CN103890974A - 使用外延剥离和冷焊结合的半导体太阳能电池的集成太阳能收集器 - Google Patents

使用外延剥离和冷焊结合的半导体太阳能电池的集成太阳能收集器 Download PDF

Info

Publication number
CN103890974A
CN103890974A CN201280042064.7A CN201280042064A CN103890974A CN 103890974 A CN103890974 A CN 103890974A CN 201280042064 A CN201280042064 A CN 201280042064A CN 103890974 A CN103890974 A CN 103890974A
Authority
CN
China
Prior art keywords
substrate
thin
solar cells
protective layer
film solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280042064.7A
Other languages
English (en)
Inventor
史蒂芬·R·福里斯特
克里斯多佛·凯尔·伦肖
迈克尔·斯洛特斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Michigan
Original Assignee
University of Michigan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Michigan filed Critical University of Michigan
Priority to CN201610486903.4A priority Critical patent/CN106098842B/zh
Publication of CN103890974A publication Critical patent/CN103890974A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • H01L21/7813Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate leaving a reusable substrate, e.g. epitaxial lift off
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Abstract

公开了一种超高效的单结和多结薄膜太阳能电池。本公开还涉及基板无损伤外延剥离(ELO)工艺,其对于基板采用无粘合剂、可靠且轻质的冷焊结合,诸如对于成形为复合抛物线金属箔聚能器的塑料或金属箔的结合。通过如本文所述地将低成本天阳能电池生产和在箔基板上被成形为集成收集器的会聚太阳能强度的薄膜太阳能电池的超高效率相结合,实现了更低成本的模块以及基础结构的显著成本降低。

