CN103930649B - 具有双极电压梯的能量辐射发生器 - Google Patents

具有双极电压梯的能量辐射发生器 Download PDF

Info

Publication number
CN103930649B
CN103930649B CN201280055695.2A CN201280055695A CN103930649B CN 103930649 B CN103930649 B CN 103930649B CN 201280055695 A CN201280055695 A CN 201280055695A CN 103930649 B CN103930649 B CN 103930649B
Authority
CN
China
Prior art keywords
voltage
ladder
generator
charged particle
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280055695.2A
Other languages
English (en)
Other versions
CN103930649A (zh
Inventor
M·西蒙
A·杜尔科斯基
C·斯托勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prad Research and Development Ltd
Original Assignee
Prad Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prad Research and Development Ltd filed Critical Prad Research and Development Ltd
Publication of CN103930649A publication Critical patent/CN103930649A/zh
Application granted granted Critical
Publication of CN103930649B publication Critical patent/CN103930649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/11Locating fluid leaks, intrusions or movements using tracers; using radioactivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/025X-ray tubes with structurally associated circuit elements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • E21B47/017Protecting measuring instruments
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/08Measuring diameters or related dimensions at the borehole
    • E21B47/085Measuring diameters or related dimensions at the borehole using radiant means, e.g. acoustic, radioactive or electromagnetic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/30Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/04Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/04Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
    • G01V5/08Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
    • G01V5/12Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using gamma or X-ray sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/061Electron guns using electron multiplication
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/10Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage
    • H02M7/103Containing passive elements (capacitively coupled) which are ordered in cascade on one source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H5/00Direct voltage accelerators; Accelerators using single pulses
    • H05H5/04Direct voltage accelerators; Accelerators using single pulses energised by electrostatic generators
    • H05H5/045High voltage cascades, e.g. Greinacher cascade
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00306Housings, cabinets, control panels (details)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings
    • G01N2201/0227Sealable enclosure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/20Sources of radiation
    • G01N2223/204Sources of radiation source created from radiated target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/24Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing the transmission of wave or particle radiation through the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/023Electron guns using electron multiplication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • X-Ray Techniques (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Radiation (AREA)
  • Toxicology (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种测井工具可包括:探头外壳和由所述探头外壳承载的辐射发生器。辐射发生器可包括:发生器外壳;由所述发生器外壳承载的靶标;由所述发生器外壳承载的带电粒子源,以将带电粒子导向所述靶标;以及连接到所述带电粒子源的至少一个电压源。所述至少一个电压源可包括:包括以双极配置连接的多个电压倍增级的电压梯以及连接到沿所述电压梯的至少一个中间位置处的至少一个加感线圈。该测井工具还包括由所述探头外壳承载的至少一个辐射探测器。

