CN103928561A - 基于单根氧化锌纳米线的光电响应探测器及制备方法 - Google Patents

基于单根氧化锌纳米线的光电响应探测器及制备方法 Download PDF

Info

Publication number
CN103928561A
CN103928561A CN201310712821.3A CN201310712821A CN103928561A CN 103928561 A CN103928561 A CN 103928561A CN 201310712821 A CN201310712821 A CN 201310712821A CN 103928561 A CN103928561 A CN 103928561A
Authority
CN
China
Prior art keywords
zinc oxide
oxide nanowire
substrate
metal electrode
photoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310712821.3A
Other languages
English (en)
Inventor
许剑
程抱昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201310712821.3A priority Critical patent/CN103928561A/zh
Publication of CN103928561A publication Critical patent/CN103928561A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种基于单根氧化锌纳米线的光电响应探测器及制备方法,包含单根氧化锌纳米线、基板、金属电极、导线、聚合物封装层;在平整的基板上放置单根氧化锌纳米线,在其两端焊接金属电极,并在金属电极上焊接导线,将其放置在可控温的加热平台上加热2小时,使其固化并冷却后,用封装材料将单根氧化锌纳米线封装在基板上,接着放入在90℃恒温箱保温中10~12小时。本发明响应波长从200nm到900nm,光电流响应行为在可见光和近红外范围内,所以本发明的宽光谱光电响应探测器可以广泛地应用到工业生产中去。