Description

使用外延剥离和冷焊结合的半导体太阳能电池的集成太阳能收集器
相关申请的交叉应用
本申请要求2011年7月6日提交的美国临时申请No.61/505,014的权益,该临时申请的全文以引用方式并入本文。
联合研究协议
要求保护的发明是根据大学-公司联合研究协议由下列团体中一个或多个做出,并代表其名义和/或与其相关:密歇根大学和环球光子能量公司(Global Photonic Energy Corporation)。该协议在发明做出之时和之前有效,并且在该协议范围内进行的研究获得要求保护的发明。
技术领域
本公开涉及超高效率的单结和多结薄膜太阳能电池。本发明还涉及基板无损伤外延剥离(ELO)工艺,其对于基板采用无粘合剂、可靠和质轻的冷焊结合,诸如对于成形为复合抛物线金属箔聚能器的塑料或金属箔的结合。
背景技术
光电子器件依赖于材料的光学性质和电子性质,以用电子学方法来产生或检测电磁辐射或者由环境电磁辐射产生电力。
光敏光电子器件将电磁辐射转换成电力。太阳能电池、也称为光伏(PV)器件,是一类专门用于产生电能的光敏光电子器件。可以用太阳光之外的光源产生电能的PV器件可以用于驱动耗电负载以提供例如照明、加热,或为诸如计算器、无线电、计算机或远程监测或通信设备的电子电路或装置供电。这些发电应用通常还涉及电池或其他能量存储装置的充电,使得当来自太阳或其他光源的直接照射不可用时能够继续运行,或根据特定应用的要求平衡PV器件的电力输出。当在本文中使用时,术语“电阻性负载”是指任何耗电或储电电路、装置、设备或系统。
另一种类型的光敏光电子器件是光电导体电池。在这种功能中,信号检测电路监测器件的电阻以检测由光的吸收所引起的变化。
另一种类型的光敏光电子器件是光电检测器。在操作中,光电检测器与电流检测电路结合使用,该电流检测电路测量当光电检测器暴露于电磁辐射并可以具有施加的偏置电压时所产生的电流。本文描述的检测电路能够向光电检测器提供偏置电压并且测量光电检测器对电磁辐射的电子响应。
这三种类别的光敏光电子器件可以根据是否存在下文定义的整流结并且还根据器件是否使用也称为偏压或偏置电压的外加电压进行操作来表征。光电导体电池没有整流结并且通常使用偏压进行操作。PV器件具有至少一个整流结并且不使用偏压进行操作。光电检测器具有至少一个整流结但通常不总是使用偏压进行操作。按惯例,光伏电池向电路、装置或设备供电,但是不提供信号或电流来控制检测电路或从检测电路输出信息。相比之下,光电检测器或光电导体提供信号或电流以控制检测电路或从检测电路输出信息,但是不向电路、装置或设备供电。
传统上,光敏光电子器件由多种无机半导体构成,例如晶体、多晶和非晶硅、砷化镓、碲化镉等。在本文中,术语“半导体”是指当受到热或电磁激发感生电荷载流子时能够传导电力的材料。术语“光电导”一般是指电磁辐射能量被吸收并且从而转换成电荷载流子的激发能以便载流子能够传导,即传输材料中的电荷的过程。术语“光电导体”和“光电导材料”在本文中用于指由于其为了吸收电磁辐射来产生电荷载流子的性质而被选择的半导体材料。
PV器件可以由它们能够将入射太阳能转换成可用电能的效率来表征。利用晶体或非晶硅的器件在商业应用中占主导地位,并且某些已经达到23%或更大的效率。然而,有效的基于晶体的器件,特别是大表面积器件,由于在没有明显降低效率的缺陷地生产大晶体中固有的问题,生产起来困难且昂贵。另一方面,高效非晶硅器件仍然受到稳定性问题的困扰。目前可商购的非晶硅电池的稳定转换效率在4到8%之间。更近的尝试已经聚焦于使用有机光伏电池以经济的生产成本获得可接受的光伏转换效率。
可以对PV器件进行优化,以在标准照射条件(即,标准测试条件,其为1000W/m2、AMI.5光谱照射)下最大化电能产生,用于最大化光电流乘以光电压的乘积。这种电池在标准照射条件下的电能转换效率取决于以下三个参数:(1)零偏压下的电流,即短路电流Isc,,单位为安培;(2)开路条件下的光电压,即开路电压VOC,单位为伏特;以及(3)填充因子ff。
PV器件在跨负载连接并用光照射时,产生光生电流。当在无限负载下照射时,PV器件产生其最大可能电压,V开路电压或VOC。当在其电接触短路的情况下照射时,PV器件产生其最大可能电流,I短路电流或ISC。当实际用于产生电力时,PV器件连接到有限电阻性负载并且电力输出由电流和电压的乘积I×V给出。由PV器件产生的最大总电力必然不能超过乘积ISC×VOC。当对负载值进行优化以获得最大功率提取时,电流和电压分别具有值Imax和Vmax
PV器件的品质因数是填充因子ff,其定义为:
ff={Imax Vmax}/{ISC VOC}  (1)
其中,ff总是小于1,因为在实际使用中永远不能同时获得ISC和VOC。但是,在最佳条件下,当ff接近1时,器件具有较低的串联或内部电阻,因此向负载提供ISC与VOC的乘积的更大百分率。当Pinc是在器件上入射的功率时,器件的功率效率γP可以由下式计算:
γP=ff*(ISC*VOC)/Pinc
当适合能量的电磁辐射入射在例如有机分子晶体(OMC)材料或聚合物的半导体有机材料上时,光子可以被吸收以产生被激发的分子状态。这用符号表示为S0+hvΨS0 *。这里,S0和S0 *分别表示分子的基态和激发态。这种能量吸收伴有电子从可以是B-键的HOMO能级中的束缚态跃迁到可以是B*-键的LUMO能级,或等价地,空穴从LUMO能级跃迁到HOMO能级。在有机薄膜光电导体中,一般相信产生的分子状态是激子,即作为准粒子传输的处于束缚态的电子-空穴对。激子在成对复合之前可以具有可观的寿命,该成对复合是指原始的电子和空穴彼此复合的过程,这与同来自其他对的空穴或电子的复合相反。为了产生光电流,将电子-空穴对分离,通常是在两个不同的相接触的有机薄膜之间的施主-受主界面处分离。如果电荷没有分离,则它们可以在也称为淬灭过程的成对复合过程中,辐射地通过发射比入射光的能量更低的光,或非辐射地通过产生热而复合。在光敏光电子器件中,这些结果中的任一种都不是想要的。
在接触处的电场或不均匀性会造成激子淬灭而不是在施主-受主界面处游离,导致对电流没有净贡献。因此,期望使光生激子保持远离接触。这具有限制激子向结附近的区域扩散,以便关联电场有更多的机会分离由结附近的激子游离所释放的电荷载流子的作用。
为了产生占据显著体积的内生电场,常用的方法是将具有特别是在其分子量子能态分布方面具有适当选择的导电性质的两层材料并置。这两种材料的界面被称为光伏异质结。在传统半导体理论中,用于形成PV异质结的材料一般被称为n或p型。这里n型是指多数载流子类型是电子。这可以被视为具有许多处于相对自由能态中的电子的材料。p型是指多数载流子类型是空穴。这样的材料具有许多处于相对自由能态的空穴。本底的类型,即非光生的多数载流子浓度,主要取决于由缺陷或杂质引起的无意掺杂。杂质的类型和浓度决定了最高占据分子轨道(HOMO)能级与最低未占分子轨道(LUMO)能级之间的能隙(被称为HOMO-LUMO能隙)中的费米能量或能级的值。费米能量的特征在于分子量子能态的统计学占据,其用占据概率等于1/2时的能量值表示。费米能量接近LUMO能级指示电子是优势载流子。费米能量接近HOMO能级指示空穴是优势载流子。因此,费米能量是传统半导体的主要定性性质并且原型PV异质结传统上是p-n界面。
术语“整流”尤其是指具有不对称导电特性的界面,即,界面支持优选一个方向上的电子电荷传输。整流一般与适当选择的材料之间的异质结处产生的内建电场相关。