Description

具有双极电压梯的能量辐射发生器
背景技术
在测井工具中使用辐射发生器(例如中子和X射线发生器)来对可能有油气资源(例如,油和/或天然气)存在的邻近井眼处的地质地层进行测量。中子发生器可以使用氘-氘(d-d)、氘-氚(d-t)或氚-氚(t-t)反应制造中子,而无需使用放射性材料。
辐射发生器可以包括管(例如,中子或X射线管)和相关的电气元件,例如一个或更多个具有柯克罗夫特-沃尔顿梯(Cockcroft-Walton ladder)的高压变压器来产生高工作电压。中子管是由金属和绝缘体制成的密封的外壳,其包括储气罐、离子源、加速器柱和靶标。靶标可以由氢化物材料制成。一旦从储气罐中释放,气体就在离子源中被离子化,然后在加速柱中朝向靶标加速。核聚变反应在进入的离子和存在于靶标中的氢同位素原子之间出现,从而导致中子被引导到地质地层中。辐射探测器可以从由中子轰击引起的地质地层探测辐射,辐射反过来提供关于地质地层成分的信息。
X射线管具有电子源(通常被称作电子枪)、加速柱和靶标。靶标可以由重材料、例如钨或金制成。
发明内容
该发明内容介绍了一些概念,这些概念在下面的具体描述中有进一步的描述。该发明内容不希望识别请求保护的主题的关键或本质特征,也不希望作为限制请求保护的主题的范围的辅助使用。
一种测井工具可包括:探头外壳和由所述探头外壳承载的辐射发生器。辐射发生器可包括:发生器外壳;由所述发生器外壳承载的靶标;由所述发生器外壳承载的带电粒子源,以将带电粒子导向所述靶标;以及连接到所述带电粒子源的至少一个电压源。所述至少一个电压源可包括:包括以双极配置连接的多个电压倍增级的电压梯以及连接到沿所述电压梯的至少一个中间位置处的至少一个加感线圈。该测井工具还包括由所述探头外壳承载的至少一个辐射探测器。
一种辐射发生器可包括:发生器外壳;由所述发生器外壳承载的靶标;由所述发生器外壳承载的带电粒子源,以将带电粒子导向所述靶标;以及连接到所述带电粒子源的至少一个电压源。所述至少一个电压源可包括:包括以双极配置连接的多个电压倍增级的电压梯,其中,每个倍增级包括至少一个半导体二极管。至少一个加感线圈可连接到沿所述电压梯的至少一个中间位置处。
一种用于制造辐射发生器的方法可包括:将靶标和带电粒子源放置在发生器外壳中,以使带电粒子源将带电粒子导向靶标;以及将至少一个电压源连接到带电粒子源。所述至少一个电压源可包括:包括以双极配置连接的多个电压倍增级的电压梯,其中,每个倍增级可包括至少一个半导体二极管;以及连接到沿所述电压梯的至少一个中间位置处的至少一个加感线圈。
附图说明
图1是根据一个示例性实施例的辐射发生器的侧面剖视图。
图2是X射线管的侧视图,其可以在一个示例性实施例中用于图1的辐射发生器中。
图3是测井工具的示意性简图,其可以包括如图1所示的辐射发生器。
图4是单极电压梯配置的示意图,其可以用于图1的辐射发生器。
图5是比较有加感线圈和没有加感线圈的沿多个单极电压梯配置的电压分布的曲线。
图6是图1的单极电压梯配置的输出电压相对于输入电压的曲线,以及没有附加的加感线圈的单极电压梯的输出电压相对于输入电压的曲线。
图7是双极电压梯配置的示意图,其可以用于图1的辐射发生器。
图8是辐射发生器和相关的控制电路的一个实施例的电路原理图。
图9是示出与制造辐射发生器(例如如图1所示的)相关的方法方面的流程图。
图10是示出基于采用示例测试配置的辐射发生器的频率变化的电压分布的图。
图11是比较沿有加感线圈的双极电压梯分支和沿没有加感线圈的双极电压梯分支的电压分布的图。
具体实施方式
本描述是参考附图做出的,其中,附图中示出了示例性实施例。然而,也可以使用很多不同的实施例,因此本描述不应被理解为局限于在此提出的实施例。相反,提供这些实施例将会使得该公开全面和完整。在全文中相同的附图标记表示相同的元件,撇和多个撇号用于指示不同的实施例中的相应元件。
先参考图1和图2,首先描述辐射发生器30。在该示出的示例中,辐射发生器是X射线发生器,其包括在靶标(即,阳极)端102接地的X射线管100,但在一些实施例中也可以使用浮动靶标配置。X射线管100进一步解释性地包括位于管的与靶标端102相反的相反端的阴极103。阴极103连接至电压倍增梯104(例如,经阴极隔离变压器)。X射线管100、电压倍增梯104以及隔离变压器106被围在一个或更多个绝缘套管108中(例如PFA),该绝缘套管进一步被围在发生器外壳110内。绝缘气体可以被添加到发生器外壳内的内部空间117中。电压倍增梯104进一步解释性地包括多个加感线圈105a、105b(这将会在下文中被进一步描述)以及用于接收交流电压的输入端116。在图1中示意性地示出的接地的靶标配置提供了机械设计和装配的简化,这也会有助于维持靶标的机械稳定性,维持对靶标的热管理,以及绝缘材料108的辐射暴露。