Description

基于单根氧化锌纳米线的光电响应探测器及制备方法
技术领域
本发明属于微纳米光电响应探测器技术领域。
技术背景
自从上世纪九十年代以来,氧化锌作为紫外光电探测器已经被人们广泛研究,由于纳米结构的氧化锌有独特的光电特性,尤其是单根纳米线,是制备光电器件的理想材料。氧化锌在室温下的禁带宽度为3.37eV,激子束缚能高达60meV,比宽禁带材料GaN(25meV)和ZnSe(20meV)都要高出很多,也是继氮化镓之后半导体光电领域又一研究热点,并成为第三代半导体的核心基础材料。此外,氧化锌还具有很高的热稳定性和化学稳定性,光电响应度高,响应范围宽,生产成本低,无毒,易刻蚀等众多优点,因而氧化锌应用在光电探测器领域前景非常广阔。
发明内容
本发明的目的在于提出一种基于单根氧化锌纳米线的光电响应探测器及制备方法,即具有高性能日盲紫外、可见光和近红外范围内的宽光谱光电响应探测器及制备方法。
本发明是通过以下技术方案实现的。
本发明所述的单根氧化锌纳米结构宽光谱光电探测器件,包含单根氧化锌纳米线(1)、基板(2)、金属电极(3)、导线(4)、聚合物封装层(5);单根氧化锌纳米线(1)放置在基板(2)上,将其单根氧化锌纳米线(1)两端焊上金属电极(3),在金属电极(3)两端焊上导线(4),然后用聚合物封装层(5)将整个单根氧化锌纳米线(1)封装在基板上(2)。
所述的金属电极为金(Au)、银(Ag)或铝(Al)。
所述的基板为氧化铝、氮化铝等陶瓷基板。
所述的聚合物封装层为聚二甲基硅氧烷(PDMS)或聚二甲基硅氧烷(PDMS)。
本发明基于单根氧化锌纳米结构宽光谱光电探测器件的制备方法如下:在平整的基板上放置单根氧化锌纳米线,在单根氧化锌纳米线两端焊接金属电极,并在金属电极上焊接导线,将其放置在可控温的加热平台上加热2小时,使其固化并冷却后,用封装材料将单根氧化锌纳米线封装在氧化铝基板上,接着放入在90℃恒温箱保温中10~12小时。
本发明所述的宽光谱光电响应探测器是通过改变外加电压和光照强度来实现的,产生原因是由于纳米结构的氧化锌表面态的存在。
本发明是典型的宽光谱光电响应探测器,响应波长从200nm到900nm,目前大多报道是氧化锌紫外光电探测器,很少有报道氧化锌光电流响应行为在可见光和近红外范围内,所以本发明的宽光谱光电响应探测器可以广泛地应用到工业生产中,其前景是广阔的。也是开创性和史无前例的。
附图说明
图1 为基于单根氧化锌纳米线即“金属-半导体-金属(MSM)”宽光谱光电探测器的结构示意图。
 图2 为单根氧化锌纳米线在扫描电子显微镜下的图像。
 图3 是在直流偏置电压分别为1V和10V时,在相同的光照强度下,光响应与波谱的变化图。图中左侧数据是电压1V时的光电流大小,右侧数据是电压10V时的光电流大小;可以看出,电压在10V时的光电流远大于1V的光电流,说明氧化锌有很好的正光电导。
图4 为波长范围200nm到900nm光谱都有明显的光电导显示图,是在直流偏置电压为10V时具有不同波长的光在检测器中依次亮起。
图5 是在1V直流偏置电压下,激发光强度所决定的氧化锌纳米线光响应分别在(1)330nm,(2)370nm,(3)650nm,(4)745nm的波长下进行的光照射的测试结果图。从本图可以看出,随着激发强度的增加,光响应更加明显,另外,当光开启时,光响应是单调增加的。停止照射,光响应的衰减也很慢,表明存在持续的光电导,并且图示显示随着光照强度的减弱,衰减变得更加缓慢慢。
图6 在1V偏置电压下,(1)是在370nm的紫外光照射下,(2)是在650nm红外光照射下,(3)是在745nm的近红外光照射下的氧化锌纳米线的I-V特性曲线图。
具体实施方法
下面通过实施例,进一步描述本发明所提出的单根氧化锌纳米线的宽光谱光电响应探测器。
实施例1。
取已清洗洁净的氧化铝基板(规格15mm×15mm×2mm),在平整的氧化铝基板上放置单根氧化锌纳米线(长度300nm),在纳米线两端焊接金属电极,并在金属电极上焊接导线(直径0.06mm),焊接完成后,将其放置在可控温的加热平台上加热2小时,使其固化并冷却后,在其上方涂一厚度为50~80微米的PDMS封装层,再次放入90℃恒温箱保温10~12小时,最后让导线的两端分别接上前置电流放大器和函数信号发生器,置于立式显微镜下,打开光源,以测其光电响应效果。测试条件:函数发生器的频率为0.05HZ,直流偏置电压分别用1V和10V测量。测试结果如图3所示。
实施例2。
取已清洗洁净的氧化铝基板(规格15mm×15mm×2mm),在平整的氧化铝基板上放置单根氧化锌纳米线,在纳米线两端焊接金属电极,并在金属电极上焊接导线,焊接完成后,将其放置在可控温的加热平台上加热2小时,使其固化并冷却后,在其上方涂一厚度为50~80微米的PDMS封装层,再次放入90℃恒温箱保温10~12小时,最后让导线的两端分别接上前置电流放大器和函数信号发生器,置于光电检测器下,以测其光电响应效果。测试条件:函数发生器的频率为0.05HZ,直流偏置电压10V下,检测器可以显示从200nm到900nm的波长范围内的光响应。 测试结果如图4所示。
实施例3。
取已清洗洁净的氧化铝基板(规格15mm×15mm×2mm),在平整的氧化铝基板上放置单根氧化锌纳米线,在纳米线两端焊接金属电极,并在金属电极上焊接铜制导线,焊接完成后,将其放置在可控温的加热平台上加热2小时,使其固化并冷却后,在其上方涂一厚度为50~80微米的PMMA封装层,再次放入90℃恒温箱保温10~12小时,最后让导线的两端分别接上前置电流放大器和函数信号发生器,用荧光光谱仪发射不同波长的光来测试光电响应效果。测试条件:函数发生器的频率为0.05HZ,直流偏置电压1V下,荧光光谱仪分别用(1)330nm,(2)370nm,(3)650nm,(4)745nm 波长的光照射。测试结果如图5所示。
本发明不局限于上述实施例,很多宽光谱光电探测器的制备都能采用上述方法,而且很多细节的变化也是可行的,但这并不因此违背本发明的范围和精神。

