CN103868450B - 运动部位置的角测量电感传感器和用此传感器的测量方法 - Google Patents

运动部位置的角测量电感传感器和用此传感器的测量方法 Download PDF

Info

Publication number
CN103868450B
CN103868450B CN201310691456.2A CN201310691456A CN103868450B CN 103868450 B CN103868450 B CN 103868450B CN 201310691456 A CN201310691456 A CN 201310691456A CN 103868450 B CN103868450 B CN 103868450B
Authority
CN
China
Prior art keywords
angle
target
circuit
auxiliary
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310691456.2A
Other languages
English (en)
Other versions
CN103868450A (zh
Inventor
A.丰塔内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Continental Automotive GmbH
Continental Automotive France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH, Continental Automotive France SAS filed Critical Continental Automotive GmbH
Publication of CN103868450A publication Critical patent/CN103868450A/zh
Application granted granted Critical
Publication of CN103868450B publication Critical patent/CN103868450B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/225Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils
    • G01D5/2258Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils by a movable ferromagnetic element, e.g. core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2053Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable non-ferromagnetic conductive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/225Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils
    • G01D5/2275Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils by a movable non-ferromagnetic conductive element

Abstract

本发明涉及运动部位置的角测量电感传感器和用此传感器的测量方法。本发明的目的是改进角度电感式传感器的线性度。根据本发明的电感式传感器包括主绕组、两个辅绕组和可运动的目标,主绕组以中央轴为中心并且携带可以在辅绕组中感应电压的高频交变电流,辅绕组也以中央轴为中心并且由数量为k(k=2)的基本相同的回路构成,回路是连续交叉的并且布置为与主绕组相对。在该情况中,目标由具有p=1个具有角度开口(α1)的角度扇形的部件构成。目标的角度扇形的开口(α1)比辅绕组的回路的角度扇形的开口小一偏差,计算该偏差以便消除在目标在测量方位上的位置的所测角度值与实际角度值之间的线性度偏差傅立叶分解的第四谐波。

Description

运动部位置的角测量电感传感器和用此传感器的测量方法
技术领域
本发明涉及致力于旋转部件的位置的角度测量的电感式传感器以及涉及使用该电感式传感器的测量方法。
本发明的领域涉及使用布置在运动的结构上的目标来检测运动的结构和机械部件的位置,这些结构和机械部件特别是旋转机器的转子。
本发明主要但非排他地应用于航空学或汽车工业中的机器工具或其他工业机器,并且一般每当有必要监视机械元件的角度位置时应用。
背景技术
角度电感式传感器具有与线性电感式传感器的结构类似的结构:它们包括具有固定主电路和至少一个固定辅电路的“变换器(transformer)”固定部件,和由刚性连接到要在角度上被监视的机械部件的金属目标构成的可运动部件。固定主电路一般由线圈或者由在平坦表面上印刷的电路形成。
高频交变电流在主电路中流动。该电流以与在主电路中流动的电流相同的频率产生磁场。每个辅电路也是固定的并且放置在相同表面上,但是形成至少两个回路(loop)。出于以下指示的原因,连续的回路具有基本相同的表面。它们是交叉的并因此(从三角学的角度来看)具有相反的朝向。
作为在主电路与每个辅电路的具有相同表面的回路之间的耦合的结果,主通量产生视为从每个辅电路的一个回路到另一个回路反向的磁通量。
一般而言,目标的表面至少与辅电路的回路的表面一样大,并且可运动目标的运动然后修改主电路与每个辅电路的每个回路之间的耦合。对在辅电路的端子处感应的电压的测量因此允许知道机械部件的位置。因此,在辅电路的回路前面的目标的连续位置在每个辅电路的回路中产生一定量的磁通量并因此产生电压。该电压的发展根据目标的位置而变化并包括相对增加和减少。最后,该变化产生与正弦曲线非常接近的曲线。
换言之,在每个辅电路的回路中感应电压。该电压的符号取决于回路的方向。这些电压的代数和根据在这些回路前面的目标的运动而变化:在两个回路的中央,目标产生零和电压。因为回路的表面是相同的,所以当目标的大小与每个辅电路回路的大小基本相同时,该电压在传感器的目标正面对每个回路时具有最大绝对值。
对于角度传感器,目标在角度上覆盖辅电路的每个回路。例如,对于具有等于360°的方位(course)(两个180°的回路)的辅电路,目标的角度开口是180°。对于具有等于180°的方位(四个90°的回路)的辅电路,目标由两个具有90°开口的角度扇形构成,这些角度扇形的顶点是相对的。一般地,目标的开口角度等于辅电路的方位的一半。
电感式传感器,特别是其中针对目标测量的位置是角度的角度电感式传感器,在目标角度位置的测量中,并因此在要监视的机械部件的测量中具有误差。已经提出了若干方案来解决该问题。
专利文档WO 2005/098370例如描述了跟随在之前的校准操作之后的参考辅回路的使用,该参考用于目标位置的更准确的测量。此外,专利文档FR 2964735目标在于通过放置在辅电路上的补偿回路的使用来减小测量误差,补偿回路的使用允许移除在辅电路的端子处接收的交变信号的一些寄生分量。
然而,尽管有这些改进,但是已知方案并未提供具有足够线性度以便获得可靠的结果的角度传感器。此外,传感器的灵敏度由虚构直线定义的该线性度来表征,该虚构直线将是最好接近目标在整个测量范围上的位置的所测角度值与实际角度值之间的实际关系的虚构直线。然后,通过传感器的实际角度测量与该虚构直线之间的接近度来测量灵敏度。
发明内容
本发明的目的是通过使用傅立叶变换分析相对于目标位置的实际角度值给出目标的位置的所测角度值的函数来改进角度电感式传感器的线性度。该分析已经导致在特定比例内减小了目标的角度开口。
更精确地,本发明涉及用于测量旋转部件的角度位置的电感式传感器,其包括:主绕组(winding),其与至少一个辅绕组相关联;以及目标,其与绕中央轴旋转的部件刚性连接,主绕组以与目标的中央旋转轴一致的轴为中心,并且携带可以在每个辅绕组中感应电压的高频交变电流。也以该中央轴为中心的每个辅绕组由数量为k(k ≥ 2)的基本相同的形成具有开口SB的角度扇形的回路构成,所述回路是连续交叉的并且布置为与主绕组相对。目标由p(p ≥ 1)个角度扇形构成,所述p个角度扇形具有值α0等于回路扇形的开口SB的相同角度开口α,并且所述p个角度扇形规则分布为与主和辅绕组相对。在该电感式传感器中,每个目标角度扇形的开口α被减去等于分数的调整角度扇形SA,使得α=SB-SA,C为传感器在整体相同的两个目标连续位置之间的角度扫描方位,h为在目标在方位C上的位置的所测与实际角度值之间定义的线性度偏差傅立叶分解中要消除的谐波的阶数,并且r为每辅绕组的回路的数量k相对于目标的扇形数量p,即
根据一些优选实施例:
● 要消除的谐波具有第4阶,并且调整角度扇形SA然后等于每个绕组回路的角度开口的四分之一;
● 传感器包括由基本相同的回路构成的两个辅绕组;
● 这些辅绕组偏移半个回路。
本发明还涉及用于测量可旋转部件的角度位置的方法,其中使用上述电感式传感器;该方法包括用目标的具有开口α的每个角度扇形连续掩蔽每个(所述)辅绕组的具有角度开口SB的角度扇形,将开口α调整为角度开口SB的3/4,使得在每个(所述)辅绕组中感应的电压具有正弦变化,测量在每个(所述)辅绕组的端子处的电压,使用相同的正弦函数来组合所测电压的幅度,以及在每个时刻根据该时刻的正弦函数的幅度来提供针对目标的位置测量。
优选地,所使用的函数是在相位正交的两个辅绕组的端子处测量的正弦电压的幅度之比的反正切。
附图说明
在参照附图阅读了下面的非限制性描述时,本发明的其他信息、特征和优点将显现出来,其中:
-图1a和1b是根据现有技术的在所测目标位置角度值与实际位置角度值之间的偏差的两幅图;
-图2是根据本发明的具有360°方位的电感式传感器示例的图;以及
-图3是根据本发明的具有180°方位的电感式传感器示例的图。
具体实施方式
图1a涉及如常规电感式传感器所测量的作为实际位置角度ΘR的函数的目标的位置角度ΘM的线性度偏差ε。该电感式传感器是具有等于360°的方位的传感器,包括圆形主绕组、以直角放置以便提供两个互补的正弦感应电压的两个辅绕组以及180°角度开口的半月形目标,每个辅绕组由两个180°角度开口的初级回路形成。
为此,图1a示出了两条曲线:作为目标的位置实际角度ΘR的函数的位置测量角度ΘM的变化的曲线3,和表示当所测角度ΘM与目标的位置实际角度ΘR一致时获得的理论曲线的直线1。当以规则间隔,即每45°,切割该直线1时,观察到的曲线3具有关于该理论直线1的振荡2。
线性度偏差ε对应于针对给定ΘR值的差ΘM-ΘR,并且每45°改变符号。两条曲线1与3之间的这些偏差ε传达传感器的线性度的缺乏。通过相对于位置实际角度ΘR绘制偏差ε的变化,图1b更精确地示出偏差ε的正和负振荡的曲线4,正和负振荡连续(follow oneanother),每45°通过零值。曲线4因此具有正弦形状并且偏差在最大值+M与最小值-M之间变化。
为了使线性度偏差ε振荡的幅度对于所有值ΘM接近于零,因此对于具有例如等于180°的开口并且具有等于360°的方位的目标应当存在对45°之上的振荡的补偿。该考虑也对应于使用感应电压的类比地也标为ε(因为二择一的取消)的线性度偏差的傅立叶分解来进行分析的手段。该傅立叶分析提供要消除的谐波的阶数以便将线性度偏差减小为零:
● 2阶对应于绕组的回路之间的对称性的缺乏,这是容易纠正的;
● 3阶只可能在辅绕组具有奇数回路的情况下才存在;然而,对于所研究的传感器和对于任何电感式传感器,总是提供偶数回路以便合计每个回路的初级感应电流以便提供整个感应电压;
● 因此在该情况中,4阶为优先考虑要消除的阶数。
一般地,旋转传感器测量在称为测量方位C的角度延伸范围中的角度。角度方位C对应于整体上相同的两个连续位置之间的目标的角度扫描。目标包括一个或多个规则分布的具有角度开口α0的扇形,根据现有技术,角度开口α0通常等于辅绕组回路的扇形的开口SB。
该回路扇形开口SB等于,并且目标开口α0于是使得,如从下面的示例所显现的。
方位C可以是360°,即完整的一圈,并且辅绕组于是由两个回路构成,每个回路形成具有等于180°的开口SB的扇形,即。有利地,目标于是具有“半月”的单个角度扇形形状,其具有也等于180°的角度开口α。
传感器还可以具有小于360°的方位C,并且在该情况中,该范围C仅可以具有360°的等分(sub-multiple)的值,即形状的180°、120°、90°等,其中p是大于1的自然数。在该情况中,目标具有角度周期的周期几何形状,其由p个规则分布的角度扇形构成,对于每个扇形,具有等于(即)的值的角度开口α0。
因此,在所有情况中,目标的方位C等于,p是大于或等于1的整数(当目标具有角度开口为180°的单个扇形时等于1,并且当目标具有开口角度为180/p的p个扇形时大于1)。
为了移除所测位置角度的线性度偏差,根据本发明,通过值SA角度扇形的减少来调整目标的角度开口,其对应于4阶谐波的消除。于是,目标的角度开口取值α使得
该线性度偏差的傅立叶分解的计算例如示出:对于具有每辅绕组两个初级回路和由具有根据现有技术等于180°的开口α0的“半月”扇形形成的目标的360°方位传感器,根据本发明去除等于45°的扇形调整开口SA以便移除4阶谐波,即目标的四分之一扇形。于是,目标的开口具有等于135°的值α。
传感器还通过等于每辅绕组的回路数量相对于目标的扇形数量的数r,即来表征。在本示例中,每个角度扇形的回路数量使得目标每方位通过每个辅绕组的2个回路,并且r的值于是为2。
在这些条件下,每个目标扇形具有被减去目标角度调整角度扇形SA的角度开口α0,SA开口等于传感器的方位C相对于每方位扫描的回路的数量“r”和要消除的谐波阶数“h”的分数,即。在以上示例中,r=2并且h=4,C=360°,即
下面的表1概括了每个目标扇形的根据现有技术的“α0”和根据本发明的“α”的角度开口的值、为针对各种目标从开口α0移动到开口α的调整扇形SA的值,其中r的值等于2(与以上示例相同)、3和4。
表1中针对目标的角度开口计算的一些值在实践中作为数量级来考虑,并且于是在表中已经引入了四舍五入后的值。
图2和3示出具有每方位的两个辅绕组回路以及两个辅绕组的传感器,并且方位分别等于360°和180°。图2具体示出电感式角度传感器100的示例,其在该情况下在图的平面的相同平面中,包括:主电路10、偏移90°两个辅电路12和14,以及具有单个扇形(具有相同标号16)的目标16,其具有半月形状并且方位等于360°。
表1。
电路关于中央轴X’X具有中央对称性,并且图中用阴影标出的目标16在与电路10、12和14的平面平行的平面中绕轴X’X旋转。更具体地:
● 固定主电路10基本覆盖360°;
● 虚线的固定辅电路12具有无接触的交叉120以便形成两个回路12a和12b,并且其中归因于主电流的感应通量在该辅电路的端子处生成电压;
● 实线的第二固定辅电路14具有无接触的交叉140以便也形成两个回路14a和14b,并且其中感应电压;
● 每个辅绕组电路12或14在关于轴X’X的每360°方位实际具有两个回路12a、12b和14a、14b;
● 目标的角度开口α0通常为180°,并且根据本发明,通过具有等于45°的开口的调整角度扇形SA的减少,调整后的角度开口α1根据表1为135°。
图3示出每方位具有两个辅绕组回路的电感式角度传感器200的另一示例,在该情况中方位为180°。固定主电路20与图2的电路10相同。不同于之前的传感器100:
● 每个固定辅电路22(实线)和24(虚线)分别具有四个回路22a-22d和24a-24d,这些回路分别具有对于电路22的两个交叉220和221以及对于电路24的240和241;于是在两个连续回路中感应电压被反向;
● 辅电路22和24关于轴X’X偏移45°;
● 可运动目标26由两个角度扇形26a和26b形成,每个扇形具有等于67.5°的角度开口α2,如表1中所示。
本发明并不限于所描述和示出的实施例。本发明适于等于的任何方位值,对应于p个扇形的目标。例如,对于每方位三个回路(r=3),当目标扇形的数量p分别等于1、2或3从而生成360°、180°和120°的方位C时,辅绕组回路的数量k等于3、6或9。一般存在两个辅绕组,它们偏移的角度等于目标扇形的角度开口的一半,或者存在多于两个的辅绕组。

Claims (6)

1.一种用于测量旋转部件的角度位置的电感式传感器(100,200),包括:
-主绕组(10,20),其与至少一个辅绕组(12,14,22,24)相关联;以及
-目标(16,26a,26b),其与关于中央轴(X’X)旋转的部件刚性连接,
主绕组(10,20)以与目标(16;26a,26b)的中央轴(X’X)一致的轴为中心,并且携带可以在每个辅绕组(12,14,22,24)中感应电压的高频交变电流,也以中央轴(X’X)为中心的每个辅绕组(12,14,22,24)由数量为k的基本相同的回路(12a,12b,14a,14b,22a-22d,24a-24d)构成,其形成具有开口SB的角度扇形,其中k ≥ 2,所述回路是连续交叉的并且布置为与主绕组(10,20)相对,并且目标(16;26a,26b)由p个角度扇形构成,所述p个角度扇形具有等于回路扇形的开口SB的相同角度开口α,α的值为α0,并且所述p个角度扇形规则分布为与主(10,20)和辅(12,14,22,24)绕组相对,其中p ≥ 1,所述电感式传感器特征在于:
-每个目标(16;26a,26b)角度扇形的开口α被减少调整角度扇形SA,所述调整角度扇形SA的值等于分数,使得α等于SA的开口减去开口SB,
其中:
C=传感器(100,200)在整体相同的两个目标(16,26a,26b)连续位置之间的角度扫描历程,
h=线性度偏差傅立叶分解中要消除的谐波的阶,所述线性度偏差傅立叶分解在目标在历程C上的位置的所测与实际角度值之间被定义,并且
r=每个辅绕组的回路(12a,12b,14a,14b,22a-22d,24a-24d)的数量k相比于目标(16,26a,26b)的扇形的数量p,即
2.根据权利要求1所述的电感式传感器,其中,要消除的谐波具有第4阶,并且调整角度扇形SA的开口于是等于每个辅绕组回路的角度开口的四分之一。
3.根据权利要求1或2所述的电感式传感器,其中,传感器(100,200)包括两个辅绕组(12,14或22,24)。
4.根据权利要求3所述的电感式传感器,其中,辅绕组之一偏移半个回路。
5.一种用于使用根据权利要求1-4之一所述的电感式传感器(100,200)来测量可旋转部件的角度位置的方法,其特征在于其包括用目标(16,26a,26b)的具有小于角度开口SB的开口α的每个角度扇形连续掩蔽具有角度开口SB的所述辅绕组(12,14,22,24)中每一个辅绕组的角度扇形中的每一个,调整该开口减小使得在所述辅绕组(12,14,22,24)的每一个中感应的电压具有正弦变化,测量在所述辅绕组(12,14,22,24)中每一个的端子处的电压,使用相同的正弦函数来组合所测电压的幅度,以及在每一个时刻根据该时刻的正弦函数的幅度来提供针对目标(16,26a,26b)的位置测量。
6.根据权利要求5所述的方法,其中,所使用的函数是在相位正交的两个辅绕组(12,14,22,24)的端子处测量的正弦电压的幅度之比的反正切。
CN201310691456.2A 2012-12-18 2013-12-17 运动部位置的角测量电感传感器和用此传感器的测量方法 Active CN103868450B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1262238A FR2999702B1 (fr) 2012-12-18 2012-12-18 Capteur inductif de mesure angulaire de position d'une piece en mouvement et procede de mesure utilisant un tel capteur
FR1262238 2012-12-18

Publications (2)

Publication Number Publication Date
CN103868450A CN103868450A (zh) 2014-06-18
CN103868450B true CN103868450B (zh) 2018-07-17

Family

ID=47882265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310691456.2A Active CN103868450B (zh) 2012-12-18 2013-12-17 运动部位置的角测量电感传感器和用此传感器的测量方法

Country Status (3)

Country Link
US (1) US9322636B2 (zh)
CN (1) CN103868450B (zh)
FR (1) FR2999702B1 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3023369B1 (fr) 2014-07-04 2016-08-12 Continental Automotive France Ensemble comportant au moins un premier moteur, un deuxieme moteur et un capteur de position angulaire
FR3023611B1 (fr) * 2014-07-08 2017-12-08 Continental Automotive France Ensemble comprenant un moteur de vehicule automobile comportant des cibles et un capteur de position angulaire
FR3031586B1 (fr) 2015-01-13 2017-02-10 Dymeo Capteurs inductifs de deplacement
FR3031589B1 (fr) 2015-01-13 2018-11-16 Hutchinson Capteurs inductifs de deplacement
FR3031588B1 (fr) 2015-01-13 2018-11-16 Hutchinson Capteurs inductifs de deplacement
FR3031587B1 (fr) 2015-01-13 2018-11-16 Hutchinson Capteurs inductifs de deplacement
FR3035157B1 (fr) * 2015-04-16 2017-04-21 Continental Automotive France Procede et dispositif de detection de rotation inverse d'un moteur a combustion interne
FR3036790B1 (fr) * 2015-05-27 2017-06-02 Continental Automotive France Procede de determination de la position d'une piece mobile le long d'un axe a l'aide d'un capteur inductif
DE102015225695A1 (de) * 2015-12-17 2017-06-22 Robert Bosch Gmbh Vorrichtung und Verfahren zur Ermittlung einer Relativauslenkung
FR3051552B1 (fr) 2016-05-18 2018-05-25 Continental Automotive France Capteur de position inductif lineaire pour une mesure angulaire d'une piece mecanique en rotation
FR3052250B1 (fr) * 2016-06-06 2020-05-01 Continental Automotive France Dispositif de mesure de position angulaire d'un arbre ou similaire
CN107478248B (zh) * 2017-07-31 2019-07-23 浙江天拓电气有限公司 一种旋转变压器解算方法
US10444037B2 (en) 2017-08-22 2019-10-15 Semiconductor Components Industries, Llc Inductive position sensor
FR3073148B1 (fr) * 2017-11-07 2021-04-09 G C Tech Appareil portatif pour generer un courant electrique induit sinusoidal a basse frequence
TWI798331B (zh) * 2018-02-02 2023-04-11 日商三共製作所股份有限公司 檢測移動體之運動之位置變化量的方法及裝置
CN116412843A (zh) * 2018-05-29 2023-07-11 京瓷安施电子元件(韦尔讷)有限公司 旋转位置感测设备及方法
US11555940B2 (en) 2018-10-31 2023-01-17 KYOCERA AVX Components (Werne), GmbH Position sensing apparatus and method
ES1239859Y (es) * 2019-07-23 2020-07-02 Piher Sensors & Controls S A Sistema sensor de posicion
DE102019213174B9 (de) * 2019-08-30 2023-04-06 Infineon Technologies Ag Induktiver winkelsensor
EP3865824B1 (en) * 2020-02-13 2022-10-19 TE Connectivity Belgium BVBA Sensor device for measuring the position of an element
DE102020206396A1 (de) * 2020-05-20 2021-11-25 Infineon Technologies Ag Induktiver winkelsensor mit zwei zueinander versetzt angeordneten pickup-spulenanordnungen
US11598654B2 (en) 2020-12-14 2023-03-07 Microchip Technology Inc. High resolution angular inductive sensor and associated method of use
DE112021007398T5 (de) 2021-03-25 2024-01-04 Microchip Technology Incorporated Erfassungsspule zur induktiven Drehpositionsmessung und zugehörige Vorrichtungen, Systeme und Verfahren
US11885649B2 (en) 2021-04-09 2024-01-30 Semiconductor Components Industries, Llc Rotor for inductive slip, eccentricity, and tilt sensing
US11740069B2 (en) 2021-12-29 2023-08-29 Sensata Technologies, Inc. Inductive sensor with split lobe target
CN114485734B (zh) * 2022-04-19 2022-06-21 宜科(天津)电子有限公司 一种漫反射式光电传感器抗干扰方法、设备及介质
FR3139194A1 (fr) 2022-08-26 2024-03-01 Vitesco Technologies Carte de circuit imprimé pour un capteur inductif de mesure de position angulaire, d’encombrement réduit
FR3139427A1 (fr) 2022-09-02 2024-03-08 Vitesco Technologies Carte de circuit imprimé pour un capteur inductif de position, muni d’un moyen d’insensibilisation à un environnement métallique

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414340A (zh) * 2002-11-20 2003-04-30 重庆工学院 位移测量传感器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3117808A1 (de) * 1981-05-06 1982-11-25 Robert Bosch Gmbh, 7000 Stuttgart Schaltungsanordnung zur messung von induktivitaetsaenderungen
DE4122478A1 (de) * 1991-02-12 1992-08-13 Bosch Gmbh Robert Messeinrichtung zur bestimmung eines drehwinkels
FR2684180B1 (fr) * 1991-11-26 1995-04-14 Sagem Capteur de position angulaire absolue a reluctance variable.
DE19634282A1 (de) * 1996-08-24 1998-02-26 Bosch Gmbh Robert Meßvorrichtung zur berührungslosen Erfassung eines Drehwinkels
DE50011024D1 (de) * 2000-06-16 2005-09-29 Amo Automatisierung Mestechnik Induktives Längenmesssystem
CN100422758C (zh) * 2003-06-06 2008-10-01 三菱电机株式会社 旋转机的常数测定装置
US7276897B2 (en) * 2004-04-09 2007-10-02 Ksr International Co. Inductive position sensor
DE102007010030A1 (de) * 2007-03-01 2008-09-04 Pepperl + Fuchs Gmbh Induktiver Inkrementalweggeber, Verfahren zum Ermitteln der Verschiebung eines ersten Objekts relativ zu einem zweiten Objekt und induktive Sensoreinheit
US7508197B1 (en) * 2007-03-15 2009-03-24 Mikhail Rakov Brushless reactance sensors for indicating angular position
KR101396763B1 (ko) * 2010-06-10 2014-05-16 파나소닉 주식회사 포지션 센서
FR2964735B1 (fr) 2010-09-10 2013-05-10 Continental Automotive France Capteur de position lineaire
US9335356B2 (en) * 2010-12-06 2016-05-10 Mitsubishi Electric Corporation Inductance measuring device and measuring method for synchronous motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414340A (zh) * 2002-11-20 2003-04-30 重庆工学院 位移测量传感器

Also Published As

Publication number Publication date
CN103868450A (zh) 2014-06-18
FR2999702A1 (fr) 2014-06-20
FR2999702B1 (fr) 2015-01-09
US9322636B2 (en) 2016-04-26
US20140167788A1 (en) 2014-06-19

Similar Documents

Publication Publication Date Title
CN103868450B (zh) 运动部位置的角测量电感传感器和用此传感器的测量方法
CN105403233B (zh) 线性位置和旋转位置磁传感器、系统和方法
JP6043721B2 (ja) 改良型位置センサ
US10330498B2 (en) Sensor arrangement for the contactless sensing of angles of rotation on a rotating part
JP6389001B2 (ja) 回転する構成部材の回転角度を非接触式に検出するためのセンサ装置
US11397098B2 (en) Method for detecting errors in a rotating position sensor system having sine and cosine signals
US9746346B2 (en) Linear position and rotary position magnetic sensors, systems, and methods
EP2656013B1 (en) Position sensing transducer
US11796305B2 (en) Magnetic position sensor system, device, magnet and method
CN107401975B (zh) 用于对旋转的机械部件进行角度测量的线性感应式位置传感器
US20200088549A1 (en) Coupler element shapes for inductive position sensors
US9983026B2 (en) Multi-level rotational resolvers using inductive sensors
CN101287959B (zh) 旋转传感器
US9683869B1 (en) Electronic absolute position encoder
JP6739436B2 (ja) 誘導性動きセンサ
KR20120095950A (ko) 자기장 회전을 갖는 바이디렉셔널 마그네틱 위치 센서
CN112857407B (zh) 带有距离值确定的感应式角度传感器
CN106104210B (zh) 位置测量设备和用于操作位置测量设备的方法
US20150061650A1 (en) Method and arrangement and sensor for determing the postion of a component
JP6487246B2 (ja) 電磁誘導式位置検出器及びそれを用いた位置検出方法
JPS61292014A (ja) 位置検出器
CN109682295A (zh) 一种集成式差角测量电感传感器
US11747130B2 (en) Inductive angle sensor with stretched coils
KR20220124108A (ko) 유도성 각도센서
CN117589206A (zh) 编码器的位置处理方法、编码器和计算机可读存储介质

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221201

Address after: Regensburg, Germany

Patentee after: WeiPai Technology Co.,Ltd.

Patentee after: CONTINENTAL AUTOMOTIVE GmbH

Address before: Toulouse, France

Patentee before: CONTINENTAL AUTOMOTIVE FRANCE

Patentee before: CONTINENTAL AUTOMOTIVE GmbH

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230505

Address after: Regensburg, Germany

Patentee after: WeiPai Technology Co.,Ltd.

Address before: Regensburg, Germany

Patentee before: WeiPai Technology Co.,Ltd.

Patentee before: CONTINENTAL AUTOMOTIVE GmbH

TR01 Transfer of patent right