阴极103响应于热暴露而释放电子,但在一些实施例中也可以使用“冷”阴极(例如,碳纳米管等)。如将在下文中进一步描述的,电压梯104把电压施加到阴极103,电流的引入加热阴极103,使其释放电子。栅极204向电子加速部分206移动从阴极103释放的电子。加速部分206向靶标208加速电子。当与靶标208碰撞时,会产生X射线,其可以在各个应用中使用,例如井下测井测量,这将会在下文中进一步讨论。
基本的单极电压梯配置可能不足以在井下使用所规定的空间限制内达到非常高的电压(例如,数百千电子伏的数量级上)。就是说,在使用了电压梯的井下工具极板或探头外壳的空间限制的情况下,可能难于以基本的单极电压配置达到期望的电压水平。更特别地,这是由于电压效率(其被定义为输出电压与乘以级数的输入电压的比率。例如,30或40级的基本的单极电压梯将会有大约40%到60%的电压效率。对于15kV的输入电压(其大致是合理尺寸的大多数商业器件(例如,电容器和二极管)的最大额定电压),输出电压可以按级数绘图。级的级联使电压效率降低。输出电压趋向于指定值,250kV左右。加入相对大的级数可能不会因此提供期望的高工作电压。这样的配置不能产生高电压可以进一步被归因于级间的杂散电容。
为了使用单极梯(与双极设计相反)产生400kV的电压,例如,在井下设备的封装尺寸限制的情况下,在此提出的实施例通过使用一个或更多个被置于梯中的合适的中间的地方或位置的加感线圈提供了增加的电压效率。“The Cockcroft-Walton VoltageMultiplying Circuit”,E.Everhart和P.Lorrain,1953,The Review of ScientificInstruments,Vol.24,3,1953年3月中提出了在离子加速器和电视线路的单极设计中使用单增压线圈或单加感线圈的配置。此配置在电压倍增器的高压端采用单线圈,使最初的电压效率从50%增压到80%。使用经典型柯克罗夫特-沃尔顿梯,电压效率由下式得出:
其中,C是梯串联电容,Cs是杂散电容,N是电压倍增级数。在使用上面提到的被置于双极电压梯末端的单线圈的情况下,效率变为:
通过比较有加感线圈和没有加感线圈的方程,很明显地相差两倍。即,效率和没有加感线圈的单极梯相同,但是使用的级数少1/2。该单个末端连接的加感线圈配置的电压分布用图5中的曲线63表示(相当于大约78%的效率),曲线62表示没有加感线圈的单极电压梯(相当于大约50%的效率)。
即使这样,电压效率可以通过使用被置于电压倍增梯中的相邻的电压倍增级之间的一个或更多个加感线圈而进一步提高。第一实验是使用梯的一端处的第一加感线圈(0.4H)以及梯中间的第二加感线圈(0.2H)进行的,产生的电压效率被以下方程控制:
此配置的电压分布用图5中的曲线61表示(相当于大约93%的效率)。这个梯的电压效率也比没有加感线圈的梯提高了,因为它相当于没有线圈但是级数为1/4的梯。
进一步的实验证明了要获得期望的电压效率,第一线圈和第二线圈105a、105b可以分别被置于梯104的长度的2/5和4/5级位置(如图4所示)处。更尤其是,当第一线圈105a和第二线圈105b(二者大体上等同)分别被置于梯104的长度的2/5和4/5位置时,电压效率由以下方程控制:
从上面的结果将会理解,在一些实施例中使用单个中间加感线圈105,并且加感线圈105a、105b可以被置于不同于2/5和4/5的位置处。
此配置的电压分布用图5中的曲线60表示(其相当于大约96%的效率)。这个效率与没有加感线圈、级数为1/5的梯相同。例如,据估计,40级的具有两个线圈配置的梯与没有线圈的8级的梯有相同的电压效率。在最佳频率下,输入阻抗为:
其中f为最佳频率。阻抗此时为电容性的,其中
最佳线圈值为:
其中L1=L2 (7)
因此,上述结构允许使用具有相同值的两个线圈。因此,最佳频率将等于:
如果:
在第一阶近似下,最佳频率不依赖于C值。频率变化对电压分布的影响可以从图10中看出,其中,曲线80表示在72.5kHz的最佳频率下的电压分布,效率为95%。如曲线81所表示的,如果频率过低(例如,70kHz),电压效率会过高(106%),这意味着一些电压倍增级会出现电压高于输入电压的情况。如曲线82所表示的,如果频率过高(例如,75kHz),梯不在其最佳模式下运行,提供87%的电压效率,因为最后几级上的电压过低。然而,可以理解,在一些实施例中可以使用可接受的频率变化范围(不只是最佳频率)。如上描述的单极电压梯和双加感线圈的示例配置被构建和测试。测试配置包括下列:
-具有额定值为16kV的1nF、X7R电容器以及16kV的二极管的30级电压倍增;