Claims (2)

1.基于单根氧化锌纳米线的光电响应探测器,其特征是包含单根氧化锌纳米线(1)、基板(2)、金属电极(3)、导线(4)、聚合物封装层(5);单根氧化锌纳米线(1)放置在基板(2)上,其两端焊上金属电极(3),在金属电极(3)两端焊上导线(4),然后用聚合物封装层(5)将整个单根氧化锌纳米线(1)封装在基板上(2);
所述的金属电极为金、银或铝;
所述的基板为氧化铝或氮化铝陶瓷基板;
所述的聚合物封装层为聚二甲基硅氧烷或聚二甲基硅氧烷。
2.权利要求1所述的光电响应探测器的制备方法,其特征是在平整的基板上放置单根氧化锌纳米线,在其两端焊接金属电极,并在金属电极上焊接导线,将其放置在可控温的加热平台上加热2小时,使其固化并冷却后,用封装材料将单根氧化锌纳米线封装在基板上,接着放入在90℃恒温箱保温中10~12小时。
CN201310712821.3A 2013-12-23 2013-12-23 基于单根氧化锌纳米线的光电响应探测器及制备方法 Pending CN103928561A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310712821.3A CN103928561A (zh) 2013-12-23 2013-12-23 基于单根氧化锌纳米线的光电响应探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310712821.3A CN103928561A (zh) 2013-12-23 2013-12-23 基于单根氧化锌纳米线的光电响应探测器及制备方法

Publications (1)

Publication Number Publication Date
CN103928561A true CN103928561A (zh) 2014-07-16

Family

ID=51146721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310712821.3A Pending CN103928561A (zh) 2013-12-23 2013-12-23 基于单根氧化锌纳米线的光电响应探测器及制备方法

Country Status (1)

Country Link
CN (1) CN103928561A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106252453A (zh) * 2016-09-13 2016-12-21 南昌大学 基于一维纳米半导体结构表面态调控的自供能光电探测器及制备方法
CN107591457A (zh) * 2016-07-08 2018-01-16 中国科学院金属研究所 一种3d树枝状结构的光电探测器及其制作方法
CN112556849A (zh) * 2020-12-07 2021-03-26 上海新产业光电技术有限公司 高光谱成像装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1805156A (zh) * 2006-01-13 2006-07-19 清华大学 基于一维半导体纳米结构的光电传感器及其制作方法
US20070111368A1 (en) * 2005-11-16 2007-05-17 Sharp Laboratories Of America, Inc. Photovoltaic structure with a conductive nanowire array electrode
US20100171095A1 (en) * 2008-07-07 2010-07-08 Georgia Tech Research Corporation Super Sensitive UV Detector Using Polymer Functionalized Nanobelts
KR20100097549A (ko) * 2009-02-26 2010-09-03 전자부품연구원 산화아연 나노와이어를 이용한 박막 실리콘 태양전지 및 그의 제조방법
CN102730630A (zh) * 2012-07-03 2012-10-17 清华大学 一种制造ZnO纳米结构和纳米紫外传感器的方法
CN102867887A (zh) * 2012-10-17 2013-01-09 青岛大学 一种二氧化钛纳米纤维紫外光敏电阻的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070111368A1 (en) * 2005-11-16 2007-05-17 Sharp Laboratories Of America, Inc. Photovoltaic structure with a conductive nanowire array electrode
CN1805156A (zh) * 2006-01-13 2006-07-19 清华大学 基于一维半导体纳米结构的光电传感器及其制作方法
US20100171095A1 (en) * 2008-07-07 2010-07-08 Georgia Tech Research Corporation Super Sensitive UV Detector Using Polymer Functionalized Nanobelts
KR20100097549A (ko) * 2009-02-26 2010-09-03 전자부품연구원 산화아연 나노와이어를 이용한 박막 실리콘 태양전지 및 그의 제조방법
CN102730630A (zh) * 2012-07-03 2012-10-17 清华大学 一种制造ZnO纳米结构和纳米紫外传感器的方法
CN102867887A (zh) * 2012-10-17 2013-01-09 青岛大学 一种二氧化钛纳米纤维紫外光敏电阻的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHANG SHI LAO等: "ZnO Nanobelt/Nanowire Schottky Diodes Formed by Dielectrophoresis Alignment across Au Electrodes", 《NANO LETTERS》 *
MANEKKATHODI AFSAL等: "Highly sensitive metal–insulator–semiconductor U V photodetectors based on ZnO/SiO2 core–shell nanowires", 《JOURNAL OF MATERIALS CHEMISTRY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107591457A (zh) * 2016-07-08 2018-01-16 中国科学院金属研究所 一种3d树枝状结构的光电探测器及其制作方法
CN106252453A (zh) * 2016-09-13 2016-12-21 南昌大学 基于一维纳米半导体结构表面态调控的自供能光电探测器及制备方法
CN112556849A (zh) * 2020-12-07 2021-03-26 上海新产业光电技术有限公司 高光谱成像装置
CN112556849B (zh) * 2020-12-07 2022-09-23 上海新产业光电技术有限公司 高光谱成像装置