当在本文中使用时,并且正如本技术领域的专业人员将通常理解的,如果第一个“最高占据分子轨道”(HOMO)或“最低未占分子轨道”(LUMO)能级更接近真空能级,则第一个能级“大于”或“高于”第二个HOMO或LUMO能级。由于电离电势(IP)被测量为相对于真空能级的负能量,因此更高的HOMO能级对应于具有较小绝对值的IP(负得较少的IP)。同样,更高的LUMO能级对应于具有更小绝对值的电子亲和势(EA)(负得较少的EA)。在常规能级图上,真空能级位于顶部,材料的LUMO能级高于同一材料的ΗOΜO能级。“更高的”ΗOΜO或LUMO能级与“更低的”ΗOΜO或LUMO能级相比,显得更接近于此能级图的顶部。
在有机材料的情形下,术语“施主”和“受主”是指两种相接触但是不同的有机材料的ΗOΜO能级和LUMO能级的相对位置。这与这些术语在无机材料情形中的使用相反,在无机材料情形中,“施主”和“受主”可以是指分别可用于产生无机n型层和ρ型层的掺杂物的类型。在有机材料情形中,如果与一种材料接触的另一种材料的LUMO能级较低,则该材料是受主。否则,它是施主。在不存在外部偏压的情况下,施主-受主结处的电子移动到受主材料中并且空穴移动到施主材料中,在能量上是有利的。
有机半导体的显著性质是载流子迁移率。迁移率度量了电荷载流子能够响应于电场通过导电材料移动的容易度。在有机光敏器件的情形中,包括有由于高电子迁移率而倾向于通过电子进行传导的材料的层可以被称为电子传输层或ETL。包括有由于高空穴迁移率而倾向于通过空穴进行传导的材料的层可以被称为空穴传输层或HTL。优选地,但不是必须的,受主材料是ETL并且施主材料是HTL。
常规的无机半导体PV电池采用p-n结建立内部电场。早期的有机薄膜电池,诸如Tang的Appl.Phys Lett.48,183(1986)所报道的,包含与在常规无机PV电池中使用的类似的异质结。然而,现在认识到,除了p-n型结的建立之外,异质结的能级失谐也发挥重要作用。
由于有机材料中光生过程的基本性质,据信,有机D-A异质结处的能级失谐对于有机PV器件的操作来说是重要的。在有机材料的光学激发后,产生了局部化的弗伦克尔(Frenkel)或电荷转移激子。为了进行电检测或产生电流,必须使束缚的激子游离成它们的组分电子和空穴。这样的过程可以由内建电场感生,但是在有机器件中通常得到的电场(F~106V/cm)下的效率低。有机材料中最有效的激子游离发生在施主-受主(D-A)界面处。在这种界面处,具有低电离电势的施主材料与具有高电子亲和势的受主材料形成异质结。取决于施主和受主材料的能级排列,激子在这种界面处的游离可能变得能量上有利,从而造成在受主材料中的自由电子极化子以及在施主材料中的自由空穴极化子。
有机PV电池在与传统的基于硅的器件相比时具有许多潜在优点。有机PV电池重量轻,材料的使用经济,并且可以沉积在诸如柔性塑料箔的低成本基板上。然而,有机PV器件通常具有相对低的量子产率(所吸收的光子与所产生的载流子的比率、或电磁辐射到电力的转换效率),其在1%或更低的量级上。据认为,这部分是由于固有的光电导过程的次级性质导致的。也就是说,载流子产生需要激子的产生、扩散和电离或收集。这些过程中的每一个都伴有效率γ。下标可以如下使用:Ρ表示功率效率,EXT表示外量子效率,A表示光子吸收,ED表示扩散,CC表示收集,并且INT表示内量子效率。使用该表示法:
γP~γEXTAEDCC
γEXTAINT
激子的扩散长度(Ld)(LD~50Δ)典型情况下远小于光学吸收长度(~500Δ),从而在使用具有多个或高度折叠界面的厚的并因此高电阻的电池或具有低光学吸收效率的薄电池之间,需要折衷。
通常用I=I0e-αx给出通过同质吸收介质的电磁辐射的入射通量的强度衰减,其中,I0是初始位置(X-0)处的强度,a是吸收常数并且x是距离x=0的深度。因此,随着通量穿过介质前进,强度指数地减小。因此,吸收介质的厚度越大或者如果吸收常数可以增大,吸收的光越多。通常,给定光导电介质的吸收常数是不可调的。对于某些光导电材料,例如,3,4,9,10-二萘嵌苯四羧联二苯并咪唑(PTCBI)或铜酞菁(CuPc),由于高体电阻率,导致非常厚的层是不期望的。
通过穿过光导电材料的给定薄膜适当地多次再反射或再循环光,穿过给定光导电材料的光路可以显著增加,而不引起显著的附加体电阻。需要一种解决方案,其有效地允许电磁通量被收集并且传递到包含光导电材料的腔体,同时还将所传递的通量限于腔体,使得其可以被吸收。
已经寻求了用于光生功率的更便宜和更有效的器件来使太阳能与目前较便宜的矿物燃料相媲美。由于有可能节省成本,已经寻求到诸如CuPc或PTCBI的有机光导体作为用于有机光伏器件(OPV)的材料。上述的高体电阻率使得期望的是利用这些材料的相对薄的膜。然而,使用非常薄的有机光敏层对于生成有效装置存在其它阻碍。如以上说明的,非常薄的光敏层吸收一小部分入射复合,从而降低外量子效率。
另一个问题在于,非常薄的膜更经受诸如电极材料的侵入导致的短路的缺陷。以引用方式并入本文的美国专利No.6,333,458描述了合并有一个或多个激子阻挡层的光敏异质结构,这解决了非常薄的膜OPV的一些问题。然而,需要其他解决方案来解决非常薄的膜的低光子吸收问题,无论膜是有机光导体还是无机光导体。
在太阳能转换领域中常见的是使用被称为温斯顿(Winston)收集器的光学聚能器。这种聚能器已经被主要用于需要高热梯度的热太阳能收集装置中。在较小程度上,它们与光伏太阳能转换装置一起使用。然而,想到的是,这种应用涉及期望在光初始入射到有源光导体介质上时出现光子吸收的装置。如果使用非常薄的光导体层,则有可能被会聚的辐射中的许多将被吸收。它可以被反射回器件环境,被基板吸收或者如果基板是透明则只是穿过。因此,单独使用聚能器没有解决薄光导电层的低光子吸收率问题。用于辐射监测的光聚能器还已经用于利用光电倍增(PM)管检测切伦科夫(Cerenkov)或其它辐射。PM管以与诸如本发明的OPV的固态检测器完全不同的原理,即光电效应操作。在PM管中,光子吸收介质,即金属电极中的低光子吸收率不是问题,但与本文公开的OPV不同的是,PM管需要高操作电压。
光聚焦和光陷是提高薄膜光伏太阳能电池和光电检测器的性能的重要途径。然而,这种方案中通常使用的反射镜利用的是诸如银或金的金属,其可以导致由于反射镜的光谱吸收而造成入射光子的显著损失。因此,将有利的是,提供一种增加薄膜光伏太阳能电池或光电检测器中的光陷并且跨大光谱范围具有减少损失的结构。
发明人近来已证实,借助外延生长之后从昂贵的母基板被剥离的薄的、高效III-V半导体太阳能电池的分子束外延(MBE)进行生长。这种过程与过去二十年中采用的传统ELO技术的明显不同在于,围绕“牺牲ELO层”生长“保护层”,牺牲ELO层通常被蚀刻掉以将有源器件外延(~2μm厚)与母基板分开。在全文以引用方式并入本文的美国专利申请No.13/099,850中描述了这个过程。通过使用复合保护层结构,消除了母晶片的化学和表面形态劣化,如图1中所示。
因此,可以使经处理的晶片的表面比开始的晶片更平滑,并且其表面的化学性还是保持不变,因此不需要在为了生长附加的且最终也可去除的外延层而再使用之前进行晶片再抛光。因此,可以不确定地再使用母晶片,因为原始母晶片在此过程期间都没有被消耗或改变。事实上,只有包括薄膜、单晶、高效的太阳能电池有源区的外延有源层被从整个晶片表面去除,随后被冷焊(不使用增加成本、重量并且有可能失败的粘合剂)至第二薄膜“主”基板。
由于基板是工艺中使用的最贵的材料,因此多次再使用的策略去除了作为材料成本的晶片,并且将其获得转换成了开支成本,从而基本上改变了基于单晶III-V的太阳能电池的成本结构。如果不使用粘合剂的情况下将太阳能电池的非常薄的有源外延层结合到金属或金属化塑料箔,则所得模块的重量和形式因子还受到有利影响。
发明内容