-2×0.2H线圈,一个在梯的2/5处,另一个在4/5处,工作频率约为70kHz;
-6PFA绝缘套管(总厚度为380mil)和3层20mil的FEP膜;
-阶末端处的20GΩ电阻串(分压器),以提供高电压测量;
-X射线管;以及
-具有3〞OD(2.85〞ID)的40〞长的不锈钢压力外壳,以SF6加压(大约120psi)。
把10GΩ电阻串连接到梯的第一级测量该输入电压。该系统用Labview控制。测试配置在升高的温度下测试至400kV和40μA。可以从图5中示出的结果看出,加感线圈位于单极电压梯中时,尤其是若位于最佳位置,对于相同或更少的级数,会获得明显更高的电压。这个配置也是期望的,不只由于更高的效率,而且还由于没有线圈被置于电压梯的末端,当线圈被置于电压梯末端时,如果出现电弧放电,这会使它们有更大的毁坏风险。
参考图6,输出电压相对于输入电压的图线70、71(分别有加感线圈和没有加感线圈添加到单极电压梯)进一步解释了加感线圈105a、105b的优势。这在反馈与调节方面是有益的。为了使辐射发生器稳定,可以在输入电压、频率和阴极激励上使用反馈回路。一个示例辐射发生器控制配置在图8中示出,其中,高电压(HV)变压器或驱动器306连接到单极电压梯304的输入端,单极电压梯的输出端连接到带电粒子源300(在这里是X射线管,其包括连接到相关的阴极驱动器321的阴极320)。X射线探测器322从X射线管探测X射线束,相关的探测器采集电子设备323连接到X射线探测器。微处理器324连接到HV驱动器306、输入电压传感器325、输出电压传感器326、阴极驱动器321、阴极电流传感器327和探测器采集电子设备323。
更尤其是,微处理器324从输入电压传感器325(示意性地表示为电阻器Rin和电流测量值Iin)接收测得的到梯304的输入电压Vin。另一个到微处理器324的输入是来自输出电压传感器326(示意性地表示为电阻器Rout和电流测量Iout)的梯304的输出电压Vout。其它的到微处理器324的输入包括来自阴极电流传感器327的靶标控制电流I,以及对电流I和来自探测器采集电子设备323的输出电压Vout的估计。微处理器324可以因此调节HV驱动器306和阴极驱动器321以维持输出电压Vout、电流I和电压效率值F为恒定值,其中在示例配置中,可以期望微处理器324维持电压Vout=300kV,电流I=100μA,F值=90%。如上面提到的,例如,电压Vout和电流I的值可以用电阻串估计和/或使用X射线探测器测量X射线束的流量和能量估计。电压效率可以通过调整电压倍增梯304、HV驱动器306的频率被调节到期望值。
通过调整输入电压Vin,电压输出Vout被调节到期望值。测量输入峰-峰间电压Vin以随频率调整电压效率。例如,测量高电压交流信号由于串扰可能会很困难。输入电压Vin可以因此被近似估算为梯的直流支路的第一电容器上的直流电压,其理论上非常近似于Vin。输出电压Vout可以从电阻串或从参考探测器估计,如上所述。同时,束电流通过改变阴极驱动器321被调整到期望值。通过在电压梯304中使用加感线圈305a、305b,电压效率从大约50%提高到95%,这使得400kV的单端梯和接地靶标发生器在井下工具的空间限制内可行。
在一些实施例中,上面描述的单极电压梯配置可以提供优于双极发生器配置的某些优势。例如,这个方法可以有助于降低电弧放电风险,因为在梯的末端处没有换向,因此发生器的末端处没有到地的支座。进一步地,高电压可以用两端的接地被限制在发生器中间。这反过来可以降低电弧放电风险或在绝缘材料形成痕迹的危险(作为引用,见美国专利No.7,564,948,其也转让给本受让人并且在这里并入该专利作为参考)。然而,在一些实施方式中,源和靶标之间具有相同电位差的双极配置可以对绝缘具有更低的要求,例如,由于与地间的最大电位差可以低最多50%。
另外,由于靶标可以被完全地屏蔽,辐射损坏的风险可以被降低,例如,通过钨准直器。进一步地,例如,由于靶标可以连接到吸热设备,对靶标功率的热管理可以相对直接。另外,机械设计和装配可以简化,这可以使得维持靶标的机械稳定性更容易。这是测量准确性方面的一个考虑(例如,对于X射线测量的地层密度和中子测量孔隙度)。
另外,在接地的靶标设计的情况下,X射线放射点和探测器之间的距离可能会减少,因为靶标对高电压绝缘的需要也许会降低(即,在X射线管的正极侧)。特别是,在单极配置中,电压梯不需要被置于靶标和探测器之间,这会有助于降低或消除高电压换向,提供期望的探测器与靶标间隔,并且向探测器提供额外的空间。另外,在一些双极设计中,寄生光子可以到达极板内的近探测器。这可以被上面描述的单极配置减轻,这提供了使用类似反向散射的探测器(例如PEx)的能力。进一步地,可以直接测量束电流(即,触碰靶标的管中的电子流)。
