CN103940589B - 一种真空容器内光学检测架的隔振机构 - Google Patents

一种真空容器内光学检测架的隔振机构 Download PDF

Info

Publication number
CN103940589B
CN103940589B CN201410114728.7A CN201410114728A CN103940589B CN 103940589 B CN103940589 B CN 103940589B CN 201410114728 A CN201410114728 A CN 201410114728A CN 103940589 B CN103940589 B CN 103940589B
Authority
CN
China
Prior art keywords
optical detection
detection frame
vacuum vessel
vibration isolator
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410114728.7A
Other languages
English (en)
Other versions
CN103940589A (zh
Inventor
刘立杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN201410114728.7A priority Critical patent/CN103940589B/zh
Publication of CN103940589A publication Critical patent/CN103940589A/zh
Application granted granted Critical
Publication of CN103940589B publication Critical patent/CN103940589B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

一种真空容器内光学检测架的隔振机构涉及光学精密检测振动隔离技术领域,一种技术方案是:光学检测架通过支撑臂和支撑立柱固定到隔振器上,真空容器筒壁竖向中部位置设有凸形腔体,光学检测架的支撑臂伸到所述凸形腔体内与支撑立柱连接,支撑立柱垂直贯穿凸形腔体壳下部壁后固定到隔振器上。另一种技术方案是:光学检测架通过支撑臂和吊杆固定到隔振器上,真空容器筒壁竖向中部位置设有凸形腔体,光学检测架的支撑臂伸到所述凸形腔体内与吊杆连接,吊杆垂直贯穿凸形腔体壳上部壁后固定到隔振器上。本发明可以使光学平台及其荷载的重心接近隔振装置的弹性平面,避免整个隔振系统出现摇摆和不稳定现象。

