CN103881707A - 一种磷光能量转移体系,其合成方法,用途以及单链脱氧核糖核苷酸的检测方法 - Google Patents

一种磷光能量转移体系,其合成方法,用途以及单链脱氧核糖核苷酸的检测方法 Download PDF

Info

Publication number
CN103881707A
CN103881707A CN201310753367.6A CN201310753367A CN103881707A CN 103881707 A CN103881707 A CN 103881707A CN 201310753367 A CN201310753367 A CN 201310753367A CN 103881707 A CN103881707 A CN 103881707A
Authority
CN
China
Prior art keywords
phosphorescence
energy transfer
cdna
transfer system
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310753367.6A
Other languages
English (en)
Inventor
高峰
张璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Normal University
Original Assignee
Anhui Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Normal University filed Critical Anhui Normal University
Priority to CN201310753367.6A priority Critical patent/CN103881707A/zh
Publication of CN103881707A publication Critical patent/CN103881707A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种磷光能量转移体系,其合成方法,用途以及单链脱氧核糖核苷酸的检测方法,采用Mn-ZnS QDs作为能量转移的供体,氧化碳纳米管作为能量转移的受体,并论证了其在DNA传感应用中可以达到0.027nM的最低检出限。这种传感器展现了良好的分析性能,有效的避免自体荧光和散射光的干扰。