然而,在一些实施例中,可能需要使用具有加感线圈的双极电压梯配置,如现在参考图7描述的。在示出的示例中,电压梯包括正电压分支404p和负电压分支404n,每一个都包括各自的多个电压倍增级411,它们与那些在上面参考图4描述的相似。分支404p、404n中的每一个都具有连接到变压器或HV驱动器406的各自的输入端,以及连接到具有接地靶标的带电粒子发生器400(例如,X射线管、离子发生器等)的各自的输出端。在示出的示例中,加感线圈405p和405n相应地连接到沿相应的正电压分支404p和负电压分支404n的中间位置。
更特别是,在该示例中,中间位置在N/3处,其中,N为正负电压分支404p、404n中的电压倍增级411的总数,该总数已经被确定,以提供与那些在上面讨论的单极配置相似的期望的电压分布。可以示出,对于双极配置,电压效率等于:
通过将方程(10)与方程(1)(即,没有线圈)或方程(2)(即,单端连接线圈)对比,将会理解效率提高了并且与具有大约1/3的级的梯的效率相同。
参考图11,上述内容将会被进一步理解,其中,在1/3处位置具有加感线圈的具有15个倍增级的双极电压梯部分的电压分布通过曲线86示出(相当于大约95%的效率),也具有15个倍增级但是没有加感线圈的双极梯部分的电压分布通过曲线87示出(相当于大约67%的效率)。然而,与如上描述的单极配置相同,在不同的实施例中可以使用不同数量的加感线圈和中间位置。
应注意,为了使用双极梯产生400kV,正、负梯部分中的每一个都需要产生+200kV和-200kV。具有15级的各自的输入电压将会是,在2/3处位置有一个线圈的为14kV(低于15Kv),没有线圈的为20kV(在限定的空间中高于以电流分量技术实际可达到的)。另外,尽管双极梯配置仍然可以使用邻近阳极(即,靶标)的梯部分,但因为级数可以由于增加的效率而减少,这仍然可以为探测器提供增加的空间,以及减少靶标和探测器之间的距离。
现在回到图3,其描述了上面描述的用以确定围绕井眼502的地层500的密度和其它的特性的井下测井工具514中的辐射发生器的示例应用。如上所述,工具514被置于井下以使用随后探测到的输入辐射确定地层500的特性。在示出的实施例中,工具514包括容纳进入井眼502的部件的探头外壳516。在一些实施例中,探头外壳516可以是极板外壳。进一步地,对于例如电缆、钢丝、CTD、TLC等的实施方式还可以使用芯轴式压力外壳。在另一个示例配置中,例如,探头外壳516可以是被随钻测井(LWD)工具组件或管柱承载的接箍,辐射发生器可以被承载或被置于接箍内的底架中。
辐射发生器512、例如那些在上面描述的辐射发生器(例如,X射线、中子等)把辐射引入地层500中。在一定程度上辐射在地层500中从不同的深度分散,例如,由此产生的辐射信号被短源距探测器510和长源距探测器506探测,但在各个实施例中也可以使用其它的探测器配置。
在钻井过程中,井眼可以用钻井泥浆填充。钻井泥浆的液体部分流入地层500中,从而,在井眼内壁以泥饼层518的形式剩下固体泥浆材料沉积层。由于上面所述的理由,可以有利地尽可能地靠近井眼壁放置辐射发生器512和探测器506、510,以进行测量。井眼壁的不规则性可以随探头外壳516变长导致测量恶化,所以可能需要保持整个工具514在长度上尽可能短。例如,把探头外壳516下放到位,然后通过使用臂508和定位垫板524固定到井眼壁上。在一个实施例中,工具514经电缆520被下放到井眼502中。数据被传回到分析单元522以确定地层特性。例如,对于如上所述的电缆、随钻测井(LWD)、随钻测量(MWD)、生产测井以及永久地层监测应用,可以在井下使用工具514。
制造那些上面所提出的辐射发生器的方法现在结合图9中的流程图700被描述。从方框701开始,发生器管(例如,X射线或中子管)被置于包括靶标和带电粒子源的发生器外壳110中(方框702),如上面所述。另外,至少一个电压源连接到带电粒子源(方框703)。如上面所提到的,所述电压源包括具有以单极(或双极)配置连接的多个电压倍增级的电压梯104;以及连接到沿电压梯的至少一个中间位置的一个或更多加感线圈105。方法在方框704结束。
如上面所提到的,上面描述的辐射发生器可以使用接地靶标和浮动靶标配置。对于大多数单极中子发生器应用,靶标在负高电压下,而离子源实际上接地。在X射线管中,使靶标在地电势下、电子源在高负电势下是有帮助的。例如,在双极设计中,靶标和离子源二者都可以是浮动的。在米尼管配置中,靶标或离子源可以接地,二极管在电压倍增梯中被适当定向(或倒置)。
得益于前述描述和相关附图的教导的本领域技术人员会意识到很多修改和其它的实施例。因此,应理解各个修改和实施例都希望包括在所附的权利要求的范围内。