为了努力解决上述需要中的至少一些,公开了一种超高效单结和多结薄膜太阳能电池。本公开还涉及无损伤外延剥离(ELO)工艺,其对于基板采用无粘合剂、可靠和质轻的冷焊结合,诸如对成形为复合抛物线金属箔聚能器的塑料或金属箔的结合。发明人已经发现,将低成本天阳能电池制造和被成形为集成收集器的箔基板上的会聚太阳能强度的薄膜太阳能电池的超高效率相结合可以不仅导致模块自身的低成本,而且因为在超过6W/gm的功率密度下用箔(包括低成本集成聚能器)上的超轻质电池取代重模块,导致基础结构的显著成本降低。
在一个实施例中,本公开涉及一种薄膜太阳能电池,该薄膜太阳能电池包括:第一基板;金属接触,其结合到所述第一基板;有源光伏区,其结合到所述金属接触;一个或多个第一保护层;AlAs层;一个或多个第二保护层;第二基板,其中,所述第二基板。
在另一个实施例中,本公开涉及一种薄膜太阳能电池,该薄膜太阳能电池包括:第一基板;金属接触,其结合到所述第一基板;有源光伏区,其结合到所述金属接触;一个或多个第一保护层,其中,所述第一保护层中的至少一个包括从InGaP、GaAs、InGaAs、InP和InAlP中选择的至少一种化合物;AlAs层;一个或多个第二保护层,其中,所述第二保护层中的至少一个包括从InGaP、GaAs、InGaAs、InP和InAlP中选择的至少一种化合物;第二基板,其中,所述第二基板包括从GaAs和InP中选择的至少一种化合物。
在又一个实施例中,本公开涉及一种执行外延剥离工艺的方法,该方法包括:在第一基板上生长一个或多个第一保护层;生长AlAs层;生长一个或多个第二保护层;在所述第二保护层的顶部上沉积至少一个有源光伏电池层;用金属涂敷顶部的有源光伏电池层;用金属涂敷第二基板;将两个金属表面压到一起,以形成冷焊结合;用选择性化学蚀刻剂去除AlAs层。
在另一个实施例中,本公开涉及一种执行外延剥离工艺的方法,该方法包括:在第一基板上生长一个或多个第一保护层,其中,所述保护层中的至少一个包括从InGaP、GaAs、InGaAs、InP和InAlP中选择的化合物;生长AlAs层;生长一个或多个第二保护层,其中,所述保护层中的至少一个包括从InGaP、GaAs、InGaAs、InP和InAlP中选择的化合物;在第二保护层的顶部上沉积至少一个有源光伏电池层;用金属涂敷顶部的有源光伏电池层;用金属涂敷第二基板;将两个金属表面压到一起,以形成冷焊结合;用选择性化学蚀刻剂去除AlAs层。
附图说明
除了以上讨论的主题之外,本发明包括多个其它示例性特征,诸如下文中说明的示例性特征。要理解,以上描述和以下描述都只是示例性的。
附图被合并并且构成本说明书的一部分。
图1是示出针对基于InP的太阳能电池的根据本公开的ELO工艺的示意图。
图2是两英寸的InP外延层被剥离并且结合到涂敷有Au的Kaption片材。ITO接触件形成肖特基太阳能电池。
图3是在使用保护层和不使用保护层的情况下,在第一ELO工艺和第二ELO工艺之后的原始开盒即用(epi-ready)InP基板和被恢复表面的原子力显微图像。
图4是表示电池参数的测试数据和代表性GaAs PV电池层结构。
图5是示出23.9%效率的首次生长电池和在再使用的晶片上生长的22.8%效率的电池的四象限电流电压和外量子效率(插图)。
图6是示出根据本公开的应用于InP材料的ELO工艺的示意图。
图7是使用AlAs层和AlAs剥离层的三层保护方案的示意图。
图8是根据本公开提出的多结电池结构的示意图。
图9是(a)传统N/P隧道结和示出减小的隧穿势垒的(b)N/ErP/P结的示意图。
图10是冷焊结合的ELO多结电池的集成反射器的示意图。
具体实施方式
在图1中示意性示出ELO工艺的一个实施例。先开始外延生长化学形式上不同的、由InGaAs和Inp组成的薄“保护层”、AlAs的牺牲层、InP和InGaAs的第二组保护层和最终的有源光伏电池层。接下来,顶部外延层被涂敷有Au,作为非常薄的塑料(例如,KaptonTM,由DuPont注册商标的聚酰亚胺膜)主基板。通过仅用几千帕的压力将这两个干净Au表面压到一起,它们在电子上形成连续、永久的、无粘合剂的冷焊结合,这种结合的性质与单个体的Au膜无差别。
一旦结合到塑料柄部,晶片就为ELO做好准备。冷焊结合只用于ELO工艺(外延层在进行剥离从而剥脱母基板以备最终再使用之前永久地附着到箔基板),但还用作最终在上面制作太阳能电池的新主基板的粘合剂。
用冷焊取代剥离中传统使用的粘合剂具有几点益处:(1)附着于箔基板变得简单并且是制作工序的一体化部分,(ii)它的重量轻,因为它完全去除了粘合剂层,(iii)它在热学上和电学上是“透明的”,因为冷焊界面与膜的主体是不可区分的,(iv)它是耐用的并且耐受故障。使用诸如HF:H2O,1:10的选择性化学蚀刻剂去除4nm至10nm厚的AlAs牺牲ELO层,将整个晶片与光伏外延层分开,从而使保护层被暴露。最靠近AlAs ELO层(在这种情况下,InP)的保护层的目的在于提供>108:1的蚀刻选择性,并且通过突然止于InGaAs保护层表面的第二湿蚀刻(HCl:H3PO4,3:1)被从基板和分开的外延层两者去除。第二保护层的要求是,它可以通过突然止于InP基板的湿蚀刻剂被去除。使用H2SO4:H2O2:H2O(1:1:10)之后用C6H8O7:H2O2(20:1)从晶片去除InGaAs层,H2SO4:H2O2:H2O(1:1:10)和C6H8O7:H2O2(20:1)对于InP基板、InP缓冲层和外延层都具有高选择性,并且都有助于去除在上一个蚀刻之后保留下来的任何碎屑或凹凸不平。通过溅射氧化铟锡(ITO)肖特基接触,在附着于KaptonTM柄部的外延层上制作太阳能电池。在图2中示出在1倍太阳光强(1sun)AM1.5G照射下效率为~15%的所得的柔性InP-TIO肖特基太阳能电池。这些结合的外延片材已经重复循环至>200℃,而没有层离。
在后续生长之前,用溶剂清洁基板,经由曝光于UV/O区生长意图的氧化物,然后返回至生长腔室。已经对单个基板采用多次该处理,以验证InP晶片的无劣化再使用,并且如图3中所示,可以提高表面的光滑度,使其优于在允许无限再使用的原则下初始使用的商用开盒即用晶片的光滑度。
发明人近期已经将这种无损伤再生长工艺扩展到在母晶片上制作的基于GaAs的单p-n结光伏电池,从而导致23.9%的效率。图4是这种电池的示意性表示。剥离工艺与用于InP电池的工艺类似,尽管用三层(InGaP/GaAs/InGaP)全晶格匹配(与AlAs牺牲层匹配)系统取代用于InP的两个保护层方案。这允许提高层之间的蚀刻选择性,同时去除在ELO工艺中遭致的碎屑或表面凹凸不平。在HF中去除AlAs层,之后分别用HCl:H3PO4(1:1)和H3PO4:H2O2:H2O(3:1:25)去除InGaP和GaAs保护层。
在这个工艺之后,在母晶片上生长第二电池,从而达到22.8%的效率。第一生长和第二生长之间的功率转换效率的略微(1%)减小是由于干台面绝缘蚀刻配方造成的,从而导致填充因子的略微减小(参见图4)。此外,抗反射涂层厚度不是最佳的,从而减小了外量子效率和短路电流,如图5中所示。然而,当涂层厚度最佳时,期望的是甚至更高的效率,例如,大于25%的效率。
在一个实施例中,可以使用基于全晶格匹配InGaP/GaAs/InGaP三层的保护层方案。这三层提供了蚀刻化学性,具有再生产地去除保护层并且暴露原始(物理和化学上未受损)表面所需的、层之间的充分比率选择性。在一个实施例中,再生长的薄膜电池经由冷焊结合到涂敷Au的塑料(KaptonTM)基板。已经表明,对于第一生长晶片可以实现PCE=23.9%,并且对于再使用晶片可以实现PCE=22.8%,这超过了20%的下一代光伏II标准(参见图5)。在图6中示出实际ELO工艺设备和方法的绘图。
在各次再使用之后,可以彻底研究母晶片和被剥离的外延层二者的损伤或微小劣化。这些方法包括用于确定生长和再生长表面的化学变化的X射线光电子能谱仪(XPS)、原子力显微镜、扫描电子显微镜、用于确定表面形态变化的表面轮廓曲线仪、用于检验外延主体内遭致的缺陷的剖面透射电子显微镜、使用二次离子质谱学(SIMS)的组分深度分布。
还可以使用标准照射条件(1倍太阳光强,AM1.5G光谱)对包括抗反射涂层的成品电池进行电学测试。将被测量的参数包括PCE、填充因子(FF)、开路电压(VOC)、短路电流(JSC)、串联和并联电阻。
已经发现,将含Ga化合物(即,GaAs,并且较小程度上,InGaP)延长暴露于HF导致难以去除的表面污染。然而,对于暴露于HF超过7天的InP表面不存在这种反应。在一个实施例中,位于AlAs牺牲层正下方的应变InP的薄层将提高表面的保真度,如图7中所示。
InP的厚度限于防止应变松弛,应变松弛会降低后续生长的PV层质量。GaAs上的InP的临界厚度在5单层和6单层之间,对应于~1.7nm。在这种情况下,保护层方案将包括InGaP/GaAs/InP或InGaP/GaAs/InGaP/InP,其中,后一结构中的附加InGaP层提供对GaAs的改进保护。
在另一个实施例中,通过使用另外的材料组合,例如,通过取代与InAlP相邻的InGaP层,执行蚀刻选择性和保持原来购买的晶片质量。InAlP/InGaP/GaAs/InAlP结构会是有利的,因为可以用突然止于GaAs(>400:1蚀刻率)的HCl:H2O(1:5)蚀刻InAlP,而用于蚀刻InGaP的HCl:H3PO4(1:1)缓慢地侵袭GaAs,从而导致凹凸不平。通过取代与AlAs层相邻的InAlP,InAlP被HF侵袭并且减少氧化砷的集结,这样可以减缓剥离工艺。另外,InGaP可以被用作GaAs蚀刻(H3PO4:H2O2:H2O,3:1:25)的蚀刻停止件,以确保在最终蚀刻步骤中去除下面的InAlP层。
通过结合到诸如涂敷Au的Cu箔的金属箔基板,使用用于冷焊的低价格金属(例如,用Ag代替Au)、减少的HF消耗、减小保护层厚度并且加速剥离过程,可以另外降低成本。延长暴露于用于溶解AlAs牺牲层的HF限制了对可以采用的金属主基板的选择。在一个实施例中,使用可以用于冷焊的铜箔增大了在暴露于HF时的抗性,因为它们的使用可以比用诸如Au的贵金属涂敷的箔简单。使用Cu箔的另外的益处是其高导热率(~4W cm-1-1),可以利用该导热率从聚能电池中提取热。
还公开了满足图8中示出的两个电池示例结构的非常高效的多结(GaAs/InGaP)太阳能电池。
设计相对于传统多结电池生长工序被颠倒,以适应无粘合剂冷焊工艺中使用的“颠倒”结合几何体;该结构包括25%GaAs电池构架。在这种情况下,GaAs电池厚度减小至2μm(基于传统基板的电池的50%),因为反射性的全覆盖欧姆接触允许入射光两次穿过器件有源区。主要的焦点将是为了效率最大而优化串联PV结构,包括InGaP电池设计(层厚度,窗口层、层组分等),从而改进堆叠中元件之间的宽间隙隧道结(TJ),并且这个多结电池的大面积内完成多剥离工艺。
将用n型材料在p型层的顶部上生长太阳能电池,而必须用相反极性生长隧道结。电池可以采用在所有或许多p型层中进行碳掺杂,因为碳不容易像传统p掺杂物Be一样迁移至生长表面。因为串联电池通常受GaAs电池中的电流限制,所以InGaP电池厚度需要被调节成与InGaP电池和GaAs电池电流匹配;期望InGaP层的厚度在0.55μm至0.80μm的范围内。
对于高性能串联电池,有效隧道结(TJ)是必要的。它们需要在电压和吸收方面都几乎无损失。有利的是,在MJ电池中使用InGaP TJ以避免会高达3%的GaAs TJ吸收。传统TJ是突变P+/N+结,其中,电子可以直接从n型侧的导带直接隧穿至p型侧的价带(图9(a))。对于MBE生长宽带隙TJ几乎没有执行工作,尽管使用MBE已经报道了高得足以传输在1倍太阳光强照射下产生的电流的掺杂水平。
一个实施例涉及在1倍太阳光强下具有几十毫伏压降的InGaP隧结。研究表明,Be和Si是合适的掺杂物(分别实现3.7x1019和1.8x1019cm-3的密度)。然而,如果需要减小的隧穿电阻,诸如通过向GaAs隧结添加ErAs,可以完成在P+/N+界面处使用经设计的缺陷。在这种情况下,可以如图9b中所示使用ErP或LuP。ErP或LuP在半导体表面上形成外延岛,该外延岛是~4单层厚,是金属,并且将隧穿过程分成两个步骤使隧穿可能性显著更高。通过在TJ中采用ErP,会导致隧穿电流中的大小增加几个数量级,并且造成所制作的PV电池中预期电流的亚毫伏范围内的压降。
如单结电池的情况中一样,可以在生长ELO再使用循环的每次重复之后,微观并且化学地检验多结电池。可以使用标准照明条件(AM1.5G光谱)但是在高达10倍太阳光强的强度范围内电学地测试包括抗反射涂层的成品电池。将被测量的参数包括PCE、填充因子、开路电压、短路电流、串联和并联电阻,如单结电池的情况中一样。
结合到反射性和柔性基板的薄膜多结电池提供将太阳能收集器与薄膜电池集成而没有引入明显附加成本的独特机会。图10示出由ELO多结电池组成的带结合到较大的、柔性的反射膜的中心。然后,将膜模制(通过在导热或有源冷却预型件中放置)成复合抛物线收集器(例如,CPC、或温斯顿收集器)的形状。这种几何体将平行的阳光光线会聚到其焦点处的电池带,并且将漫射光收集到接受光锥内。
圆柱形温斯顿型收集器中通常使用的小会聚水平(4-10X)允许会聚器高度有效,并且引导显著量将光漫射到电池中。通过CEff=CPC给出收集效率,其中,CPC是CPC的有效透射率,包括公共反射器材料的~2%的多次反射损失。漫射光的校正是=1-(1-1/C)Gdiff/Gdir,其中,C是意图会聚度,Gdiff/Gdir是漫射光与总入射光的比率。通常,对于少云天,Gdiff/Gdir是~0.11。然后,对于C=4,AM1.5G下=90%,这与AM1.5D下可用的功率相当。
对于4X CPC,并且假设太阳能电池带宽度是1cm,然后孔是4cm宽×10cm深,从而提供与单个家庭居所中使用的面板相兼容的实际形式因子。在较高会聚度下,聚能器的尺寸增大相当多。例如,相同1cm宽的电池带使用的10X会聚度需要10cm且深度~55cm的孔。这可以减小至~40cm,并且对会聚效率的作用可忽略不计。[25]所需要的反射材料的量对于4X会聚度是4至5倍大并且对于10X会聚度是8至11倍大。
所使用的小会聚度的附加益处包括允许使用单轴追踪(按天或按季节,取决于收集器的方位),并且需要的无源冷却与较高会聚度需要的无源冷却相比简化。事实上,所使用的非常薄的基板大大简化了热传递:计算表明,抵靠无源冷却的Cu散热器放置的10X会聚度且25mm厚的KaptonTM基板只造成温度上升5-20℃,从而不需要更具攻击性的冷却方法。
注意的是,ELO电池技术还可以应用于具有大会聚因子的系统;然而,这里,本公开只关注造成可应用于居住系统的简单且经济的设计的较小会聚度。期望这种集成的太阳能收集器+ELO多结聚能器电池组件的成本降低会完全降低会聚系统以及它们封装(归因于高PCE)的成本。
除非另外指明,否则说明书和权利要求书中使用的表示成分、反应条件等的所有数字将被理解为在所有情形下被术语“大约”修饰。因此,除非相反地指明,否则下面的说明书和所附的权利要求书中阐述的数字参数是可以取决于本发明企图得到的所需性质而变化的近似值。
通过考虑本文公开的本发明的说明书和实践,本领域的技术人员将清楚本发明的其它实施例。说明书和实例旨在只被视为是示例性的,本发明的真实范围由随后的权利要求书指示。

Claims (17)

1.一种薄膜太阳能电池,包括:
第一基板;
金属接触,所述金属接触被结合到所述第一基板;
有源光伏区,所述有源光伏区被结合到所述金属接触;
一个或多个第一保护层,其中,所述第一保护层中的至少一个第一保护层包括从InGaP、GaAs、InGaAs、InP和InAlP中选择的至少一种化合物;
AlAs层;
一个或多个第二保护层,其中,所述第二保护层中的至少一个第二保护层包括从InGaP、GaAs、InGaAs、InP和InAlP中选择的至少一种化合物;以及
第二基板,其中,所述第二基板包括从GaAs和InP中选择的至少一种化合物。
2.根据权利要求1所述的薄膜太阳能电池,其中,所述薄膜太阳能电池包括两个第一和/或第二保护层。
3.根据权利要求1所述的薄膜太阳能电池,其中,所述薄膜太阳能电池包括三个第一和/或第二保护层。
4.根据权利要求1所述的薄膜太阳能电池,其中,所述第一基板包括塑料或金属箔。
5.根据权利要求4所述的薄膜太阳能电池,其中,所述第一基板包括聚酰亚胺膜。
6.根据权利要求1所述的薄膜太阳能电池,其中,所述金属接触包括从Au、Ag和Cu中选择的至少一种金属。
7.根据权利要求6所述的薄膜太阳能电池,其中,所述金属接触包括Au。
8.根据权利要求6所述的薄膜太阳能电池,其中,所述金属接触包括Cu。
9.根据权利要求1所述的薄膜太阳能电池,其中,所述薄膜太阳能电池被集成到太阳能收集器中,其中,所述太阳能收集器被模制成从复合抛物线收集器或温斯顿收集器中选择的形状。
10.一种执行外延剥离工艺的方法,包括:
在第一基板上生长一个或多个第一保护层,其中,该保护层中的至少一个保护层包括从InGaP、GaAs、InGaAs、InP和InAlP中选择的化合物;
生长AlAs层;
生长一个或多个第二保护层,其中,该保护层中的至少一个保护层包括从InGaP、GaAs、InGaAs、InP和InAlP中选择的化合物;
在所述第二保护层的顶部上沉积至少一个有源光伏电池层;
利用金属涂敷顶部的有源光伏电池层;
利用金属涂敷第二基板;
将两个金属表面压到一起,以形成冷焊结合;以及,
利用选择性化学蚀刻剂去除所述AlAs层。
11.根据权利要求10所述的方法,其中,利用选择性化学蚀刻剂去除每个附加的保护层。
12.根据权利要求11所述的方法,其中,所述第一基板被用溶剂清洁和处理以形成氧化物层。
13.根据权利要求10所述的方法,其中,所述第二基板选自塑料或金属箔。
14.根据权利要求13所述的方法,其中,所述第二基板选自聚酰亚胺膜。
15.根据权利要求10所述的方法,其中,所述金属接触包括从Au、Ag和Cu中选择的至少一种金属。
16.根据权利要求15所述的方法,其中,所述金属接触包括Au。
17.根据权利要求15所述的方法,其中,所述金属接触包括Cu。
CN201280042064.7A 2011-07-06 2012-07-06 使用外延剥离和冷焊结合的半导体太阳能电池的集成太阳能收集器 Pending CN103890974A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610486903.4A CN106098842B (zh) 2011-07-06 2012-07-06 使用外延剥离和冷焊结合的半导体太阳能电池的集成太阳能收集器

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161505014P 2011-07-06 2011-07-06
US61/505,014 2011-07-06
PCT/US2012/045778 WO2013006803A2 (en) 2011-07-06 2012-07-06 Integrated solar collectors using epitaxial lift off and cold weld bonded semiconductor solar cells

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201610486903.4A Division CN106098842B (zh) 2011-07-06 2012-07-06 使用外延剥离和冷焊结合的半导体太阳能电池的集成太阳能收集器

Publications (1)

Publication Number Publication Date
CN103890974A true CN103890974A (zh) 2014-06-25

Family

ID=46584346

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201280042064.7A Pending CN103890974A (zh) 2011-07-06 2012-07-06 使用外延剥离和冷焊结合的半导体太阳能电池的集成太阳能收集器
CN201610486903.4A Expired - Fee Related CN106098842B (zh) 2011-07-06 2012-07-06 使用外延剥离和冷焊结合的半导体太阳能电池的集成太阳能收集器

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201610486903.4A Expired - Fee Related CN106098842B (zh) 2011-07-06 2012-07-06 使用外延剥离和冷焊结合的半导体太阳能电池的集成太阳能收集器

Country Status (11)

Country Link
US (3) US20130037095A1 (zh)
EP (1) EP2729968B1 (zh)
JP (1) JP6312257B2 (zh)
KR (1) KR101996607B1 (zh)
CN (2) CN103890974A (zh)
AU (2) AU2012280933A1 (zh)
CA (1) CA2840968A1 (zh)
ES (1) ES2834435T3 (zh)
HK (1) HK1197315A1 (zh)
TW (1) TWI693722B (zh)
WO (1) WO2013006803A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108604613A (zh) * 2016-02-03 2018-09-28 索泰克公司 具有嵌入式镜面的工程衬底

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10741712B2 (en) * 2012-02-15 2020-08-11 Alta Devices, Inc. Photovoltaic module containing shingled photovoltaic tiles and fabrication processes thereof
US9087905B2 (en) * 2012-10-03 2015-07-21 International Business Machines Corporation Transistor formation using cold welding
CN108198875A (zh) * 2013-11-11 2018-06-22 密歇根大学董事会 装配薄膜光电子器件的工艺
US10637391B2 (en) 2013-11-29 2020-04-28 The Regents Of The University Of Michigan Autonomous solar tracking in flat-plate photovoltaic panels using kirigami-inspired microstructures
KR20160108440A (ko) * 2014-01-15 2016-09-19 더 리젠츠 오브 더 유니버시티 오브 미시간 인쇄법을 통한 에피택셜 리프트오프 태양 전지와 포물형 미니 집광기 어레이의 집적화
WO2015156871A2 (en) * 2014-01-15 2015-10-15 Forrest Stephen R Forrest Non-destructive wafer recycling for epitaxial lift-off thin-film device using a superlattice epitaxial layer
EP3127165B1 (en) * 2014-04-04 2020-08-12 The Regents Of The University Of Michigan Method to manufacture epitaxial lift-off processed thin-film solar cells integrated with non-tracking mini-compound parabolic concentrators
US10141465B2 (en) * 2014-04-04 2018-11-27 The Regents Of The University Of Michigan Epitaxial lift-off processed GaAs thin-film solar cells integrated with non-tracking mini-compound parabolic concentrators
WO2015168272A1 (en) 2014-04-29 2015-11-05 The Regents Of The University Of Michigan Flexible antenna integrated with an array of solar cells
USRE49869E1 (en) * 2015-02-10 2024-03-12 iBeam Materials, Inc. Group-III nitride devices and systems on IBAD-textured substrates
WO2016138514A1 (en) * 2015-02-27 2016-09-01 The Regents Of The University Of Michigan Mechanically stacked tandem photovoltaic cells with intermediate optical filters
KR102533932B1 (ko) 2015-03-18 2023-05-17 더 리젠츠 오브 더 유니버시티 오브 미시간 사전 패터닝된 메사들을 통한 스트레인 경감 에피택셜 리프트-오프
KR101743017B1 (ko) 2015-05-19 2017-06-05 한국과학기술연구원 고속 에피택셜 리프트오프와 iii-v족 직접 성장용 템플릿을 이용한 반도체 소자의 제조 방법 및 이에 의해 제조된 반도체 소자
CA2999939C (en) 2015-09-24 2019-09-10 Hee Solar, L.L.C. System for testing photosensitive device degradation
CN108140679A (zh) 2015-09-28 2018-06-08 夏普株式会社 薄膜化合物太阳电池、薄膜化合物太阳电池的制造方法、薄膜化合物太阳电池阵列及薄膜化合物太阳电池阵列的制造方法
KR102559479B1 (ko) * 2018-03-16 2023-07-26 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 화합물 반도체 태양전지의 제조 방법
DE102018002426A1 (de) * 2018-03-26 2019-09-26 Azur Space Solar Power Gmbh Stapelförmiges III-V-Halbleiterzeug und Herstellungsverfahren
KR20200021772A (ko) * 2018-08-21 2020-03-02 엘지전자 주식회사 화합물 반도체 태양전지 및 이의 제조 방법
KR20200023068A (ko) * 2018-08-24 2020-03-04 엘지전자 주식회사 화합물 반도체 태양전지의 제조 방법
JP7316638B2 (ja) * 2019-05-15 2023-07-28 パナソニックIpマネジメント株式会社 樹脂組成物、樹脂被覆基板および素子チップの製造方法
WO2022173467A2 (en) * 2020-09-23 2022-08-18 Antora Energy, Inc. Structures and methods for producing an optoelectronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101010811A (zh) * 2004-05-12 2007-08-01 Rwe太空太阳能有限责任公司 具有集成的保护二极管的太阳能电池
US20110108081A1 (en) * 2006-12-20 2011-05-12 Jds Uniphase Corporation Photovoltaic Power Converter
WO2011066029A2 (en) * 2009-09-10 2011-06-03 The Regents Of The University Of Michigan Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU650782B2 (en) * 1991-09-24 1994-06-30 Canon Kabushiki Kaisha Solar cell
US5288337A (en) * 1992-06-25 1994-02-22 Siemens Solar Industries, L.P. Photovoltaic module with specular reflector
JP3467153B2 (ja) * 1996-08-30 2003-11-17 株式会社リコー 半導体素子
US6333458B1 (en) 1999-11-26 2001-12-25 The Trustees Of Princeton University Highly efficient multiple reflection photosensitive optoelectronic device with optical concentrator
US6440769B2 (en) * 1999-11-26 2002-08-27 The Trustees Of Princeton University Photovoltaic device with optical concentrator and method of making the same
CN2613726Y (zh) * 2003-04-17 2004-04-28 北京工业大学 复合抛物面聚光热电综合利用装置
HRPK20050434B3 (en) * 2005-05-16 2008-06-30 Urli Natko Stationary photovoltaic module with low concentration ratio of solar radiation
JP2009524245A (ja) * 2006-01-17 2009-06-25 ソリアント エナジー,インコーポレイティド 集光太陽電池パネル、および、これに関連したシステムと方法
US7638708B2 (en) * 2006-05-05 2009-12-29 Palo Alto Research Center Incorporated Laminated solar concentrating photovoltaic device
US20100047959A1 (en) * 2006-08-07 2010-02-25 Emcore Solar Power, Inc. Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells
US20090038678A1 (en) * 2007-07-03 2009-02-12 Microlink Devices, Inc. Thin film iii-v compound solar cell
TW200946775A (en) * 2008-02-27 2009-11-16 Brilliant Film Llc Concentrators for solar power generating systems
US20090283133A1 (en) * 2008-05-14 2009-11-19 3M Innovative Properties Company Solar concentrating mirror
GB0816113D0 (en) * 2008-09-04 2008-10-15 Clive Barry M Photvoltaic cell apparatus
CN102333998B (zh) * 2008-12-30 2015-08-05 3M创新有限公司 宽带反射器、集光型太阳能发电系统、以及使用它们的方法
AU2009230775B1 (en) * 2009-10-26 2010-03-04 Mip, Llc Asymmetric parabolic compound concentrator with photovoltaic cells
JP5170073B2 (ja) * 2009-12-24 2013-03-27 セイコーエプソン株式会社 接合体の形成方法、接合体およびインクジェット記録ヘッド
JP5215284B2 (ja) * 2009-12-25 2013-06-19 シャープ株式会社 多接合型化合物半導体太陽電池
CN102082195B (zh) * 2010-09-30 2012-03-07 南通大学 自动跟踪双抛物面聚光发电供热系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101010811A (zh) * 2004-05-12 2007-08-01 Rwe太空太阳能有限责任公司 具有集成的保护二极管的太阳能电池
US20110108081A1 (en) * 2006-12-20 2011-05-12 Jds Uniphase Corporation Photovoltaic Power Converter
WO2011066029A2 (en) * 2009-09-10 2011-06-03 The Regents Of The University Of Michigan Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108604613A (zh) * 2016-02-03 2018-09-28 索泰克公司 具有嵌入式镜面的工程衬底
CN108604613B (zh) * 2016-02-03 2022-10-14 索泰克公司 具有嵌入式镜面的工程衬底

Also Published As

Publication number Publication date
KR101996607B1 (ko) 2019-10-01
EP2729968B1 (en) 2020-09-02
TW201320369A (zh) 2013-05-16
WO2013006803A2 (en) 2013-01-10
EP2729968A2 (en) 2014-05-14
AU2012280933A1 (en) 2014-01-23
WO2013006803A8 (en) 2013-06-06
JP6312257B2 (ja) 2018-04-18
US20220013672A1 (en) 2022-01-13
CN106098842B (zh) 2018-12-18
AU2016200455A1 (en) 2016-02-18
ES2834435T3 (es) 2021-06-17
HK1197315A1 (zh) 2015-01-09
US20160141431A1 (en) 2016-05-19
CA2840968A1 (en) 2013-01-10
KR20140043805A (ko) 2014-04-10
TWI693722B (zh) 2020-05-11
CN106098842A (zh) 2016-11-09
JP2014523132A (ja) 2014-09-08
WO2013006803A3 (en) 2013-05-10
US20130037095A1 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
US20220013672A1 (en) Integrated Solar Collectors Using Epitaxial Lift Off and Cold Weld Bonded Semiconductor Solar Cells
CN102804408B (zh) 使用外延剥离制备柔性光伏器件以及保持在外延生长中使用的生长基板的完整性的方法
Tsakalakos et al. Silicon nanowire solar cells
TWI332714B (en) Cascade solar cell with amorphous silicon-based solar cell
US11088338B2 (en) Excitonic energy transfer to increase inorganic solar cell efficiency
Raj et al. Non-epitaxial carrier selective contacts for III-V solar cells: A review
Li et al. Silicon heterojunction-based tandem solar cells: past, status, and future prospects
Pouladi et al. High‐efficiency flexible III‐V photovoltaic solar cells based on single‐crystal‐like thin films directly grown on metallic tapes
Makita et al. Mechanical stacked GaAs//CuIn1− yGaySe2 three‐junction solar cells with 30% efficiency via an improved bonding interface and area current‐matching technique
Makita et al. III‐V//CuxIn1− yGaySe2 multijunction solar cells with 27.2% efficiency fabricated using modified smart stack technology with Pd nanoparticle array and adhesive material
Veinberg-Vidal et al. Manufacturing and characterization of III-V on silicon multijunction solar cells
JP2013537366A (ja) 無機太陽電池のための窓層としての有機半導体
Krause et al. Wafer bonded 4-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells
Lumb et al. Realizing the next generation of CPV cells using transfer printing
Abid et al. Solar Cell Efficiency Energy Materials
Ramrakhiani Recent advances in photovoltaics
Tanabe Semiconductor Wafer Bonding for Solar Cell Applications: A Review
Shahrjerdi et al. Flexible InGaP/(In) GaAs tandem solar cells with very high specific power
Asim et al. Perspective of Nanomaterials in Solar Cell
Barr Evaluation of the commercial potential of novel organic photovoltaic technologies

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1197315

Country of ref document: HK

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140625

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1197315

Country of ref document: HK