CN103943692B - 掺钴非晶碳膜/硅光伏器件的制备方法 - Google Patents

掺钴非晶碳膜/硅光伏器件的制备方法 Download PDF

Info

Publication number
CN103943692B
CN103943692B CN201410162603.1A CN201410162603A CN103943692B CN 103943692 B CN103943692 B CN 103943692B CN 201410162603 A CN201410162603 A CN 201410162603A CN 103943692 B CN103943692 B CN 103943692B
Authority
CN
China
Prior art keywords
substrate
film
amorphous carbon
layer
panel region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410162603.1A
Other languages
English (en)
Other versions
CN103943692A (zh
Inventor
翟章印
江成
姜昱丞
陈贵宾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Normal University
Original Assignee
Huaiyin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Normal University filed Critical Huaiyin Normal University
Priority to CN201410162603.1A priority Critical patent/CN103943692B/zh
Publication of CN103943692A publication Critical patent/CN103943692A/zh
Application granted granted Critical
Publication of CN103943692B publication Critical patent/CN103943692B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System characterised by the doping material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明提供一种掺钴非晶碳膜/硅光伏器件及其制备方法。该方法以N型硅(n-Si)基片作为衬底,衬底上表面预设两片区域,在其中一片区域,采用脉冲激光沉积方法制备钴掺杂的非晶碳(a-C:Co)膜,然后采用真空热蒸发方法在该碳膜上蒸镀(Ag)层;在另一片区域,直接用真空热蒸发方法将Ag层蒸镀于该区域的n-Si基片上,制备得本器件。经测试,本器件显示出良好的光伏特性,室温下最好,当温度在270K(-3℃)以上时,温度对光伏效应的影响很小,具有受环境温度影响小,工作稳定度高的优点。本器件还易于回收重复利用;其非晶碳膜的抗腐蚀及耐磨损性能好,可与建筑物表面材料结合,大大节省安装空间;且取用材料价格低廉、制备工艺简洁,无污染物产生,有利于环境保护。

Description

掺钴非晶碳膜/硅光伏器件的制备方法
技术领域
本发明涉及光伏技术,具体涉及一种掺钴非晶碳膜/硅光伏器件及其制备方法。
技术背景
光伏器件是根据光生伏特效应的原理,将太阳光能转化成电能的一种电子器件,是太阳能电池的核心部分。它一般是由两种半导体材料构成P-N结,当太阳光照射到器件上时,P-N结两端产生电势差,可给外接负载供电,实现将太阳能转化为电能。鉴于太阳能属取之不竭的清洁能源,通过光伏器件所获取的电能对环境无污染的优越性,因此光伏器件被广泛用于国防、科学研究、工农业生产、家用电器等各领域中,并且已经成为世界各国解决能源问题的重要备选方案之一。目前主流光伏器件大多采用单晶硅、多晶硅、碲化镉、砷化镓等半导体材料,经提纯、切片、扩散制结、印刷电极、烧结等工艺流程制备而成。它们的优点是光电转化效率高,寿命长,可大规模生产,但存在受环境温度影响大,不易回收重复利用,成本较高,对于碲化镉类太阳能电池所含重金属镉容易对环境造成污染等不足之处。另外,市场还见有一些采用玻璃、陶瓷、石墨等作为基板,在其表面镀非晶硅薄膜实现将光能转化成电能的太阳能电池。它们也存在制作成本高,生产周期长,室外使用易破碎、耐腐蚀和重复利用性能差等缺陷。为此,业内有必要针对上述存在问题,再度研究开发出其它别样的光伏器件,以弥补现有太阳能电池在某些方面的不足或缺陷,进一步拓宽其更适于因地制宜应用的范畴。
发明内容
本发明提供一种掺钴非晶碳膜/硅光伏器件及其制备方法。目的在于通过对光伏器件组成材质和结构的进一步研制,以开拓一种新型的光伏器件,使它不仅在温度变化较大的复杂工作环境下也具有良好的光伏电性能,而且在取用材料价格低廉、制备工艺简洁、抗腐蚀、耐磨损、且环保无污染等方面也具有独树一帜的优势。
本发明的技术解决方案如下:
本发明所称光伏器件的组成结构为:其衬底为N型硅(n-Si)基片,所述n-Si基片的一端的上表面,镀覆有钴掺杂的非晶碳(a-C:Co)膜,该非晶碳膜上镀有银(Ag)层;所述n-Si基片的另一端的上表面,直接镀有Ag层,由该两个镀银(Ag)层构成一对电极。
本发明所称光伏器件的制备方法是:以N型硅(n-Si)基片作为衬底,于所述衬底上表面预设两片区域,在其中一片区域,采用脉冲激光沉积方法制备钴掺杂的非晶碳a-C:Co膜,然后采用真空热蒸发方法在该碳膜上蒸镀(Ag)层;在所述衬底上表面另一片区域,直接用真空热蒸发方法将银(Ag)层蒸镀于该区域的n-Si基片上,则制备成:由钴掺杂的非晶碳a-C:Co膜的P型半导体与N型硅(n-Si)基片组成的具有光伏特性的P-N结。
本发明方法的进一步技术解决方案:
所述使用n-Si基片的电阻率约为8-13Ω·cm;a-C:Co膜的Co掺杂量约为10%(原子百分比)。
所述金属Co掺杂的非晶碳a-C:Co膜层厚为20-30nm;镀银(Ag)层厚约
为100nm。
本发明的有益效果
(一)本发明器件为a-C:Co/n-Si形成的P-N结。经测试:该器件在波长为532nm(绿光)、功率为50mW/cm2的半导体激光照射下,显示出良好的光伏特性,开路电压为0.32V,短路电流为5.6mA/cm2;进一步测试又表明该器件在室温下光伏特性最好,当温度在270K(-3℃)以上时,温度对光伏效应的影响很小,表明本发明器件具有受环境温度影响小,工作稳定度高的优点。
(二)本发明器件易于回收重复利用,只需要灼烧碳膜,将其变为二氧化碳气体排出,剩下的n-Si基片经过简单的清洁处理,即可重新再用于制备该器件,为此可大幅度减少可能产生的环境垃圾。
(三)本发明器件由于非晶碳膜的硬度接近金刚石,抗腐蚀及耐磨损性能好,因此附着或结合于普通建筑材料表面,即可实现太阳能电池的光电转换功能,能节省大量安装空间。
(四)本发明器件所取用的原材料价格低廉、制备工艺简洁、成本较低,且无污染物产生,有利于环境保护。
附图说明
图1为本发明光伏器件(以下简称器件)的结构及电光测量示意图;
图2为本发明器件在波长为532nm(绿光)、功率为50mW/cm2的半导体激光照射以及无光照下的电流-电压(I-V)曲线图;图中,还给出了无掺杂非晶碳膜(a-C)/n-Si材料在相同的激光光照及无光照下的I-V曲线;
图3为本发明器件从温度100K到300K的光伏特性I-V曲线图。
具体实施方式
根据上述技术方案制作样件。所述N型硅(n-Si)基片是取磷掺杂的n-Si基片,其电阻率为8-13Ω·cm。在该基片的一片区域(基片的一端的上表面),采用脉冲激光沉积方法制备钴掺杂的非晶碳a-C:Co膜是使用纯度为99.99%的石墨和99.9%的金属Co为靶源,金属Co片贴在石墨靶上,操作中,通过靶和样件基片自转实现均匀掺杂,Co掺杂量约10%,激光能量320毫焦/脉冲,腔体真空度1×10-4mBar,基片温度400℃,靶与基片距离5cm,镀膜后自然降温到室温,膜厚约为25nm。然后再采用真空热蒸发方法,通过掩膜板的控制,对所制备的a-C:Co膜上及n-Si基片上表面另一片区域蒸镀Ag层,蒸镀Ag层时,将一小段约50毫克、纯度为99.9%的Ag放入真空腔内的钨片上,腔内抽至背底真空10-6mBar,通过电流升温将钨片加热,使Ag蒸发到a-C:Co膜表面及衬底n-Si基片上表面另一个区域,直至两个Ag镀层厚度均约为100nm。即制作完成本发明的光伏器件。
以下再结合所给出的附图,对本发明的技术方案作进一步说明:
如图1所示,本发明器件的组成结构包括:N型硅(n-Si)基片1,基片的一端上表面,镀有钴(Co)掺杂的非晶碳膜(a-C:Co)2,非晶碳膜层2上设置有一个镀银(Ag)层3a;基片上的另一端的上表面,直接设置有另一个镀银(Ag)层3b,两个镀银(Ag)层构成一对电极。半导体激光照射在a-C:Co膜与n-Si构成P-N结上,两个电极接稳压源,则形成其电光测量系统。
如图2所示,为本发明器件在波长为532nm(绿光)、功率为50mW/cm2半导体激光照射和无光照下的I-V曲线图。光照下开路电压为0.32V,短路电流密度为5.6mA/cm2。作为对比,本图中还给出了另外所作的无钴掺杂非晶碳膜(a-C)在光照以及无光照下测试的I-V曲线。如图中标注Ⅰ、Ⅱ分别为本发明器件(a-C:Co/Si)在光照下以及无光照下的I-V曲线;图中标注Ⅲ、Ⅳ分别为无钴掺杂非晶碳膜(a-C/Si)在光照下以及无光照下的I-V曲线,其开路电压和短路电流密度分别0.08V和0.9mA/cm2。由对比曲线可见,本掺钴非晶碳膜器件具有更好的光伏特性,充分说明钴掺杂对a-C/n-Si光伏特性的增强起到很重要的作用,这也体现出本光伏器件作为太阳能电池的优越性能。
如图3所示,
为本发明器件通过测试其从100K到300K的光伏特性,所绘制的在不同温度下的I-V曲线。显现了本发明器件的光伏效应随着温度上升而增强,当温度高于270K时,温度对器件光伏特性的影响变弱,表明本发明器件可正常工作的温度范围较宽。而传统的光伏器件总是在低温下才展现出更好的光伏特性。为此,本发明器件与传统的光伏器件相比,更适于在温度变化较大的复杂工作环境下工作。
综上,本发明可实现预期的发明目的。

Claims (1)

1.一种掺钴非晶碳膜/硅光伏器件的制备方法,其特征在于:该方法以N型硅(n-Si)基片作为衬底,于所述衬底上表面预设两片区域,在其中一片区域,采用脉冲激光沉积方法制备钴掺杂的非晶碳膜,然后采用真空热蒸发方法在该碳膜上蒸镀Ag层;在所述衬底上表面另一片区域,直接用真空热蒸发方法将Ag层蒸镀于该区域的n-Si基片上,则制备成:由P型钴掺杂的非晶碳膜与N型Si基片组成的具有光伏特性的P-N结;所述N型硅基片是取磷掺杂的n-Si基片,其电阻率为8-13Ω·cm,在该基片的一片区域,采用脉冲激光沉积方法制备钴掺杂的非晶碳膜是使用纯度为99.99%的石墨和99.9%的金属Co为靶源,金属Co片贴在石墨靶上,操作中,通过靶和样件基片自转实现均匀掺杂,Co掺杂量的原子百分比为10%,激光能量320毫焦/脉冲,腔体真空度1×10-4mBar,基片温度400℃,靶与基片距离5cm,镀膜后自然降温到室温,膜厚为25nm;所述采用真空热蒸发方法蒸镀Ag层,是通过掩膜板的控制,对所制备的钴掺杂的非晶碳膜上及n-Si基片上表面另一片区域蒸镀Ag层,蒸镀Ag层时,将一小段50毫克、纯度为99.9%的Ag放入真空腔内的钨片上,腔内抽至背底真空10-6mBar,通过电流升温将钨片加热,使Ag蒸发到钴掺杂的非晶碳膜表面及衬底n-Si基片上表面另一个区域,直至两个Ag镀层厚度均为100nm。
CN201410162603.1A 2014-04-22 2014-04-22 掺钴非晶碳膜/硅光伏器件的制备方法 Active CN103943692B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410162603.1A CN103943692B (zh) 2014-04-22 2014-04-22 掺钴非晶碳膜/硅光伏器件的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410162603.1A CN103943692B (zh) 2014-04-22 2014-04-22 掺钴非晶碳膜/硅光伏器件的制备方法

Publications (2)

Publication Number Publication Date
CN103943692A CN103943692A (zh) 2014-07-23
CN103943692B true CN103943692B (zh) 2016-06-01

Family

ID=51191281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410162603.1A Active CN103943692B (zh) 2014-04-22 2014-04-22 掺钴非晶碳膜/硅光伏器件的制备方法

Country Status (1)

Country Link
CN (1) CN103943692B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4461656B2 (ja) * 2000-12-07 2010-05-12 セイコーエプソン株式会社 光電変換素子
CN101777590B (zh) * 2010-01-15 2011-08-17 清华大学 一种具有白光光伏效应的异质结薄膜材料及其制备方法
AU2011302008A1 (en) * 2010-09-15 2013-05-09 Precursor Energetics, Inc. Deposition processes and devices for photovoltaics
CN102263143A (zh) * 2011-07-18 2011-11-30 清华大学 一种具有日光光伏效应的异质结薄膜材料及其制备方法

Also Published As

Publication number Publication date
CN103943692A (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
Yang et al. 28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell
Hu et al. Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH 2 CH [double bond, length as m-dash] NH 2 PbI 3
Xie et al. High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays
Chen et al. In situ growth of a MoSe 2/Mo counter electrode for high efficiency dye-sensitized solar cells
Sun et al. Temperature effect of photovoltaic cells: a review
Wu et al. Co/Se and Ni/Se nanocomposite films prepared by magnetron sputtering as counter electrodes for dye-sensitized solar cells
Gao et al. In situ growth of Sb2S3 thin films by reactive sputtering on n-Si (100) substrates for top sub-cell of silicon based tandem solar cells
CN106129259A (zh) 一种以黑磷和石墨烯为空穴传输层的钙钛矿太阳能电池及制备方法
CN107130256B (zh) 硼掺杂氮化碳修饰二氧化钛复合光电极及其制备方法、应用
CN104465844A (zh) 一种MoS2/Si p-n结太阳能电池器件及其制备方法
Xu et al. Ion Sputtering–Assisted Double‐Side Interfacial Engineering for CdIn2S4 Photoanode toward Improved Photoelectrochemical Water Splitting
Vasudevan et al. A thin-film silicon/silicon hetero-junction hybrid solar cell for photoelectrochemical water-reduction applications
CN105895806A (zh) 基于铜锌锡硫钙钛矿平面异质结太阳能电池及其制备方法
Yang et al. All pin hydrogenated amorphous silicon oxide thin film solar cells for semi-transparent solar cells
Setiawan et al. Surface dependent photoelectrochemical water-splitting performance of zinc tin oxide films
Li et al. Preparation of nanocrystalline TiO2 electrode by layer-by-layer screen printing and its application in dye-sensitized solar cell
Mohamed et al. Factors affect dye sensitized solar cells performance
Park et al. Influence of SnO2: F/ZnO: Al bi-layer as a front electrode on the properties of pin amorphous silicon based thin film solar cells
CN103137770A (zh) 一种石墨烯/Si p-n 双结太阳能电池及其制备方法
CN111697085A (zh) 双面透光碲化镉太阳能电池及其制备方法
Shin et al. Strategic approach for frustrating charge recombination of perovskite solar cells in low-intensity indoor light: Insertion of polar small molecules at the interface of the electron transport layer
CN103943692B (zh) 掺钴非晶碳膜/硅光伏器件的制备方法
Li et al. Effect of substituents in the imidazolium ring on the performance of solid-State dye-Sensitized solar cells
CN101840941A (zh) 具有光伏和光电导效应的掺铁碳薄膜材料及其制备方法
CN105575669B (zh) 一种染料敏化太阳能电池的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Di Zhangyin

Inventor after: Jiang Cheng

Inventor after: Jiang Yucheng

Inventor after: Chen Guibin

Inventor before: Di Zhangyin

Inventor before: Jiang Yucheng

Inventor before: Chen Guibin

COR Change of bibliographic data
C14 Grant of patent or utility model
GR01 Patent grant