Similar Documents

Publication Publication Date Title
Dai et al. Self‐powered Si/CdS flexible photodetector with broadband response from 325 to 1550 nm based on pyro‐phototronic effect: an approach for photosensing below bandgap energy
Li et al. Self-powered perovskite/CdS heterostructure photodetectors
Wang et al. Melanin–perovskite composites for photothermal conversion
Hsu et al. Solution-processed UV and visible photodetectors based on Y-doped ZnO nanowires with TiO2 nanosheets and Au nanoparticles
Hsu et al. Supersensitive, ultrafast, and broad-band light-harvesting scheme employing carbon nanotube/TiO2 core–shell nanowire geometry
Green et al. Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films
Xie et al. High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
Zhang et al. Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO–CdS core–shell micro/nanowire
Lopez-Delgado et al. Enhanced conversion efficiency in Si solar cells employing photoluminescent down-shifting CdSe/CdS core/shell quantum dots
Makableh et al. Enhancement of GaAs solar cell performance by using a ZnO sol–gel anti-reflection coating
Hao et al. Retina‐inspired self‐powered artificial optoelectronic synapses with selective detection in organic asymmetric heterojunctions
Jeong et al. Ultrawide spectral response of CIGS solar cells integrated with luminescent down-shifting quantum dots
Zhao et al. Surface photovoltage study of photogenerated charges in ZnO nanorods array grown on ITO
Chen et al. Insights into the pyro-phototronic effect in p-Si/n-ZnO nanowires heterojunction toward high-performance near-infrared photosensing
Khan et al. N-functionalized graphene quantum dots with ultrahigh quantum yield and large stokes shift: efficient downconverters for CIGS solar cells
Chang et al. Self-powered broadband Schottky junction photodetector based on a single selenium microrod
WO2016105481A2 (en) Light emission from electrically biased graphene
Huang et al. Plasmon-enhanced self-powered UV Photodetectors assembled by incorporating Ag@ SiO2 core–shell nanoparticles into TiO2 nanocube photoanodes
CN104952963B (zh) 一种用于钙钛矿太阳能电池的TiO2‑ZnO异质结纳米棒的制备方法
Zhang et al. Au nanoparticles-decorated surface plasmon enhanced ZnO nanorods ultraviolet photodetector on flexible transparent mica substrate
CN103928561A (zh) 基于单根氧化锌纳米线的光电响应探测器及制备方法
Liang et al. A comprehensive investigation of organic active layer structures toward high performance near-infrared phototransistors
Vikas et al. Vertically aligned ZnO nanorod array/CuO heterojunction for UV detector application
Chang et al. A $\hbox {TiO} _ {2} $ Nanowire MIS Photodetector With Polymer Insulator

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140716