CN103928501B - 基于m面GaN上的极性InN纳米线材料及其制作方法 - Google Patents

基于m面GaN上的极性InN纳米线材料及其制作方法 Download PDF

Info

Publication number
CN103928501B
CN103928501B CN201410165353.7A CN201410165353A CN103928501B CN 103928501 B CN103928501 B CN 103928501B CN 201410165353 A CN201410165353 A CN 201410165353A CN 103928501 B CN103928501 B CN 103928501B
Authority
CN
China
Prior art keywords
metal
faces
polarity
substrate
gan substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410165353.7A
Other languages
English (en)
Other versions
CN103928501A (zh
Inventor
许晟瑞
姜腾
郝跃
杨林安
张进成
林志宇
樊永祥
张春福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201410165353.7A priority Critical patent/CN103928501B/zh
Publication of CN103928501A publication Critical patent/CN103928501A/zh
Application granted granted Critical
Publication of CN103928501B publication Critical patent/CN103928501B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了一种基于m面GaN上的极性InN纳米线材料及其制作方法,主要解决常规极性InN纳米线生长中工艺成本高、效率低、方向一致性差的问题。其生长步骤是:(1)在m面GaN衬底上蒸发一层1‑15nm金属Ti;(2)将有金属Ti的m面GaN衬底置于MOCVD反应室中,并向反应室内通入氢气与氨气,使m面GaN衬底上的一部分金属Ti氮化形成TiN,并残余一部分未被氮化的金属Ti;(3)向MOCVD反应室中同时通入铟源和氨气,利用未被氮化的金属Ti作为催化剂在TiN层上生长平行于衬底、方向一致的极性InN纳米线。本发明具有成本低,生长速率快,方向一致性好的优点,可用于制作高性能极性InN纳米器件。