Description

一种真空容器内光学检测架的隔振机构
技术领域
本发明涉及光学精密检测振动隔离技术领域,尤其涉及一种真空容器内光学检测架的隔振机构,特别适合内径6米以上的大型真空容器内光轴垂直与水平指向状态下的光学精密检测。
背景技术
光学检测的准确度常受限于检测装置的质量和检测环境的稳定性。光传播路径内的大气扰动和传递到检测装置的振动是两个常见的由检测环境引入的误差源。在真空环境中进行精密光学检测是解决大气扰动的最佳办法,对检测装置与被检测件的隔振成为精密光学检测的关键技术。当前,世界科技发达国家为研发大口径、高分辨力空间光学载荷,都研制或升级改造了大型空间环境模拟试验设备和与之配套使用的大口径光学检测装置作为基础保障条件。其中,光轴垂直指向状态下检测大口径光学元件或光学系统能消除重力的影响,更接近真实空间环境中的微重力状态,获得与在轨性能一致的检测结果。
对于卧式真空容器内的光学检测架,常采用光学检测架的支撑立柱贯穿真空容器底部筒壁后固定到隔振平台的隔振方式,参见公开文献LowryHS,etal..DevelopmentofHWILTestingCapabilitiesforSatelliteTargetEmulationatAEDC[C].2006AdvancedMauiOpticalandSpaceSurveillanceTechnologiesConference,2006:p.E12。但当载荷在水平方向振动时,若其质量中心高于隔振系统的刚度中心,就会产生摇摆现象。如果质量中心高于刚度中心很多,整个隔振系统则会出现不稳定。
针对立式中型真空容器内光轴垂直指向状态下的光学检测,1991年美国CBI公司采用了摇篮式整体隔振方式,参见公开文献DohognePW,CarpenterWA.Opticaltestingcryogenicthermalvacuumfacility[C].16thSpaceSimulationConference.1990:113-132,即将其真空低温容器整体置于隔振平台上。因该容器(Φ3.5m×7m)的质量不很大,这种隔振方式是合理的。但对质量达数百吨的大型容器,摇篮式整体隔振方式不仅难以实现,且容器及其附属设备(如真空泵等)的振动也会影响光学系统安装面的稳定性。
大光学检测设施(LOTF)【参见公开文献SergeevPA,etal..Vibration-isolatedopticalbenchoftheLargeOpticalTestFacility(LOTF)Verticalfortestingspacetelescopes[C].Proc.SPIE2478,1995:336-347】是俄罗斯圣彼得堡光学研究所于1995年建造的、用于模拟空间环境条件的大口径空间光学载荷光轴垂直指向状态下的检测与试验。LOFT的光学检测架位于真空容器外,为立式钢筋混凝土圆筒壳状结构,内径13m、厚0.3m、高43m、质量达4240t,通过32个隔振器悬挂到建筑结构顶板。光学检测架通过上端承载结构刚性悬挂真空容器内的光学检测装置,通过下端承载结构刚性支撑真空容器内的被检测件。该单摆式隔振机构过于庞大,基础设施建造成本高。
为对开普勒太空望远镜进行光轴垂直指向状态下的光学检测,2008年美国波尔航空航天技术公司在其TV511空间环境模拟试验设备中设计制造了垂直准直装置(VCA),参见公开文献MartellaMA,etal..OpticaltestingoftheKeplerPhotometerinathermalvacuumenvironmentatBallAerospace[C].Proc.SPIE7436,2009:74360S-74360S-9。VCA的隔振方式是将光学检测架整体悬挂在设有三组真空兼容隔振器的真空容器壁顶部的圆环上。因开普勒太空望远镜及光学检测架的外形尺寸较小、重量较轻,这种单摆式整体悬挂隔振方式是合理的。但如果检测装置与被检测件相距较远、质量中心偏离隔振系统的刚度中心很多,整个隔振系统也会出现不稳定现象。
上述大型真空设备的光学检测架的隔振方式都存在不足之处。其中支撑立柱或吊杆均在底部或顶部位置贯穿真空容器壁,未见在竖向中部位置贯穿真空容器壁的摇篮式光学检测架隔振机构。
发明内容
为了克服现有真空设备的光学检测架隔振方式的不足,本发明提供了一种真空容器内光学检测架的隔振机构。
本发明采取的技术方案如下:
一种真空容器内光学检测架的隔振机构,其特征是:光学检测架通过支撑臂和支撑立柱固定到隔振器上,真空容器筒壁竖向中部位置设有凸形腔体,光学检测架的支撑臂伸到所述凸形腔体内与支撑立柱连接,支撑立柱垂直贯穿凸形腔体壳下部壁后固定到隔振器上。