Claims (15)

1.一种辐射发生器,包括:
发生器外壳,
由所述发生器外壳承载的靶标,
由所述发生器外壳承载的带电粒子源,以将带电粒子导向所述靶标,以及
连接到所述带电粒子源的至少一个电压源,所述至少一个电压源包括:
包括以双极配置连接的多个电压倍增级的电压梯,以及
连接到沿所述电压梯的至少一个中间位置处的至少一个加感线圈;
其特征在于,所述加感线圈提高电压倍增级的效率,其中,电压梯产生接近输入电压与级的总数的乘积的输出。
2.如权利要求1所述的辐射发生器,其中,所述电压倍增级以正电压分支和负电压分支设置;所述至少一个加感线圈包括连接到沿所述正电压分支和所述负电压分支中的每一个的相应的中间位置处的相应的加感线圈。
3.如权利要求2所述的辐射发生器,所述中间位置中的一个由N/3定义,其中,N是所述电压倍增级的级数。
4.如权利要求1所述的辐射发生器,其中,每个所述电压倍增级包括至少一个半导体二极管。
5.如权利要求1所述的辐射发生器,其中,所述辐射发生器还包括:
连接到所述电压梯的电压驱动器;
连接到所述电压梯的至少一个电压传感器;以及
基于所述至少一个电压传感器控制所述电压驱动器的处理器。
6.如权利要求1所述的辐射发生器,其中,所述带电粒子源包括电子流发生器。
7.如权利要求1所述的辐射发生器,其中,所述带电粒子源包括离子流发生器。
8.如权利要求1所述的辐射发生器,其中,所述电压梯包括柯克罗夫特-沃尔顿电压梯。
9.一种测井工具,包括:探头外壳;由所述探头外壳承载的权利要求1-8中任一所述的辐射发生器;以及由所述探头外壳承载的至少一个辐射探测器。
10.如权利要求9所述的测井工具,其中,所述探头外壳包括极板外壳或芯轴外壳。
11.如权利要求9所述的测井工具,其中,所述探头外壳包括要由随钻测井(LWD)工具组件承载的接箍;其中,所述接箍包括底架,所述辐射发生器承载在所述底架中。
12.一种用于制造辐射发生器的方法,包括:
将靶标和带电粒子源放置在发生器外壳中,以使带电粒子源将带电粒子导向靶标;以及
将至少一个电压源连接到带电粒子源,所述至少一个电压源包括:
包括以双极配置连接的多个电压倍增级的电压梯,每个电压倍增级包括至少一个半导体二极管,以及
连接到沿所述电压梯的至少一个中间位置处的至少一个加感线圈;
其特征在于,所述加感线圈提高电压倍增级的效率,其中,电压梯产生接近输入电压与级的总数的乘积的输出。
13.如权利要求12所述的方法,其中,所述电压倍增级以正电压分支和负电压分支设置;所述至少一个加感线圈包括连接到沿所述正电压分支和所述负电压分支中的每一个的相应的中间位置处的相应的加感线圈。
14.如权利要求13所述的方法,所述中间位置中的至少一个由N/3定义,其中,N是所述电压倍增级的级数。
15.如权利要求12所述的方法,其中,所述带电粒子源包括电子流发生器或离子流发生器。
CN201280055695.2A 2011-09-14 2012-09-14 具有双极电压梯的能量辐射发生器 Active CN103930649B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161534446P 2011-09-14 2011-09-14
US61/534,446 2011-09-14
PCT/US2012/055478 WO2013040390A2 (en) 2011-09-14 2012-09-14 Energy radiation generator with bi-polar voltage ladder