Description

基于m面GaN上的极性InN纳米线材料及其制作方法
技术领域
本发明属于微电子技术领域,涉及半导体材料的生长方法,特别是一种m面GaN上的极性InN纳米线的金属有机物化学气相外延生长方法,可用于制作InN纳米结构半导体器件。
技术背景
InN作为III族氮化物半导体的一种,自20世纪八十年代以来,由于其优异的性能受到了研究者极大的关注。作为一种直接带隙半导体,禁带宽度为0.7eV的InN在长波长半导体光电器件、太阳能电池等方面有着良好的应用前景。在Ⅲ族氮化物中,由于InN高的迁移率、高饱和速率、大的电子漂移速率以及具有最小的有效电子质量等性质,使得InN一维纳米结构在高频器件、激光二极管等方面有着独特的优势,因此,InN纳米线的制备成为人们研究的热点。
2005年Shudong Luo等人采用化学气相沉积CVD方法制备了InN纳米线,参见LuoS,Zhou W,Zhang Z,et al.Synthesis of long indium nitride nanowires withuniform diameters in large quantities[J].Small,2005,1(10):1004-1009.这种方法虽然获得了直径一致的InN纳米线,但由于其生长时间长,生长速率低,方向一致性差,限制了InN纳米线的器件应用。
2006年T Stoica等人采用分子束外延MBE方法成功制备了InN纳米线,参见StoicaT,Meijers R,Calarco R,et al.MBE growth optimization of InN nanowires[J].Journal of crystal growth,2006,290(1):241-247.虽然MBE法制备的InN纳米线方向一致性好,但由于纳米线长度较短,且MBE设备成本高,因此该方法不适合工业大规模生产。
发明内容
本发明的目的在于针对上述已有技术的不足,提供一种基于m面GaN衬底的极性InN纳米线材料及其制作方法,以降低制备成本,提高生长效率,为制作高性能极性InN纳米器件提供材料。
实现本发明目的技术关键是:在非极性m面GaN上采用Ti金属催化的方法,通过调节生长的压力、流量、温度,实现高速,高质量,平行于衬底且方向一致性很好的极性InN纳米线,其技术方案如下:
一.本发明基于m面GaN上的极性InN纳米线材料,自下而上包括m面GaN衬底层和极性InN纳米线层,该极性InN纳米线层中含有若干条平行于衬底、方向一致且长度不等的纳米线,其特征在于在m面GaN衬底层的上面设有1-15nm厚的TiN层,极性InN纳米线层位于该TiN层的上面。
所述m面GaN衬底层的厚度为1-1000μm。
所述极性InN纳米线层中的每条纳米线的长度在1-100μm范围内随机产生。
二.本发明基于m面GaN极性纳米线材料的制作方法,包括如下步骤:
(1)将厚度为1-1000μm的m面GaN衬底放入电子束蒸发台E-Beam中,在真空度为1.8×10-3Pa的条件下,以0.2nm/s的速度蒸发一层1-15nm的Ti金属薄膜;
(2)将有Ti金属的m面GaN衬底置于金属有机物化学气相淀积MOCVD反应室中,并向反应室内通入流量均为1000sccm-10000sccm的氢气与氨气,对衬底基片进行氮化处理,即将m面GaN衬底上的一部分金属Ti氮化形成TiN,并残余一部分未被氮化的金属Ti;
(3)向MOCVD反应室中同时通入流量为5-100μmol/min的铟源和1000-10000sccm的氨气,利用未被氮化的金属Ti作为催化剂在TiN层之上生长若干条平行于衬底且长度不等的极性InN纳米线,其生长的工艺条件是:温度为400-900℃,时间为5-60min,反应室内压力为20-760Torr。
(1)在厚度为1-1000μm的m面GaN衬底上蒸发一层1-15nm的Ti金属;
(2)将有Ti金属的m面GaN衬底置于金属有机物化学气相淀积MOCVD反应室中,并向反应室内通入流量均为1000sccm-10000sccm的氢气与氨气,在温度为600-1200℃,时间为5-20min,反应室压力为20-760Torr的工艺条件下,使m面GaN衬底上的一部分金属Ti氮化形成1-15nm厚的TiN,并残余一部分未被氮化的金属Ti;
(3)向MOCVD反应室中同时通入流量为5-100μmol/min的铟源和1000-10000sccm的氨气,利用未被氮化的金属Ti作为催化剂在TiN层之上生长若干条平行于衬底且长度为1-100μm不等的极性InN纳米线,每条纳米线的长度根据残留的金属Ti液滴大小,以及生长的工艺条件随机产生。
所述的利用未被氮化的金属Ti作为催化剂在TiN层之上生长若干条平行于衬底且长度为1-100μm不等的极性InN纳米线,其工艺条件是:
温度:400-900℃;
时间:5-60min;
反应室内压力:20-760Torr。
本发明具有如下优点:
1.工艺成本低,生长速率快,且方向一致性好。
2.采用非极性m面GaN材料作为衬底,由于在m面GaN材料中极性轴c轴在面内,使得生长过程中,铟源和氨气分子在表面沿极性轴方向迁移时得以充分反应,有利于获得较长的高质量极性InN纳米线结构。
3.通过氮化形成TiN层,并利用残余的未被氮化的Ti金属作为催化剂生长纳米线,大大提高了生长速率。
本发明的技术方案和效果可通过以下附图和实施例进一步说明。
附图说明
图1为本发明基于m面GaN的极性InN纳米线材料结构示意图;
图2是本发明制作基于m面GaN的极性InN纳米线材料的流程图。
具体实施方式
参照图1,本发明的材料结构自下而上依次为m面GaN衬底层,TiN层和极性InN纳米线层。其中m面GaN衬底层的厚度为1-1000μm,TiN层的厚度为1-15nm,极性InN纳米线层中的若干条纳米线平行于衬底、方向一致,每条纳米线的长度在1-100μm范围内不等。
本发明制作图1所述材料的方法给出三种实施例:
实施例1,制备TiN层厚度为8nm的极性InN纳米线材料。
参照图2,本实例的实现步骤如下:
步骤1,将厚度为5μm的m面GaN衬底放入电子束蒸发台E-Beam中,在真空度为1.8×10-3Pa的条件下,以0.2nm/s的速度蒸发一层10nm的Ti金属薄膜。
步骤2,制备TiN层。
将有Ti金属的m面GaN衬底置于金属有机物化学气相淀积MOCVD反应室中,抽真空后设置反应室内压力为40Torr,加热温度为900℃,再向反应室内通入流量为3000sccm的氢气和流量为3000sccm的氨气,持续8min,使大部分金属Ti与氨气反应,在m面GaN衬底上形成厚度为10nm的TiN层,并有少部分未与氨气发生反应的残留金属Ti,随机分布在TiN层表面。
步骤3,生长极性InN纳米线。
对反应室继续加热,使已形成了TiN层的m面GaN衬底温度升高到1200℃,再向反应室内同时通入流量为40μmol/min的铟源、流量为3000sccm的氢气和流量为3000sccm的氨气,保持反应室压力不变,持续15min,用分布在TiN层的残留金属Ti作为催化剂,在TiN层上,从这些残留金属Ti的位置起源,生长出若干条平行于衬底、方向一致且长度不等的极性InN纳米线,每条纳米线的长度根据残留的金属Ti液滴大小,以及生长的工艺条件在1-100μm范围内随机产生。
步骤4,待反应室温度降至常温后,将通过上述步骤生长的极性InN纳米线材料从MOCVD反应室中取出。
实施例2,制作TiN层厚度为1nm的极性InN纳米线材料。
参照图2,本实例的实现步骤如下:
步骤A,将厚度为1μm的m面GaN衬底放入电子束蒸发台E-Beam中,在真空度为1.8×10-3Pa的条件下,以0.2nm/s的速度蒸发一层1nm的Ti金属薄膜。
步骤B,制备TiN层。
将有Ti金属的m面GaN衬底置于金属有机物化学气相淀积MOCVD反应室中,抽真空后设置反应室压力和加热温度,再向反应室内同时通入氢气和氨气,持续一段时间,使大部分金属Ti与氨气反应,在m面GaN衬底上形成厚度为1nm的TiN层,并有少部分未与氨气发生反应的金属Ti,随机分布在TiN层表面,其中氢气和氨气的流量均为1000sccm,反应室内压力为20Torr,加热温度为600℃,持续时间为5min。
步骤C,生长极性InN纳米线。
对反应室继续加热,使已形成了TiN层的m面GaN衬底温度升高到800℃,保持反应室压力不变,向反应室内同时通入铟源,氢气和氨气,持续一段时间,用分布在TiN层的残留金属Ti作为催化剂,在TiN层上,从金属Ti位置起源,生长出若干条平行于衬底、方向一致的极性InN纳米线,每条纳米线的长度根据残留的金属Ti液滴大小,以及生长的工艺条件在1-100μm范围内随机产生,其中铟源流量为5μmol/min,氢气和氨气的流量均为1000sccm,持续时间为5min。
步骤D,待反应室温度降至常温后,将通过上述步骤生长的极性InN纳米线材料从MOCVD反应室中取出。
实施例3,制作TiN层厚度为15nm的极性InN纳米线材料。
参照图2,本实例的实现步骤如下:
第一步,蒸发金属Ti薄膜。
将厚度为1000μm的m面GaN衬底放入电子束蒸发台E-Beam中,在真空度为1.8×10- 3Pa的条件下,以0.2nm/s的速度蒸发一层15nm的Ti金属薄膜。
第二步,制备TiN层。
在金属有机物化学气相淀积MOCVD反应室中放置有Ti金属的m面GaN衬底,抽真空后加热反应室,使温度达到1200℃,在反应室压力为760Torr的条件下,同时向反应室内通入流量均为10000sccm氢气和氨气,持续60min,使大部分金属Ti与氨气反应,在m面GaN衬底上形成厚度为15nm的TiN层,其有少部分未与氨气发生反应的金属Ti,随机分布在TiN层表面。
第三步,生长极性InN纳米线。
在反应室内压力为760Torr的条件下,将已形成了TiN层的m面GaN衬底温度升高到1500℃,向反应室内同时通入流量均为10000sccm的氢气和氨气以及100μmol/min的铟源,持续时间为60min,用分布在TiN层的残留金属Ti作为催化剂,在TiN层上,从这些金属Ti位置起源,生长出若干条平行于衬底、方向一致的极性InN纳米线,每条纳米线的长度根据残留的金属Ti液滴大小,以及生长的工艺条件在1-100μm范围内随机产生。
第四步,待反应室温度降至常温后,将通过上述步骤生长的极性InN纳米线材料从MOCVD反应室中取出。