一种真空容器内光学检测架的隔振机构,其特征是:光学检测架通过支撑臂和吊杆固定到隔振器上,真空容器筒壁竖向中部位置设有凸形腔体,光学检测架的支撑臂伸到所述凸形腔体内与吊杆连接,吊杆垂直贯穿凸形腔体壳上部壁后固定到隔振器上。
上述凸形腔体由腔体壳与开孔的真空容器筒壁连接构成,或者,是真空容器筒壁做成的凸形环状腔体结构。
上述支撑立柱或吊杆垂直贯穿凸形腔体壳壁处设有真空密封法兰,真空密封法兰的真空密封件为挠性或柔性器件。
上述支撑立柱或吊杆直接固定到隔振器上;或先固定到隔振器平台后,隔振器平台再固定到隔振器上。
在光学检测架的底部或顶部设有阻尼装置。真空容器内设有光学检测架的卸载支承台。
本发明的有益效果如下:
1)本发明的隔振机构采用的摇篮式悬浮隔振方式可以使隔振机构及其载荷的质量中心接近隔振器的刚度中心,避免出现摇摆和不稳定现象;
2)本发明的隔振机构采用的整体式隔振方式可以使检测装置与被检测件固定在处于同一个光学检测架的安装平台上,保证二者振动时不会出现相位差;
3)本发明的隔振机构的支撑立柱或吊杆在贯穿真空容器壁处的真空密封件为挠性或柔性器件,避免了因容器的振动、抽真空后容器的形变对光学系统安装面所带来的不利影响;
4)本发明的隔振器置于真空容器外,避免了在低温真空环境中使用真空兼容隔振器,增强了隔振系统的可靠性与易维修维护性。
附图说明
图1为本发明真空容器内光学检测架的隔振机构的结构示意图。
图2为本发明实施例1的应用示意图。
图3为本发明实施例2的应用示意图。
图4为本发明实施例3的应用示意图。
图5为本发明实施例4的应用示意图。
图6为本发明实施例5的应用示意图。
图7为本发明实施例6的应用示意图。
图8为本发明实施例7的应用示意图。
图9为本发明实施例8的应用示意图。
图10为本发明实施例9的应用示意图。
图中:1.真空容器,2.检测装置,3.光学检测架,4.真空容器筒壁,5.支撑臂,6.真空密封件,7.凸形腔体,8.真空密封法兰,9.支撑立柱,10.隔振器平台,11.被检测件,12.隔振器,13.卸载支承台,14.阻尼装置,15.隔振器基础,16.容器支座,17.地基,18.隔振器支架,19.吊杆。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
实施例1
对立式真空设备,采用图2所示的隔振机构在真空容器内的光学检测架上实现光轴垂直指向状态下的光学检测。
结合图1和图2所示,检测装置2和被检测件11分别放置在真空容器1内光学检测架3的上部和下部的安装平台上。光学检测架3的支撑臂5伸到真空容器筒壁4竖向中部位置的凸形腔体7内,并与支撑立柱9连接。支撑立柱9垂直贯穿凸形腔体7下部的真空密封法兰8后,固定到隔振器12,隔振器基础15支承隔振器12。在光学检测架3的底部可设有阻尼装置14(例如磁阻尼器),用于抑制光学检测架3的低频摆动。
其中,凸形腔体7为腔体壳与开孔的真空容器筒壁4连接(例如法兰连接或固定焊接)构成的结构。真空密封法兰8的真空密封件6为挠性或柔性器件(例如金属波纹膜片或不锈钢波纹管),挠性或柔性器件的形变补偿光学检测架3升降产生的位移和抽真空时容器的形变。真空容器通过容器支座16固定在地基17上。当光学检测架3不需要悬浮或建造、维修时,可坐落在真空容器1内的卸载支承台13上。检测装置2与被检测件11的位置可以互换。阻尼装置14也可设在光学检测架3的顶部。结构设计中,隔振机构及其载荷的质量中心落在隔振器12形成的刚度中心。
实施例2
对立式真空设备,采用图3所示的隔振机构在真空容器内的光学检测架上实现光轴垂直指向状态下的光学检测。
实施例2与实施例1的不同之处在于:实施例2增加了隔振器平台10。实施方式是:支撑立柱9垂直贯穿凸形腔体7下部的真空密封法兰8后,固定到隔振器平台10。隔振器12支承隔振器平台10,隔振器基础15支承隔振器12。其余实施方式与实施例1相同。
实施例3
对立式真空设备,采用图4所示的隔振机构在真空容器内的光学检测架上实现光轴垂直指向状态下的光学检测。
实施例3与实施例1的不同之处在于:实施例3去除了实施例1的隔振器基础15,增加了隔振器支架18。实施方式是:隔振器支架18支承隔振器12。
其中,隔振器支架18为在凸形腔体7下方设立的隔振器支承结构,该支架固定到真空容器筒壁4。其余实施方式与实施例1相同。
实施例4
对立式真空设备,采用图5所示的隔振机构在真空容器内的光学检测架上实现光轴垂直指向状态下的光学检测。
实施例4与实施例1的不同之处在于:实施例4去除了实施例1的隔振器基础15,增加了隔振器平台10和隔振器支架18。实施方式是:支撑立柱9垂直贯穿凸形腔体7下部的真空密封法兰8后,固定到隔振器平台10。隔振器12支承隔振器平台10,隔振器支架18支承隔振器12。
其中,隔振器支架18为在凸形腔体7下方设立的隔振器支承结构,该支架固定到真空容器筒壁4。其余实施方式与实施例1相同。
实施例5
对立式真空设备,采用图6所示的隔振机构在真空容器内的光学检测架上实现光轴垂直指向状态下的光学检测。
检测装置2和被检测件11分别放置在真空容器1内光学检测架3的上部和下部的安装平台上。光学检测架3的支撑臂5伸到真空容器筒壁4竖向中部位置的凸形腔体7内,并与吊杆19连接。吊杆19垂直贯穿凸形腔体7上部的真空密封法兰8后,固定到隔振器12。隔振器支架18支承隔振器12。在光学检测架3的底部设有阻尼装置14(例如磁阻尼器),用于抑制光学检测架3的低频摆动。
其中,凸形腔体7为腔体壳与开孔的真空容器筒壁4连接(例如法兰连接或固定焊接)构成的结构。真空密封法兰8的真空密封件6为挠性或柔性器件(例如金属波纹膜片或不锈钢波纹管),挠性或柔性器件的形变补偿光学检测架3升降产生的位移和抽真空时容器的形变。隔振器支架18为在凸形腔体7上方设立的隔振器支承结构,该支架固定到真空容器筒壁4或固定到周围建筑结构。真空容器通过容器支座16固定在地基17上。当光学检测架3不需要悬浮或建造、维修时,可坐落在真空容器1内的卸载支承台13上。检测装置2与被检测件11的位置可以互换。阻尼装置14也可设在光学检测架3的顶部。结构设计中,隔振机构及其载荷的质量中心落在隔振器12形成的刚度中心。
实施例6
对立式真空设备,采用图7所示的隔振机构在真空容器内的光学检测架上实现光轴垂直指向状态下的光学检测。
实施例6与实施例5的不同之处在于:实施例6增加了隔振器平台10。实施方式是:吊杆19垂直贯穿凸形腔体7上部的真空密封法兰8后,固定到隔振器平台10。隔振器12支承隔振器平台10,隔振器支架18支承隔振器12。其余实施方式与实施例5相同。
实施例7
对卧式真空设备,采用图8所示的隔振机构在真空容器内的光学检测架上实现光轴水平指向状态下的光学检测。
检测装置2与被检测件11分别放置在真空容器1内的光学检测架3的安装平台上。光学检测架3的支撑臂5伸到真空容器筒壁4竖向中部位置的凸形腔体7内,并与支撑立柱9连接。支撑立柱9垂直贯穿凸形腔体7下部的真空密封法兰8后,固定到隔振器12,隔振器基础15支承隔振器12。
其中,凸形腔体7为腔体壳与开孔的真空容器筒壁4连接(例如法兰连接或固定焊接)构成的结构。真空密封法兰8的真空密封件6为挠性或柔性器件(例如金属波纹膜片或不锈钢波纹管),挠性或柔性器件的形变补偿光学检测架3升降产生的位移和抽真空时容器的形变。真空容器通过容器支座16固定在地基17上。当光学检测架3不需要悬浮或建造、维修时,可坐落在真空容器1内的卸载支承台13上。在光学检测架3的底部可设有阻尼装置14(例如磁阻尼器),用于抑制光学检测架3的低频摆动。结构设计中,隔振机构及其载荷的质量中心落在隔振器12形成的刚度中心。
实施例8
对卧式真空设备,采用图9所示的隔振机构在真空容器内的光学检测架上实现光轴水平指向状态下的光学检测。
实施例8与实施例7的不同之处在于:实施例8增加了隔振器平台10。实施方式是:支撑立柱9垂直贯穿凸形腔体7下部的真空密封法兰8后,固定到隔振器平台10。隔振器12支承隔振器平台10,隔振器基础15支承隔振器12。其余实施方式与实施例7相同。
实施例9
对立式真空设备,采用图10所示的隔振机构在真空容器内的光学检测架上实现光轴垂直指向状态下的光学检测。
实施例9与实施例1的不同之处在于:实施例9中,凸形腔体7为由真空容器筒壁4直接做成的凸形环状腔体结构。其余实施方式与实施例1相同。
实施例10
实施例10与实施例2的不同之处在于:实施例10中,凸形腔体7为由真空容器筒壁4直接做成的凸形环状腔体结构。其余实施方式与实施例2相同。
实施例11
实施例11与实施例3的不同之处在于:实施例11中,凸形腔体7为由真空容器筒壁4直接做成的凸形环状腔体结构。其余实施方式与实施例3相同。
实施例12
实施例12与实施例4的不同之处在于:实施例12中,凸形腔体7为由真空容器筒壁4直接做成的凸形环状腔体结构。其余实施方式与实施例4相同。
实施例13
实施例13与实施例5的不同之处在于:实施例13中,凸形腔体7为由真空容器筒壁4直接做成的凸形环状腔体结构。其余实施方式与实施例5相同。
实施例14
实施例14与实施例6的不同之处在于:实施例14中,凸形腔体7为由真空容器筒壁4直接做成的凸形环状腔体结构。其余实施方式与实施例6相同。

Claims (7)

1.一种真空容器内光学检测架的隔振机构,其特征是:光学检测架通过支撑臂和支撑立柱固定到隔振器上,真空容器筒壁竖向中部位置设有凸形腔体,光学检测架的支撑臂伸到所述凸形腔体内与支撑立柱连接,支撑立柱垂直贯穿凸形腔体壳下部壁后固定到隔振器上。
2.一种真空容器内光学检测架的隔振机构,其特征是:光学检测架通过支撑臂和吊杆固定到隔振器上,真空容器筒壁竖向中部位置设有凸形腔体,光学检测架的支撑臂伸到所述凸形腔体内与吊杆连接,吊杆垂直贯穿凸形腔体壳上部壁后固定到隔振器上。
3.根据权利要求1或2所述的真空容器内光学检测架的隔振机构,其特征在于,所述凸形腔体由腔体壳与开孔的真空容器筒壁连接构成,或者,是真空容器筒壁做成的凸形环状腔体结构。
4.根据权利要求1或2所述的真空容器内光学检测架的隔振机构,其特征在于,所述支撑立柱或吊杆垂直贯穿凸形腔体壳壁处设有真空密封法兰,真空密封法兰的真空密封件为挠性或柔性器件。
5.根据权利要求1或2所述的真空容器内光学检测架的隔振机构,其特征在于,所述支撑立柱或吊杆直接固定到隔振器上;或先固定到隔振器平台后,隔振器平台再固定到隔振器上。
6.根据权利要求1或2所述的真空容器内光学检测架的隔振机构,其特征在于,在光学检测架的底部或顶部设有阻尼装置。
7.根据权利要求1或2所述的真空容器内光学检测架的隔振机构,其特征在于,真空容器内设有光学检测架的卸载支承台。
CN201410114728.7A 2014-03-25 2014-03-25 一种真空容器内光学检测架的隔振机构 Active CN103940589B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410114728.7A CN103940589B (zh) 2014-03-25 2014-03-25 一种真空容器内光学检测架的隔振机构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410114728.7A CN103940589B (zh) 2014-03-25 2014-03-25 一种真空容器内光学检测架的隔振机构

Publications (2)

Publication Number Publication Date
CN103940589A CN103940589A (zh) 2014-07-23
CN103940589B true CN103940589B (zh) 2016-06-01

Family

ID=51188353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410114728.7A Active CN103940589B (zh) 2014-03-25 2014-03-25 一种真空容器内光学检测架的隔振机构

Country Status (1)

Country Link
CN (1) CN103940589B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104266825B (zh) * 2014-09-03 2017-09-01 华中科技大学 一种悬挂式隔振光学平台装置
CN104699114B (zh) * 2015-02-17 2017-07-14 中国科学院国家天文台 一种带舱外微调机构的真空光学实验系统
CN107917311A (zh) * 2017-11-21 2018-04-17 北京空间机电研究所 一种应用于大型真空环境模拟器的精密隔振装置
CN110031027B (zh) * 2019-03-22 2021-07-13 中国科学院微电子研究所 一种具有振动隔离嵌套结构的检测装置
CN111426448B (zh) * 2020-03-27 2021-06-22 中国科学院西安光学精密机械研究所 一种光学组件性能测试平台
CN113188764A (zh) * 2021-04-16 2021-07-30 中国科学院西安光学精密机械研究所 一种带隔振平台的温度试验箱

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074809A (en) * 1976-07-19 1978-02-21 Coors Container Company Apparatus and methods for inspection of can bodies by use of light
JP2005347582A (ja) * 2004-06-04 2005-12-15 Nikon Corp 真空容器、露光装置、及び検査装置
CN101604553A (zh) * 2009-05-15 2009-12-16 中国工程物理研究院激光聚变研究中心 真空容器内光学平台支撑装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4012024B2 (ja) * 2002-09-10 2007-11-21 キヤノン株式会社 位置決め装置に於ける衝撃吸収装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074809A (en) * 1976-07-19 1978-02-21 Coors Container Company Apparatus and methods for inspection of can bodies by use of light
JP2005347582A (ja) * 2004-06-04 2005-12-15 Nikon Corp 真空容器、露光装置、及び検査装置
CN101604553A (zh) * 2009-05-15 2009-12-16 中国工程物理研究院激光聚变研究中心 真空容器内光学平台支撑装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《ZM4300光学遥感期空间环境模拟试验设备新技术》;杨建斌等;《真空与低温》;20100331;第16卷(第1期);第25-29页 *

Also Published As

Publication number Publication date
CN103940589A (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
CN103940589B (zh) 一种真空容器内光学检测架的隔振机构
CN206409570U (zh) 减振器和飞行器
CN104443436B (zh) 卫星控制力矩陀螺群用微振动并联隔振装置
CN104267756A (zh) 一种水平超长精密装备微振动控制系统
Lai et al. Growth of perturbations in gravitational collapse and accretion
CN106477074B (zh) 一种新型航天器在轨超静失重环境模拟试验系统
CN103471706B (zh) 一种太阳翼驱动机构微振动测试系统
CN105149199A (zh) 在航天器动力学离心状态下使用的电磁振动台
CN106153289A (zh) 风洞试验模型的一种测力装置
CN111473090A (zh) 一种用于微惯性测量单元重复利用的抗高过载减振结构
CN207365823U (zh) 一种导弹自转状态下的自由模态试验系统
CN114017457B (zh) 一种基于双稳态梁的航天器飞轮准零刚度隔振装置
CN204008006U (zh) 一种管路内力平衡系统
CN106428618B (zh) 模拟高海拔环境下输电线路无人机的性能检测系统及方法
CN101726402A (zh) 无膜重气柱界面rm不稳定性精密实验系统
CN107388907A (zh) 一种导弹自转状态下的自由模态试验系统
CN112278301A (zh) 一种被动隔振的两轴四框架机构光电吊舱
CN104773305B (zh) 一种非对称式飞机燃油系统模拟试验台结构及其设计方法
CN104019940B (zh) 基于差动测量的高精度气浮垂向调节机构
CN107860549B (zh) 一种激波风洞模型的隔振装置
CN104180883A (zh) 适用于斜面称重的电子衡器及其自由悬挂式倾斜安装方法
CN107192522A (zh) 大直径捆绑式运载火箭空间组合模态激振布置方法
CN213452426U (zh) 一种氦检设备生产用装配工作平台
CN104696404A (zh) 无人机飞行传感器减震装置
CN107917311A (zh) 一种应用于大型真空环境模拟器的精密隔振装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant