分别限制层(6)、P型层(7)、P型欧姆接触层(8)、光穿透层(9)、二氧化硅层(10)、金属层(11),在衬底(1)表面涂敷一层纳米荧光粉层(28),在所述衬底(1)中形成一层凹凸面(12);该芯片蚀刻成梯台结构并形成环状N型电极和柱形P型电极,柱形P型电极被环状N型电极包围,所述环状N型电极和所述柱形P型电极与PCB板连接的焊锡面处于同一水平面高度;所述环状N型电极和所述P型电极通过各自的PCB板与散热结构(26)连接。
2.根据权利要求1所述使用陶瓷散热的高功率LED灯具,其特征在于:N型电极主要包括N型电极光穿透层ITO薄膜(191)和N型电极金属合金层(23),其中N型电极光穿透层ITO薄膜(191)为阶梯结构,阶梯结构下部与芯片的N型层(3)暴露区连接;阶梯结构上部与N型电极金属合金层(23)、金属层(11)以及绝缘介质膜(16)连接,其中N型电极金属合金层(23)位于阶梯结构上部的上方,金属层(11)和绝缘介质膜(16)位于阶梯结构上部的下方;P型电极主要包括P型电极金属合金层(24)和P型电极光穿透层ITO薄膜(192),P型电极光穿透层ITO薄膜(192)上方与P型电极金属合金层(24)连接,P型电极光穿透层ITO薄膜(192)四周向下延伸至光穿透层(9)并且将下方的金属层(11)和二氧化硅层(10)限制于其中;N型电极金属合金层(23)与P型电极金属合金层(24)位于同一水平面。
3.根据权利要求2所述使用陶瓷散热的高功率LED灯具,其特征在于:所述绝缘介质膜(16)与阶梯结构的中间部分和下部相平行,起到隔离N型电极光穿透层ITO薄膜(191)的作用。
4.根据权利要求1所述使用陶瓷散热的高功率LED灯具,其特征在于:在所述衬底(1)上通过刻蚀形成多个附着孔(27),纳米荧光粉层(28)通过所述多个附着孔(27)粘附在所述衬底(1)表面。
5.根据权利要求4所述使用陶瓷散热的高功率LED灯具,其特征在于:所述散热鳍片(61)为圆柱状的散热凸块。
6.根据权利要求1-5中任何一项所述使用陶瓷散热的高功率LED灯具,其特征在于:所述散热鳍片(61)为方块状的散热凸块。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410157363.6A CN103943745B (zh) | 2012-02-27 | 2012-02-27 | 一种使用陶瓷散热的高功率led灯具 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210044889.4A CN102593304B (zh) | 2012-02-27 | 2012-02-27 | 一种使用陶瓷散热的高功率led灯具 |
CN201410157363.6A CN103943745B (zh) | 2012-02-27 | 2012-02-27 | 一种使用陶瓷散热的高功率led灯具 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210044889.4A Division CN102593304B (zh) | 2012-02-27 | 2012-02-27 | 一种使用陶瓷散热的高功率led灯具 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103943745A true CN103943745A (zh) | 2014-07-23 |
CN103943745B CN103943745B (zh) | 2016-08-24 |
Family
ID=51191331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410157363.6A Active CN103943745B (zh) | 2012-02-27 | 2012-02-27 | 一种使用陶瓷散热的高功率led灯具 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103943745B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114242877A (zh) * | 2021-12-21 | 2022-03-25 | 厦门天马微电子有限公司 | 一种发光器件及其制备方法、显示面板和显示装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1588657A (zh) * | 2004-07-02 | 2005-03-02 | 北京工业大学 | 高抗静电高效发光二极管及制作方法 |
US20080101071A1 (en) * | 2006-10-31 | 2008-05-01 | Noboru Imai | Led module |
CN102347438A (zh) * | 2011-10-29 | 2012-02-08 | 华南师范大学 | 用金刚石粉-铜粉复合材料散热的发光二极管照明装置 |
-
2012
- 2012-02-27 CN CN201410157363.6A patent/CN103943745B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1588657A (zh) * | 2004-07-02 | 2005-03-02 | 北京工业大学 | 高抗静电高效发光二极管及制作方法 |
US20080101071A1 (en) * | 2006-10-31 | 2008-05-01 | Noboru Imai | Led module |
CN102347438A (zh) * | 2011-10-29 | 2012-02-08 | 华南师范大学 | 用金刚石粉-铜粉复合材料散热的发光二极管照明装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114242877A (zh) * | 2021-12-21 | 2022-03-25 | 厦门天马微电子有限公司 | 一种发光器件及其制备方法、显示面板和显示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103943745B (zh) | 2016-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102593304B (zh) | 一种使用陶瓷散热的高功率led灯具 | |
CN106981550B (zh) | 一种易封装易散热倒装高压led芯片 | |
CN107146840A (zh) | 一种倒装led芯片阵列结构及其制备方法 | |
TWI613842B (zh) | 發光裝置 | |
TWI447975B (zh) | 發光二極體晶片之結構、發光二極體封裝基板之結構、發光二極體封裝結構及其製法 | |
TWI622188B (zh) | 發光二極體晶片 | |
CN102544266B (zh) | 一种高光效白光led倒装芯片的制作方法 | |
CN206864498U (zh) | 一种倒装led芯片阵列结构 | |
CN104064652A (zh) | 发光元件 | |
CN102214746A (zh) | 一种氮化镓基功率型led芯片制作方法 | |
CN202405306U (zh) | 一种高光效、低光衰以及高封装良率led芯片 | |
CN102226995B (zh) | 一种led封装结构及其制备方法 | |
CN103943745A (zh) | 一种使用陶瓷散热的高功率led灯具 | |
CN102544295B (zh) | 一种高光效白光led倒装芯片 | |
CN103915556A (zh) | 一种使用陶瓷散热的高功率led灯具 | |
CN104332547B (zh) | 一种led芯片 | |
CN103050610B (zh) | 一种高光效白光led倒装芯片 | |
CN103050611B (zh) | 一种高光效白光led倒装芯片 | |
TWI479695B (zh) | A light emitting diode chip and a light emitting element | |
CN203250780U (zh) | 一种led倒装芯片 | |
TWI590487B (zh) | Thin-film light-emitting diode manufacturing method and film-type light-emitting Diode | |
WO2017054248A1 (zh) | 倒装led模组 | |
TWM496847U (zh) | 發光模組 | |
WO2014086081A1 (zh) | 水平结构的led芯片 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190918 Address after: 225654 industrial concentration area of Guo Zhen Town, Jiangsu, Gaoyou Patentee after: Jiangsu sun and moon Photoelectric Technology Co., Ltd. Address before: 322023, Zhejiang Province, Ningbo City, Yiwu Jiangdong Street under Zhu Village A District 1, 2 units, two floor Patentee before: Yu Guo Hong |
|
TR01 | Transfer of patent right |