Claims (2)

1.一种基于m面GaN的极性InN纳米线材料制作方法,包括如下步骤:
(1)在厚度为1-1000μm的m面GaN衬底上蒸发一层1-15nm的Ti金属;
(2)将有Ti金属的m面GaN衬底置于金属有机物化学气相淀积MOCVD反应室中,并向反应室内通入流量均为1000sccm-10000sccm的氢气与氨气,在温度为600-1200℃,时间为5-20min,反应室压力为20-760Torr的工艺条件下,使m面GaN衬底上的一部分金属Ti氮化形成1-15nm厚的TiN,并在TiN表面残余一部分未被氮化的金属Ti;
(3)向MOCVD反应室中同时通入流量为5-100μmol/min的铟源和1000-10000sccm的氨气,利用未被氮化的金属Ti作为催化剂在TiN层之上生长若干条平行于衬底且长度为1-100μm不等的极性InN纳米线,每条纳米线的长度根据残留的金属Ti液滴大小,以及生长的工艺条件随机产生。
2.根据权利要求1所述的方法,其中步骤(3)所述的利用未被氮化的金属Ti作为催化剂在TiN层之上生长若干条平行于衬底且长度为1-100μm不等的极性InN纳米线,其工艺条件是:
温度:400-900℃;
时间:5-60min;
反应室内压力:20-760Torr。
CN201410165353.7A 2014-04-23 2014-04-23 基于m面GaN上的极性InN纳米线材料及其制作方法 Expired - Fee Related CN103928501B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410165353.7A CN103928501B (zh) 2014-04-23 2014-04-23 基于m面GaN上的极性InN纳米线材料及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410165353.7A CN103928501B (zh) 2014-04-23 2014-04-23 基于m面GaN上的极性InN纳米线材料及其制作方法

Publications (2)

Publication Number Publication Date
CN103928501A CN103928501A (zh) 2014-07-16
CN103928501B true CN103928501B (zh) 2017-03-29

Family

ID=51146662

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410165353.7A Expired - Fee Related CN103928501B (zh) 2014-04-23 2014-04-23 基于m面GaN上的极性InN纳米线材料及其制作方法

Country Status (1)

Country Link
CN (1) CN103928501B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106757323B (zh) * 2016-12-05 2019-06-04 南京大学 一种无应力InN纳米线生长方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1763268A (zh) * 2005-09-01 2006-04-26 南京大学 一种a面和m面GaN薄膜材料的控制生长方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008024991A2 (en) * 2006-08-24 2008-02-28 Hongxing Jiang Er doped iii-nitride materials and devices synthesized by mocvd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1763268A (zh) * 2005-09-01 2006-04-26 南京大学 一种a面和m面GaN薄膜材料的控制生长方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Improvement of (11-22) Semipolar GaN Crystal Quality with TiN Interlayer by Metal Organic Vapor Phase Epitaxy;Sheng Rui Xu et al;《Japanese Journal of Applied Physics》;20111025;第50卷(第11期);全文 *
非极性和半极性GaN的生长及特性研究;许晟瑞;《中国博士学位论文全文数据库 信息科技辑》;20130515(第5期);论文正文第110-114页 *

Also Published As

Publication number Publication date
CN103928501A (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
Yu et al. Synthesis of high quality two-dimensional materials via chemical vapor deposition
Geng et al. Graphene single crystals: size and morphology engineering
KR101284059B1 (ko) 그라핀-산화물반도체 이종접합 소자 및 그의 제조방법
Tomioka et al. Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core–shell nanowires on Si (111) substrate
Zhou et al. Vertically aligned Zn2SiO4 nanotube/ZnO nanowire heterojunction arrays
Song et al. Graphene/h‐BN heterostructures: recent advances in controllable preparation and functional applications
Xia et al. Epitaxy of layered orthorhombic SnS–SnSxSe (1− x) core–shell heterostructures with anisotropic photoresponse
Chen et al. Direct growth of nanopatterned graphene on sapphire and its application in light emitting diodes
CN109652858B (zh) 一种利用层间耦合与台阶耦合的协同效应制备单晶六方氮化硼的方法
Yousefi et al. A comparative study of the properties of ZnO nano/microstructures grown using two types of thermal evaporation set‐up conditions
US10017878B2 (en) Growth method of graphene
Juma et al. Direct growth of hexagonal boron nitride on non-metallic substrates and its heterostructures with graphene
Sundaram et al. Large‐Area van der Waals Epitaxial Growth of Vertical III‐Nitride Nanodevice Structures on Layered Boron Nitride
TWI503276B (zh) 石墨烯薄膜及電晶體的石墨烯通道之製備方法
CN103928501B (zh) 基于m面GaN上的极性InN纳米线材料及其制作方法
Shin et al. The effect of pH on ZnO hydrothermal growth on PES flexible substrates
CN108231545A (zh) 生长在铜箔衬底上的InN纳米柱外延片及其制备方法
Novikov et al. Molecular beam epitaxy of crystalline and amorphous GaN layers with high As content
KR101629697B1 (ko) 그래핀 적층 구조체의 제조방법 및 이로 제조된 그래핀 적층 구조체
CN103928503B (zh) 基于m面GaN上的极性AlGaN纳米线材料及其制作方法
CN103928504B (zh) 基于m面GaN上的极性InGaN纳米线材料及其制作方法
Feng et al. Grouped and multistep nanoheteroepitaxy: toward high-quality GaN on quasi-periodic nano-mask
US20140202378A1 (en) METHOD FOR PRODUCING AN ORGANISED NETWORK OF SEMICONDUCTOR NANOWIRES, IN PARTICULAR MADE OF ZnO
Ghafouri et al. The effect of substrate distance to evaporation source on morphology of ZnO: In nanorods fabricated by means of a vapor transfer route and the study of their optical and electrical properties
CN111470485A (zh) 一种磷化金纳米片及其可控制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170329

CF01 Termination of patent right due to non-payment of annual fee