Description

一种磷光能量转移体系,其合成方法,用途以及单链脱氧核糖核苷酸的检测方法
技术领域
本发明涉及一种磷光能量转移体系,其合成方法,用途以及单链脱氧核糖核苷酸的检测方法。 
背景技术
量子点是粒径小于或接近于激子波尔半径的半导体纳米晶粒。它们处于分子与块状固体之间的中间状态,通常由Ⅱ-Ⅵ族或Ⅲ-Ⅴ族元素组成。量子点的比表面积,表面原子数,表面能和表面张力都随粒径的下降而急剧增加。由于尺寸效应,表面效应以及宏观量子隧道效应等,导致量子点的热,磁,光,敏等特性和表面稳定性均优于相应的体材料。量子点的光学性质是目前科研工作者研究的一个热点。量子点作为荧光探针广泛地应用于生物医学,分析科学,环境科学,食品科学等研究领域。其光学特性比传统有机染料相比具有明显的优越性:①量子点的荧光激发光谱宽,且连续分布。因此可以采用单一波长光源同时激发不同颜色的量子点;②可以通过改变量子点粒径大小和组成材料来“调谐”其发射波长,将不同光谱区的量子点混合使用,可以使研究者通过多种颜色同时追踪数种生物分子;③量子点的荧光光谱有较大的斯托克斯位移,荧光光谱窄而对称,因此用不同光谱特征的量子点标记生物分子时,荧光光谱易于识别分析;④比有机染料具有更高的光稳定性。在深入开发和研究量子点的荧光性质的同时,量子点的磷光性质也开始引起了科学家们的注意。 
磷光是一种长寿命的光,平均寿命达10-4秒到数秒。磷光与荧光的发光机理不同,是分子中电子激发三线态T1回到基态S0而产生的辐射。由于T1-S0是禁阻的,其可能性仅为S1-S0过程可能性的百万分之一。由于磷光寿命长,在发射光子以前,分子的碰撞运动会使T1电子经无辐射弛豫返回基态,也就是所谓的磷光猝灭。为克服猝灭现象,最常见的方法就是使用深冷设备把分子固定为刚性体,这就是最初的低温磷光。但是低温磷光的限制条件是必须具有深冷设备,装置价格昂贵且操作复杂。因此室温磷光的研究引起了分析工作者的普遍重视。 
室温磷光的检测有很多的优点:①灵敏度高:磷光的灵敏度通常比一般的吸光光度法高三个数量级;②无需价格昂贵且使用麻烦的低温冷却装置,免除了溶剂或溶液的除氧过程,相对低温磷光法,大大降低了成本和简化了操作步骤;③分析曲线线性范围宽:通常达2-4个数量级;④选择性好:这是因为磷光光谱的位置通常位于更长的波长,具有更大的斯托克 斯位移,不会和激发光谱发生重叠,可以避免激发光的干扰,自吸收现象也有所减轻;⑤检出限低:发光分析的检出限一般决定于空白值的大小,因为磷光较少受杂散光及背景发光的干扰,即空白值较低;⑥易于实现连续操作和自动化。 
磷光能量共振转移(PRET)是一种非辐射能量跃迁。当两个荧光发色基团距离足够靠近时,供体分子吸收一定频率的光子后被激发到更高的电子能态,从该电子能态回到基态前,通过偶极子的相互作用,实现了能量向邻近的受体分子转移。供体发射光谱与受体吸收光谱的重叠程度,供体与受体的跃迁偶极的相对取向,以及供体和受体之间的距离等因素都会影响能量转移的效率。传统有机荧光染料吸收光谱窄,发射光谱常常伴有拖尾,这样会影响供体发射光谱与受体吸收光谱的重叠程度,并且供,受体发射光谱相互干扰。而量子点用于磷光能量转移的研究,克服了有机荧光染料的不足。相对于传统有机荧光染料分子,量子点的发射光谱很窄且不拖尾,减少了供体与受体发射光谱的重叠,避免了相互干扰。由于量子点具有较宽的激发光谱,当它作为能量供体时,可以更自由地选择激发波长,最大限度地避免对能量受体的直接激发。通过改变量子点的组成或尺寸,可以获得发射波长在可见光区的量子点,为吸收光谱在可见光区的生色团作能量供体,并且保证了供体发射波长与受体吸收波长的良好重叠,增加了共振能量转移效率。 
Zhao课题组在2012年的一篇文献(Analytical Chimica Acta723,2012,83-87)中报道过有关检测DNA的方法,该实验使用荧光量子点和碳纳米管之间有效的荧光能量转移原理(FRET)来检测生物体内DNA的,此方法的检测范围在0.01-20uM,最低检出限为9.39nM。但此方法并没有考虑到核酸自身的荧光干扰和样品散射光的影响,降低了实验结果的可靠性及实验的可重复性。脱氧核糖核苷酸(DNA)是大多数生物的基本遗传物质,是遗传信息的主要载体,是物种延续和进化的决定因素,其结构稍有变动就可能会导致遗传性状的改变和各种疾病的出现。所以核酸的研究已成为生物化学,遗传学,药代动力学等研究领域的热点。荧光分析法灵敏度高,选择性强,参数多,在DNA的分析中发挥着重要作用。核酸的天然荧光很弱,因此不能直接利用其内源荧光进行结构研究和定量分析,荧光探针的引入为核酸的研究提供了有力的工具。但是传统的荧光检测法有很强的自体荧光和散射光的干扰,降低了实验的准确性。 
现有的大多数检测DNA的方法是荧光分析法,但核酸的天然荧光很弱,不能直接利用其内源荧光进行结构研究与定量分析。且荧光检测方法有很强的背景干扰和散射光干扰,降低了检测的可靠性。因此,我们采用一种新型的磷光分析检测技术,即克服了核酸自身内源荧光的影响,又能有效的避免来自样品本底荧光和散射光的干扰。并且此方法灵敏度高,操 作简单,可以快速的检测生物体液中的DNA,避免了化学修饰和固定化过程,并且在检测过程中不需要加入任何除氧剂和诱导剂,避免了生物体液中的金属离子,生物分子和其它抗生素的干扰。且本实验的检测范围比已有的文献报道的都低,最低检出限为0.027nM,比文献报道的低两个数量级。 
发明内容
本发明的目的在于提供一种磷光能量转移体系,其合成方法,用途以及单链脱氧核糖核苷酸的检测方法,采用Mn-ZnS QDs作为能量转移的供体,氧化碳纳米管作为能量转移的受体,并论证了其在DNA传感应用中可以达到0.027nM的最低检出限。这种传感器展现了良好的分析性能,有效的避免自体荧光和散射光的干扰。 
具体技术方案如下: 
一种磷光能量转移体系,能量的供体为Mn掺杂ZnS量子点,能量的受体为氧化碳纳米管。 
进一步地,能量的供体为cDNA修饰的量子点QDs-cDNA。 
上述磷光能量转移体系的合成方法,作为能量供体的量子点的采用如下步骤合成: 
(1)容器内加入巯基丙酸,ZnSO4和MnCl2水溶液; 
(2)调节溶液的pH值; 
(3)搅拌并饱和; 
(4)加入Na2S水溶液; 
(5)反应并陈化; 
(6)沉降并高速离心; 
(7)倾去上层清液并干燥,即得。 
进一步地,步骤(1)中在100mL的三口烧瓶内,加入0.17mL巯基丙酸,5mL0.1mol/L ZnSO4和0.2mL0.01mol/L MnCl2水溶液,和/或,步骤(2)中用NaOH调节溶液的pH值至11,和/或,步骤(3)中在室温下磁力搅拌,通氮气饱和30分钟,保证稳定剂与Zn2+和Mn2+络合充分,和/或,步骤(4)中注射器在隔绝空气的条件下加入5mL0.1mol/L的Na2S水溶液,和/或,步骤(5)中,在室温下继续反应20分钟,将得到的Mn掺杂ZnS量子点的溶液在空气氛围下陈化2小时,温度控制在50℃,和/或,步骤(6)中以相同体积的无水乙醇使量子点沉降,高速离心,和/或,步骤(7)中,置于室温真空干燥24小时,即可得到实验所需的纳米粒子固体粉末。 
进一步地,作为能量受体的氧化碳纳米管采用如下步骤合成: 
1)碳纳米管分散于盐酸中; 
2)将所得溶液离心并清洗; 
3)加入硝酸和硫酸的混合溶液里; 
4)超声并将溶液洗至中性; 
5)干燥; 
6)将干燥产物溶解在水中,即得。 
进一步地, 
步骤1)中,取0.5g碳纳米管分散于200mL2mol/L的盐酸中,循环回流加热24小时,和/或, 
步骤2)中,用超纯水清洗,和/或, 
步骤3)中,加入16mL体积比1:3的硝酸和硫酸的混合溶液里,和/或, 
步骤4)中,超声2小时后,用NaOH将溶液洗至中性,和/或, 
步骤5)中,放入干燥箱中干燥24小时,和/或, 
步骤6)中,将产物溶解在100mL蒸馏水中,得到氧化碳纳米管的浓度为1mg/mL。 
上述磷光能量转移体系的用途,用于对单链脱氧核糖核苷酸的检测。 
一种单链脱氧核糖核苷酸的检测方法,采用磷光量子点和氧化碳纳米管之间的磷光能量转移来检测单链脱氧核糖核苷酸。 
进一步地,包括如下步骤: 
a.混合氧化碳纳米管和QDs-cDNA; 
b.用pH=7.2Tris-HCl定容; 
c.室温下反应; 
d.用荧光仪调节至磷光模式检测溶液的磷光强度。 
进一步地,步骤a中所述cDNA修饰的量子点采用如下方式合成: 
量子点超声分散于pH=7的磷酸盐缓冲液中; 
加入丁二酸酐,搅拌反应; 
离心,清洗; 
将沉淀溶NaCl Tris-HCl缓冲液中; 
加入EDC(1-乙基-(3-二甲基氨基丙基)碳化二亚胺盐酸盐)和NHS,反应; 
加入cDNA,继续反应; 
反应结束后,离心分离,将沉淀溶于NaCl Tris-HCl缓冲液中,即得。 
与目前现有技术相比,本发明发展了一种高效的基于磷光能量转移的DNA传感器。室温磷光(RTP)可以被定义为从最低激发三重态T1跃迁到最低单重态S0。作为一个有效的信号转导方法,室温磷光技术展现了其许多超越稳态荧光的优点。由于磷光团的激发三重态的长寿命允许磷光团的发射有适当的延迟时间,可以有效的避免荧光发射和散射光带来的干扰。此外,室温磷光可以有效的消除背景荧光的干扰(例如,环境样品,食品,生物流体)。进一步提高了实验的可操作性和准确性。 
附图说明
图1a为MPA包裹的Mn掺杂ZnS QDs(MPA-QDs)的TEM图; 
图1b为cDNA-QDs(0.03μg/mL)的磷光光谱图(曲线b)和氧化碳纳米管(0.12μg/mL)吸收图(曲线a)的重合图; 
图2a为加入不同浓度的SWNTs时cDNA-QDs的磷光猝灭曲线。cDNA-QDs浓度为0.03μg/mL,SWNTs浓度(从低到高),0,0.01,0.02,0.03,0.04,0.05,0.06,0.12μg/mL; 
图2b为不同SWNTs浓度下cDNA-QDs的磷光强度线性图和经验方程; 
图3a为加入SWNTs时cDNA-QDs的相对磷光强度; 
图3b为没有加入SWNTs时cDNA-QDs的相对磷光强度; 
图4为加入(曲线b)和没有加入(曲线a)SWNTs时MPA-QDs的磷光强度,MPA-QDs浓度为0.03μg/mL,SWNTs浓度为0.12μg/mL; 
图5为含有0.03μg/mL cDNA-QDs和0.12μg/mL SWNTs的磷光猝灭图,所有的实验操作都是在0.01M,0.15M NaCl,pH7.4的Tris-HCl缓冲溶液下进行(激发波长为316nm); 
图6a为磷光光谱图,其中a曲线0.03μg/mL MPA-QDs,b曲线0.03μg/mL cDNA-QDs,c曲线b+10nM tDNA,d曲线b+0.12μg/mL SWNTs,e曲线d+10nM tDNA; 
图6b为加入不同浓度的tDNA(从低到高)0,0.5,1,2,5,10,15,20,25,30,35,40,45,55,75nM时cDNA-QDs-SWNTs PRET体系的磷光响应图。插图表示加入不同浓度tDNA时的磷光响应线性图。每个数据点代表三个独立的实验误差的平均值。所有的实验都是在(0.01M,0.15M NaCl,pH7.4)的Tris-HCl缓冲液中进行的,cDNA-QDs浓度为0.03μg/mL,SWNTs浓度为0.12μg/mL; 
图7a为不同浓度的错配mDNA(从低到高)0,5,10,15,20,25,30,35,40,45nM对cDNA-QDs-SWNTs磷光能量转移的磷光响应图。插图表示加入不同浓度mDNA时的磷光响应线性图。每个数据点代表三个独立的实验误差的平均值; 
图7b为cDNA-QDs-SWNTs PRET系统加入tDNA和mDNA混合液(20nM),ctDNA:cmDNA浓度比为2:0,1:1,和0:2。所有的实验都是在(0.01M,0.15M NaCl,pH7.4)的Tris-HCl缓冲液中进行的,cDNA-QDs浓度为0.03μg/mL,SWNTs浓度为0.12μg/mL; 
图8为DNA的磷光能量转移(PRET)传感原理图。 
具体实施方式
下面根据附图对本发明进行详细描述,其为本发明多种实施方式中的一种优选实施例。实验设备:LS-55荧光分光光度计,石英比色皿(1cm×1cm),扫描电子显微镜,透射电子显微镜,pH酸度计,紫外分光光度计。 
实验材料:巯基丙酸(MPA),ZnSO4·7H2O,Na2S·9H2O,MnCl2·4H2O,乙醇,氮气,十二磺基苯磺酸钠(SDBS),1-乙基-(3-二甲基氨基丙基)碳化二亚胺盐酸盐(EDC·HCl),单壁碳纳米管(SWNTs),超纯水,DNA 
捕获DNA(cDNA):5’-NH2-TGC ATT ACT AAT CAG TGA GGC CTT-3’ 
目标DNA(tDNA):5’-AAG GCC TCA CTG ATT AGT AAT GCA-3’ 
错配DNA(mDNA):5’-AAG GCC TCA CAG ATT AGT AAT GCA-3’ 
实验步骤: 
(1)量子点的合成 
锰掺杂的硫化锌量子点的合成是根据已有报道的文献做了少量的修改。在100mL的三口烧瓶内,加入0.17mL巯基丙酸,5mL0.1mol/L ZnSO4和0.2mL0.01mol/L MnCl2水溶液,用NaOH调节溶液的pH值至11,在室温下磁力搅拌,通氮气饱和30分钟,保证稳定剂与Zn2+和Mn2+络合充分。随后用注射器在隔绝空气的条件下加入5mL0.1mol/L的Na2S水溶液,在室温下继续反应20分钟。将得到的Mn掺杂ZnS量子点的溶液在空气氛围下陈化2小时,温度控制在50℃。以相同体积的无水乙醇使量子点沉降,高速离心,倾去上层清液,置于室温真空干燥24小时,即可得到实验所需的纳米粒子固体粉末。用LS-55磷光仪进行检测,在581nm处有强的磷光发射峰。与文献报道相符。 
(2)氧化碳纳米管的合成 
取0.5g碳纳米管分散于200mL2mol/L的盐酸中,循环回流加热24小时。将所得溶液离心并用超纯水清洗。接着加入16mL硝酸和硫酸(体积比1:3)的混合溶液里,超声2小时后,用NaOH将溶液洗至中性,放入干燥箱中干燥24小时,将产物溶解在100mL蒸馏水中,得到氧化碳纳米管的浓度为1mg/mL。 
(3)cDNA修饰的量子点 
取2mg的量子点,超声分散于0.1M pH=7的磷酸盐缓冲液(PBS)中,加入20mg丁二酸酐,搅拌反应2小时。离心,用pH=7的PBS清洗后,将沉淀溶于0.02M NaCl的0.05M Tris-HCl缓冲液中(pH=7.2),并加入1.2mg EDC和1.8mg NHS,反应30分钟。再加入50μL的cDNA,继续反应12小时。反应结束后,离心分离,将沉淀溶于0.02M NaCl的0.05M Tris-HCl缓冲液中(pH=7.2),即得到目标产物。 
(4)磷光猝灭和杂交实验 
取一系列不同浓度的氧化碳纳米管和QDs-cDNA混合,用pH=7.2Tris-HCl定容至2mL,室温下反应40分钟。用LS-55荧光仪调节至磷光模式检测溶液的磷光强度。 
结果和讨论 
(1)氧化碳纳米管和量子点的表征 
MPA-QDs量子点的形貌通过TEM观察(图1a),显示出球形的颗粒,尺寸均一,粒径大小在5nm左右。。量子点的磷光激发波长为316nm,发射光谱位置大约在581nm,而氧化碳纳米管的紫外吸收峰位置在254nm,并且具有很宽的吸收带(图1b),使得磷光能量转移能够很好的发生。 
(2)氧化碳纳米管和量子点之间的磷光能量转移 
在磷光能量转移进程中,cDNA-QDs作为供体,SWNTs作为受体,为了进一步研究磷光能量转移的机制,我们研究了在cDNA-QDs中加入不同浓度的SWNTs。如图2,在溶液中加入0.03μg/mL的cDNA-QDs后逐渐加入不同浓度的SWNTs(从0.0到0.12μg/mL),磷光强度逐渐下降。当SWNTs的浓度达到0.12μg/mL时,猝灭效果最大。实验结果表明,当SWNTs加入cDNA-QDs体系中时,cDNA-QDs的能量转移到SWNTs上,从而导致cDNA-QDs的磷光强度下降。猝灭效率的计算公式为(1-P/P0),P0和P分别代表在不存在(P0)和存在(P)SWNTs时cDNA-QDs的磷光强度。当体系中加入SWNTs的浓度达到0.12μg/mL时,猝灭效率可以达到最大值为98.6%。这个猝灭效率展现了SWNTs超强的猝灭效率。这个强的猝灭效率为敏感的“turn on”型传感器的定量实验提供了最佳的猝灭机制。 
(3)磷光猝灭机制研究 
磷光猝灭一般被分为静态淬灭和动态猝灭。动态猝灭可以用Stern-Volmer’s方程来描述(方程1),静态猝灭可以用Lineweaver-Burk方程来描述(方程2),如下: 
P0/P=1+KSV×cq    (1) 
1/(P0-P)=1/P0+KLB/(P0 cq)    (2) 
其中,P0和P分别代表在cDNA-QDs中不加入和加入SWNTs时的磷光强度。KSV为动态淬灭常数,KLB为静态猝灭常数。P0/P和cq,1/(P0-P)和1/cq点之间的关系在图3a和图3b中展现。 
cDNA-QDs和SWNTs之间的磷光猝灭机制既不符合Stern-Volmer’s方程也不符合Lineweaver-Burk方程。这个结果可能是动态猝灭机制和静态猝灭机制共同作用的结果,暗示了一个复杂猝灭模式[9]。如图2a,ln(P0/P-1)和cq之间较好的线性关系可以用下面这个经验公式来表示: 
ln(P0/P-1)=51.26cq–1.65(R=0.9933) 
文献表明在单链DNA和富含π电子的碳材料,例如碳纳米点,石墨烯和碳纳米管之间可以发生π-π作用。本实验中,cDNA-QDs和SWNTs之间形成无磷光的复杂基态归因与DNA和SWNTs之间的相互作用。 
我们还进行了对比试验,对没有标记cDNA的MPA-QDs没有特异性的磷光猝灭(如图4中的a,b)。当在体系中加入0.12μg/mL SWNTs时,在相同的孵育过程中量子点的磷光强度并没有改变。这一结果表明,MPA-QDs和SWNTs之间的非特异性相互作用可以忽略不计,和cDNA-QDs有磷光猝灭现象主要归因于DNA桥接磷光能量转移之间的供体和受体。cDNA和SWNTs之间有π-π堆积作用。 
(4)条件优化实验 
图5是时间对cDNA-QDs(0.12ug/mL SWNTs)磷光强度的影响,可以看出在30分钟时磷光强度降至最低,随着时间的增长,反应出现一个平台,为了确保反应能完全猝灭并获得稳定的信号,我们选择40分钟最为反应的最佳时间。 
(5)tDNA响应实验 
进一步研究目标DNA(tDNA)在cDNA-QDs-SWNTs能量转移系统中响应。图6a描绘了在相同的实验条件下,考察了五组不同组分的曲线如QDs(曲线a),cDNA-QDs(曲线b),cDNA-QDs-tDNA(曲线c),cDNA-QDs-SWNTs-tDNA(曲线e)的发射光谱图。在这些图中,我们可以看到cDNA-QDs在581nm处有一个很强的磷光信号(曲线b)。在体系中加入10nM tDNA后,磷光强度和峰位置并没有明显的改变(曲线c)。当在cDNA-QDs体系中加入SWNTs时,由于cDNA-QDs与SWNTs之间的磷光能量转移,导致量子点的磷光强度减弱(曲线d)。当在cDNA-QDs-SWNTs体系中加入10nM tDNA磷光强度恢复(曲线e)。结果表明在cDNA-QDs-SWNTs磷光体系中加入自由DNA时,互补的DNA链削弱了DNA和SWNTs之间的π-π作用。因此,能量受体的SWNTs从供体的表面脱离,导致能量供体cDNA-QDs的磷光强度恢复。基于磷光恢复,用磷光“turn on”的方法检测目标DNA。 
加入10nM tDNA在cDNA-QDs-SWNT体系中时,磷光信号迅速的增强,在30分钟后磷光强度恢复到最大值并保持不变。因此,选择30分钟作为最佳的磷光恢复时间。 
在最佳的实验条件下,在Tris-HCl缓冲液中检测tDNA的分析参数如图6b所示,加入不同浓度的tDNA,cDNA-QDs-SWNTs磷光能量转移系统的磷光强度逐渐恢复。磷光增强效率可以用公式(P-P0)/P0来表示,P和P0分别代表加入不同浓度的tDNA和没有加入tDNA时的磷光强度。图6b(插图)当tDNA的浓度从0-45nM时的线性曲线,相关系数为0.9991,校正曲线的表达公式为(P-P0)/P0=0.9568+1.474c(c:nM).最低检出限为0.027nM(3σ)。σ表示八次空白测定的标准偏差。这些分析参数优于之前文献报道的相关参数(如Table S1)。这些优良的分析性能,如最低检出限可以归因于磷光方法的优点和互补DNA链的特异性。这些方法的相对标准偏差为3.73%,是由测量10nM的目标DNA和七次重复测量的标准偏差得到的。这也表明cDNA-QDs-SWNTs磷光能量转移系统对tDNA的检测有很高的可重复性。 
Table S1比较不同的DNA生物传感器和不同的光学检测方案 
Figure BDA0000449788050000091
Figure BDA0000449788050000101
(6)选择性实验 
为了探讨磷光能量转移传感器对目标DNA的特异性,在相同的实验条件下我们研究了单碱基错配的DNA(mDNA)对传感器的响应。如图7a,相比较tDNA,加入mDNA的cDNA-QDs-SWNTs磷光能量转移系统,观察到轻微的磷光增强,这表明在PRET作用中mDNA明显低于tDNA。如图7b,在ctDNA:cmDNA浓度比为1:1,2:0和0:2时,磷光强度的恢复分别是72.1%和558.4%。这些结果表明,cDNA-QDs-SWNTs传感系统对单碱基错配有很好的选择性。因此,这种传感器可以很好的区分tDNA和mDNA,并具有良好的抗干扰能力。 
该新型的磷光能量转移传感体系,首次采用Mn-ZnS QDs作为能量转移的供体,氧化碳纳米管作为能量转移的受体,并论证了其在DNA传感应用中可以达到0.027nM的最低检出限。这种传感器展现了良好的分析性能,有效的避免自体荧光和散射光的干扰。磷光能量转移系统为设计化学生物传感器提供了一个新的方法。 
上面结合附图对本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种改进,或未经改进直接应用于其它场合的,均在本发明的保护范围之内。 

Claims (10)

1.一种磷光能量转移体系,其特征在于,能量的供体为Mn掺杂ZnS量子点,能量的受体为氧化碳纳米管。
2.如权利要求1所述的磷光能量转移体系,其特征在于,能量的供体为cDNA修饰的量子点QDs-cDNA。
3.如权利要求1或2所述磷光能量转移体系的合成方法,其特征在于,作为能量供体的量子点的采用如下步骤合成:
(1)容器内加入巯基丙酸,ZnSO4和MnCl2水溶液;
(2)调节溶液的pH值;
(3)搅拌并饱和;
(4)加入Na2S水溶液;
(5)反应并陈化;
(6)沉降并高速离心;
(7)倾去上层清液并干燥,即得。
4.如权利要求3所述磷光能量转移体系的合成方法,其特征在于,步骤(1)中在100mL的三口烧瓶内,加入0.17mL巯基丙酸,5mL0.1mol/L ZnSO4和0.2mL0.01mol/L MnCl2水溶液,和/或,步骤(2)中用NaOH调节溶液的pH值至11,和/或,步骤(3)中在室温下磁力搅拌,通氮气饱和30分钟,保证稳定剂与Zn2+和Mn2+络合充分,和/或,步骤(4)中注射器在隔绝空气的条件下加入5mL0.1mol/L的Na2S水溶液,和/或,步骤(5)中,在室温下继续反应20分钟,将得到的Mn掺杂ZnS量子点的溶液在空气氛围下陈化2小时,温度控制在50℃,和/或,步骤(6)中以相同体积的无水乙醇使量子点沉降,高速离心,和/或,步骤(7)中,置于室温真空干燥24小时,即可得到实验所需的纳米粒子固体粉末。
5.如权利要求3或4所述磷光能量转移体系的合成方法,其特征在于,作为能量受体的氧化碳纳米管采用如下步骤合成:
1)碳纳米管分散于盐酸中;
2)将所得溶液离心并清洗;
3)加入硝酸和硫酸的混合溶液里;
4)超声并将溶液洗至中性;
5)干燥;
6)将干燥产物溶解在水中,即得。
6.如权利要求5所述磷光能量转移体系的合成方法,其特征在于,
步骤1)中,取0.5g碳纳米管分散200mL2mol/L的盐酸中,循环回流加热24小时,和/或,
步骤2)中,用超纯水清洗,和/或,
步骤3)中,加入16mL体积比1:3的硝酸和硫酸的混合溶液里,和/或,
步骤4)中,超声2小时后,用NaOH将溶液洗至中性,和/或,
步骤5)中,放入干燥箱中干燥24小时,和/或,
步骤6)中,将产物溶解在100mL蒸馏水中,得到氧化碳纳米管的浓度为1mg/mL。
7.如权利要求1或2所述磷光能量转移体系的用途,其特征在于,用于对单链脱氧核糖核苷酸的检测。
8.一种单链脱氧核糖核苷酸的检测方法,其特征在于,采用磷光量子点和氧化碳纳米管之间的磷光能量转移来检测单链脱氧核糖核苷酸。
9.如权利要求8所述的单链脱氧核糖核苷酸的检测方法,其特征在于,包括如下步骤:
a.混合氧化碳纳米管和QDs-cDNA;
b.用pH=7.2Tris-HCl定容;
c.室温下反应;
d.用荧光仪调节至磷光模式检测溶液的磷光强度。
10.如权利要求8或9所述的单链脱氧核糖核苷酸的检测方法,其特征在于,步骤a中所述cDNA修饰的量子点采用如下方式合成:
量子点超声分散于pH=7的磷酸盐缓冲液中;
加入丁二酸酐,搅拌反应;
离心,清洗;
将沉淀溶NaCl Tris-HCl缓冲液中;
加入EDC和NHS,反应;
加入cDNA,继续反应;
反应结束后,离心分离,将沉淀溶于NaCl Tris-HCl缓冲液中,即得。
CN201310753367.6A 2013-12-30 2013-12-30 一种磷光能量转移体系,其合成方法,用途以及单链脱氧核糖核苷酸的检测方法 Pending CN103881707A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310753367.6A CN103881707A (zh) 2013-12-30 2013-12-30 一种磷光能量转移体系,其合成方法,用途以及单链脱氧核糖核苷酸的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310753367.6A CN103881707A (zh) 2013-12-30 2013-12-30 一种磷光能量转移体系,其合成方法,用途以及单链脱氧核糖核苷酸的检测方法

Publications (1)

Publication Number Publication Date
CN103881707A true CN103881707A (zh) 2014-06-25

Family

ID=50950849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310753367.6A Pending CN103881707A (zh) 2013-12-30 2013-12-30 一种磷光能量转移体系,其合成方法,用途以及单链脱氧核糖核苷酸的检测方法

Country Status (1)

Country Link
CN (1) CN103881707A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106590634A (zh) * 2016-11-30 2017-04-26 北京中科卓研科技有限公司 微纳复合结构的掺杂硫化锌制备及其在增强现实上的应用
CN111443068A (zh) * 2020-03-06 2020-07-24 天津大学 具有多重刺激响应特性的纯有机室温磷光材料及筛选方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1271133A1 (en) * 2000-02-28 2003-01-02 Daiichi Pure Chemicals Co., Ltd. Measuring method using long life fluorescence of excitation type
CN1850988A (zh) * 2006-02-28 2006-10-25 武汉大学 荧光量子点标记的dna生物探针及其制备方法
CN101281131A (zh) * 2008-05-26 2008-10-08 南开大学 Mn掺杂ZnS量子点室温磷光检测生物体液中依诺沙星的方法
US8049185B2 (en) * 2008-02-07 2011-11-01 Mitsui Engineering & Shipbuilding Co., Ltd. Fluorescence detection device and fluorescence detection method
JP5219415B2 (ja) * 2007-06-29 2013-06-26 キヤノン株式会社 蛍光検出装置および生化学反応分析装置と蛍光検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1271133A1 (en) * 2000-02-28 2003-01-02 Daiichi Pure Chemicals Co., Ltd. Measuring method using long life fluorescence of excitation type
CN1850988A (zh) * 2006-02-28 2006-10-25 武汉大学 荧光量子点标记的dna生物探针及其制备方法
JP5219415B2 (ja) * 2007-06-29 2013-06-26 キヤノン株式会社 蛍光検出装置および生化学反応分析装置と蛍光検出方法
US8049185B2 (en) * 2008-02-07 2011-11-01 Mitsui Engineering & Shipbuilding Co., Ltd. Fluorescence detection device and fluorescence detection method
CN101281131A (zh) * 2008-05-26 2008-10-08 南开大学 Mn掺杂ZnS量子点室温磷光检测生物体液中依诺沙星的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
D. W. HUANG ET AL.: ""Turn-On Fluorescent Sensor for Hg2+ Based on Single-Stranded DNA FunctionalizedMn:CdS/ZnS Quantum Dots and Gold Nanoparticles by Time-Gated Mode"", 《ANALYTICAL CHEMISTRY》, vol. 85, no. 2, 20 December 2012 (2012-12-20), pages 1164 - 1170 *
J. P. TIAN ET AL.: ""Detection of influenza A virus based on flurescence resonance energy transfer from quantum dots to carbon nanotubes"", 《ANALYTICA CHIMICA ACTA》, vol. 723, 20 April 2012 (2012-04-20), pages 83 - 87, XP028474765, DOI: 10.1016/j.aca.2012.02.030 *
L. ZHANG ET AL.,: ""An efficient phosphorescence energy transfer between quantum dots and carbon nanotubes for ultrasensitive turn-on detection of DNA"及其Electronic Supplementary Information", 《CHEM. COMMUN.》, vol. 49, 12 July 2013 (2013-07-12), pages 8102 - 8104 *
Y. HE ET AL.: ""Mn-doped ZnS quantum dots/methyl violet nanohybrids for room temperature phosphorescence sensing of DNA"", 《SCIENCE CHINA CHEMISTRY》, vol. 54, no. 8, 31 August 2011 (2011-08-31), pages 1254 - 1259, XP019942255, DOI: 10.1007/s11426-011-4314-y *
Y. HE ET AL.: ""Self-Assembly of Mn-Doped ZnS Quantum Dots/Octa(3-aminopropyl)octasilsequioxane Octahydrochloride Nanohybrids for Optosensing DNA"", 《CHEMISTRY-A EUROPEAN JOURNAL》, vol. 15, no. 22, 22 April 2009 (2009-04-22), pages 5436 - 5440 *
俞樟森等: ""ZnS:Mn/ZnS量子点在DNA定量分析中的应用"", 《分析测试学报》, vol. 30, no. 7, 31 July 2011 (2011-07-31), pages 789 - 794 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106590634A (zh) * 2016-11-30 2017-04-26 北京中科卓研科技有限公司 微纳复合结构的掺杂硫化锌制备及其在增强现实上的应用
CN111443068A (zh) * 2020-03-06 2020-07-24 天津大学 具有多重刺激响应特性的纯有机室温磷光材料及筛选方法和应用

Similar Documents

Publication Publication Date Title
Li et al. Fluorescent labels in biosensors for pathogen detection
Bharathi et al. Green and cost effective synthesis of fluorescent carbon quantum dots for dopamine detection
Goryacheva et al. Lanthanide-to-quantum dot Förster resonance energy transfer (FRET): Application for immunoassay
CN103881701A (zh) 一种磷光能量转移体系,其合成方法,用途以及凝血酶的检测方法
US6660379B1 (en) Luminescence spectral properties of CdS nanoparticles
AU2002351820B2 (en) Assay based on doped nanoparticles
Su et al. Strategies in liquid-phase chemiluminescence and their applications in bioassay
Callan et al. Anion sensing with luminescent quantum dots–a modular approach based on the photoinduced electron transfer (PET) mechanism
Castro et al. Multiplexed detection using quantum dots as photoluminescent sensing elements or optical labels
Qian et al. Simultaneous detection of multiple DNA targets by integrating dual‐color graphene quantum dot nanoprobes and carbon nanotubes
Mendez-Gonzalez et al. Sensors and bioassays powered by upconverting materials
Saha et al. Role of quantum dot in designing FRET based sensors
Martins et al. New insights on optical biosensors: techniques, construction and application
CN106802295A (zh) 一种对痕量tnt检测的石墨烯量子点荧光探针的化学制备方法
Sun et al. A molecular light switch Ru complex and quantum dots for the label-free, aptamer-based detection of thrombin
He et al. based upconversion fluorescence aptasensor for the quantitative detection of immunoglobulin E in human serum
Zhang et al. Multi-targeting single fiber-optic biosensor based on evanescent wave and quantum dots
Shi et al. Label-free fluorescent DNA biosensors based on metallointercalators and nanomaterials
Zhu et al. Luminescence amplification strategies integrated with microparticle and nanoparticle platforms
Ju et al. Interface-assisted ionothermal synthesis, phase tuning, surface modification and bioapplication of Ln 3+-doped NaGdF 4 nanocrystals
Belal et al. Recent applications of quantum dots in pharmaceutical analysis
Yan et al. Fluorescence immunosensor based on p-acid-encapsulated silica nanoparticles for tumor marker detection
Dong et al. Low-triggering-potential electrochemiluminescence from surface-confined CuInS2@ ZnS nanocrystals and their biosensing applications
Cywiński et al. Europium-quantum dot nanobioconjugates as luminescent probes for time-gated biosensing
CN103881707A (zh) 一种磷光能量转移体系,其合成方法,用途以及单链脱氧核糖核苷酸的检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140625

RJ01 Rejection of invention patent application after publication