Publications (2)

Publication Number Publication Date
CN103930649A CN103930649A (zh) 2014-07-16
CN103930649B true CN103930649B (zh) 2018-02-02

Family

ID=47883984

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201280055631.2A Pending CN104093932A (zh) 2011-09-14 2012-09-14 具有单极电压梯的能量辐射发生器
CN201280055695.2A Active CN103930649B (zh) 2011-09-14 2012-09-14 具有双极电压梯的能量辐射发生器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201280055631.2A Pending CN104093932A (zh) 2011-09-14 2012-09-14 具有单极电压梯的能量辐射发生器

Country Status (8)

Country Link
US (3) US9805902B2 (zh)
EP (2) EP2742370B1 (zh)
CN (2) CN104093932A (zh)
BR (2) BR112014006056A8 (zh)
CA (2) CA2848394A1 (zh)
MX (2) MX346761B (zh)
RU (2) RU2601264C2 (zh)
WO (2) WO2013040402A2 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014006056A8 (pt) * 2011-09-14 2023-10-03 Prad Res & Development Ltd Gerador de radiação, e ferramenta de perfilagem de poço
US9091777B2 (en) 2013-12-18 2015-07-28 Schlumberger Technology Corporation Input voltage modulator for radiation generator
US9389334B2 (en) 2014-11-13 2016-07-12 Schlumberger Technology Corporation Radiation generator having an actively evacuated acceleration column
US10003256B2 (en) * 2015-12-18 2018-06-19 Schlumberger Technology Corporation Systems and methods for controlling a voltage multiplier ladder for optimal efficiency and minimal component stress
US10116232B2 (en) * 2015-12-18 2018-10-30 Schlumberger Technology Corporation Collocation of radiation generator components for limited-space devices
US10866337B2 (en) 2016-06-29 2020-12-15 Schlumberger Technology Corporation X-ray downhole tool with at least two targets and at least one measurement detector
GB2554643A (en) * 2016-09-29 2018-04-11 Statoil Petroleum As Diagnostics tool
EP3679407B1 (en) * 2017-09-06 2022-11-09 Philip Teague Real-time output correction of detector outputs resulting from azimuthal x-ray source variations using monitoring detectors
US10616986B2 (en) 2017-11-16 2020-04-07 Moxtek, Inc. Bipolar voltage multiplier with reduced voltage gradient
US10499484B2 (en) 2017-11-16 2019-12-03 Moxtek, Inc. X-ray source with non-planar voltage multiplier
US10735020B2 (en) 2018-08-30 2020-08-04 Texas Instruments Incorporated Voltage detector
US10718880B2 (en) * 2018-11-29 2020-07-21 Schlumberger Technology Corporation High-voltage protection and shielding within downhole tools
CN110778309B (zh) * 2019-11-06 2022-10-14 何晓君 基于x射线的电子辐射发生器的测井装置
US11500121B1 (en) * 2021-07-29 2022-11-15 Rock Visualization Technology, Llc Gamma ray logging tool assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3381204A (en) * 1965-03-27 1968-04-30 Cole E K Ltd High voltage rectifiers
EP0106482A1 (en) * 1982-09-08 1984-04-25 Kabushiki Kaisha Toshiba High tension DC voltage generating apparatus
US5671132A (en) * 1996-03-13 1997-09-23 Spellman High Voltage Company High voltage bipolar CT scanner power supply

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE931540C (de) 1942-12-02 1955-08-11 Koch & Sterzel Ag Schaltungsanordnung zur Erzeugung einer hohen Gleichspannung aus einer Wechselspannung
GB977528A (en) 1962-01-29 1964-12-09 Ass Elect Ind Improvements relating to voltage multiplier circuits
US3320513A (en) 1964-04-02 1967-05-16 Radiation Dynamics Voltage multiplication apparatus
DE1563146A1 (de) * 1966-11-09 1970-01-08 Bbc Brown Boveri & Cie Kaskadengenerator mit mindestens einer Querinduktivitaet
US3878449A (en) * 1973-06-07 1975-04-15 Hughes Aircraft Co High pulse rate, high duty factor line modulator type pulse generators
US4292592A (en) 1979-05-29 1981-09-29 Dresser Industries, Inc. Pulsed power supply system
JPS607049A (ja) 1983-06-24 1985-01-14 Hitachi Ltd 電位測定装置
US4945464A (en) * 1987-06-15 1990-07-31 Varian Associates, Inc. High voltage DC power supply
US5523939A (en) * 1990-08-17 1996-06-04 Schlumberger Technology Corporation Borehole logging tool including a particle accelerator
US5231564A (en) * 1992-03-30 1993-07-27 Lorad Corporation Power supply for producing excitation voltage for an x-ray tube filament
CN2161722Y (zh) * 1993-08-24 1994-04-13 大庆石油管理局第一采油厂 同位素测井释放器
US5680431A (en) * 1996-04-10 1997-10-21 Schlumberger Technology Corporation X-ray generator
US6111932A (en) * 1998-12-14 2000-08-29 Photoelectron Corporation Electron beam multistage accelerator
CN2591626Y (zh) 2002-09-28 2003-12-10 大庆石油管理局 氧活化上下水流组合测井仪
CN1793607A (zh) * 2005-07-07 2006-06-28 中国石化集团胜利石油管理局测井公司 补偿中子测井仪
US7373813B2 (en) * 2006-02-21 2008-05-20 Baker Hughes Incorporated Method and apparatus for ion-selective discrimination of fluids downhole
US7885386B2 (en) * 2006-03-31 2011-02-08 General Electric Company Systems and apparatus for a compact low power X-ray generator
US7542543B2 (en) 2006-09-15 2009-06-02 Schlumberger Technology Corporation Apparatus and method for well services fluid evaluation using x-rays
US7639781B2 (en) 2006-09-15 2009-12-29 Schlumberger Technology Corporation X-ray tool for an oilfield fluid
US7800052B2 (en) 2006-11-30 2010-09-21 Schlumberger Technology Corporation Method and system for stabilizing gain of a photomultipler used with a radiation detector
US7564948B2 (en) 2006-12-15 2009-07-21 Schlumberger Technology Corporation High voltage x-ray generator and related oil well formation analysis apparatus and method
US20090108192A1 (en) 2007-10-25 2009-04-30 Schulumberger Technology Corporation Tritium-Tritium Neutron Generator Logging Tool
US7978804B2 (en) 2007-12-10 2011-07-12 Schlumberger Technology Corporation Low power neutron generators
US9179535B2 (en) * 2008-02-04 2015-11-03 Schlumberger Technology Corporation Neutron generator
US9357629B2 (en) 2009-01-21 2016-05-31 Schlumberger Technology Corporation Neutron generator
US8203858B2 (en) 2009-03-03 2012-06-19 Gary Hanington Power supply with integrated linear high voltage multiplier and capacitors therefor
US8058619B2 (en) 2009-03-27 2011-11-15 General Electric Company Radiation detector
US7903432B2 (en) * 2009-05-29 2011-03-08 General Electric Company High-voltage power generation system and package
RU2399977C1 (ru) 2009-07-09 2010-09-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Блок излучателя нейтронов
RU87555U1 (ru) 2009-07-09 2009-10-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Блок излучателя нейтронов
US9155185B2 (en) 2009-11-16 2015-10-06 Schlumberger Technology Corporation Electrode configuration for downhole nuclear radiation generator
EP2502236A4 (en) * 2009-11-16 2015-12-30 Schlumberger Technology Bv COMPACT RADIATION GENERATOR
BR112014006056A8 (pt) 2011-09-14 2023-10-03 Prad Res & Development Ltd Gerador de radiação, e ferramenta de perfilagem de poço
US9091777B2 (en) * 2013-12-18 2015-07-28 Schlumberger Technology Corporation Input voltage modulator for radiation generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3381204A (en) * 1965-03-27 1968-04-30 Cole E K Ltd High voltage rectifiers
EP0106482A1 (en) * 1982-09-08 1984-04-25 Kabushiki Kaisha Toshiba High tension DC voltage generating apparatus
US5671132A (en) * 1996-03-13 1997-09-23 Spellman High Voltage Company High voltage bipolar CT scanner power supply

Also Published As

Publication number Publication date
US9805902B2 (en) 2017-10-31
MX346761B (es) 2017-03-31
EP2742370A4 (en) 2015-05-27
WO2013040390A2 (en) 2013-03-21
BR112014006056A2 (pt) 2017-06-13
RU2601264C2 (ru) 2016-10-27
RU2014114049A (ru) 2015-10-20
CA2848394A1 (en) 2013-03-21
BR112014006056A8 (pt) 2023-10-03
RU2602410C2 (ru) 2016-11-20
WO2013040402A3 (en) 2013-05-10
EP2742371A2 (en) 2014-06-18
EP2742371B1 (en) 2022-08-03
WO2013040390A3 (en) 2013-05-10
CN104093932A (zh) 2014-10-08
US20150055747A1 (en) 2015-02-26
CA2848387A1 (en) 2013-03-21
RU2014114526A (ru) 2015-10-20
US9805903B2 (en) 2017-10-31
MX346077B (es) 2017-03-07
MX2014003008A (es) 2014-05-28
BR112014006061A2 (pt) 2017-06-13
EP2742371A4 (en) 2015-06-03
CN103930649A (zh) 2014-07-16
MX2014003007A (es) 2014-05-28
EP2742370A2 (en) 2014-06-18
BR112014006061A8 (pt) 2022-10-04
US20150055748A1 (en) 2015-02-26
US20180061610A1 (en) 2018-03-01
US10102998B2 (en) 2018-10-16
EP2742370B1 (en) 2023-06-28
WO2013040402A2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
CN103930649B (zh) 具有双极电压梯的能量辐射发生器
RU2536335C2 (ru) Устройство и способ управляемой скважинной генерации ионизирующего излучения без использования радиоактивных изотопов химических элементов
US5326970A (en) Method and apparatus for logging media of a borehole
US20150181688A1 (en) Neutron Generator
US8085561B2 (en) Power supply with integrated concentric high voltage multiplier
US10182491B2 (en) Deuterium-deuterium neutron generators
CA2903447A1 (en) Method and apparatus for regulating high voltage
US9091777B2 (en) Input voltage modulator for radiation generator
US11402536B2 (en) High-voltage protection and shielding within downhole tools
US10116232B2 (en) Collocation of radiation generator components for limited-space devices
Maenchen et al. Voltage and current measurements on high power self‐magnetically insulated vacuum transmission lines
US11566495B2 (en) Compact high-voltage power supply systems and methods
US20140346338A1 (en) Target Extender In Radiation Generator
US20120236481A1 (en) Cylindrical electrode series - parallel tapered high voltage multiplier
Fidani On Electromagnetic precursors of earth-quakes: Models and instruments
Rohraff Ion temperature measurements in STOR-M boundary plasmas using a retarding field energy analyzer
Galan et al. Extending axions searches with a spherical TPC
Baxter et al. Deuterium ion extraction and neutron production from a piezoelectric transformer plasma source
Al Agry Study of a Non-Equilibrium Plasma Pinch with Application for Microwave Generation
Paraliev Fast high voltage signals generator for low emittance electron gun

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant